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We study the dynamics of driven polymer translocation using both molecular dynamics (MD)

simulations and a theoretical model based on the non-equilibrium tension propagation on the cis

side subchain. We present theoretical and numerical evidence that the non-universal behavior ob-

served in experiments and simulations are due to finite chain length effects that persist well be-

yond the relevant experimental and simulation regimes. In particular, we consider the influence of

the pore-polymer interactions and show that they give a major contribution to the non-universal

effects. In addition, we present comparisons between the theory and MD simulations for sev-

eral quantities, showing extremely good agreement in the relevant parameter regimes. Finally, we

discuss the potential limitations of the present theories. © 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4742188]

I. INTRODUCTION

The translocation of a polymer through a nano-sized

pore occurs as a part of many biological processes and func-

tions, such as DNA and RNA translocation through nuclear

pores, protein transport across membrane channels and virus

injection.1 The translocation process is also envisioned to

have several biotechnological applications, including rapid

DNA sequencing, gene therapy, and controlled drug delivery.2

Recently, the hope of realizing a third generation DNA se-

quencing method using nanopore sequencing devices has

prompted rapid advancement in experimental methods and

in technological applications,3, 4 leading to commercializa-

tion of the nanopore sequencing technology in the near

future.5

However, despite the technological advances

and considerable experimental2, 6, 7 and theoreti-

cal8–17, 19, 20, 22–28, 30, 31, 34–37 efforts to understand the basic

process, until very recently the fundamental physics of

driven polymer translocation has remained elusive. The first

attempts to model polymer translocation theoretically were

made by Sung and Park9 and later by Muthukumar,10 who

viewed polymer translocation as a one-dimensional barrier

crossing problem of the translocation coordinate s (the

length of the subchain on the trans side), with the activation

barrier determined by the free energy of the polymer derived

from equilibrium enumeration of random walks. However,

if the process is facilitated by an external bias, the process

is inherently out of equilibrium due to the long relaxation

time of the polymer chain. This fact was first recognized by

Kantor and Kardar,12 and was later studied extensively in

simulations,12, 27, 28, 30, 34 with chain lengths and driving forces

in the typical experimental regime. It was observed that with

increasing driving force, significant non-equilibrium effects

come into play.30, 34 The driven translocation problem was

also studied by several authors with different approaches,

such as the fractional Fokker-Planck method by Metzler and

Klafter,11 scaling theory supplemented with the fractional

Fokker-Planck method by Dubbeldam et al.13 and by Vocks

et al. using a method based on local memory effects near the

pore.14 However, the first truly non-equilibrium treatment

was given by Sakaue, using an ingenious tension propagation

theory based on force balance, mass conservation, and

self-similarity of the polymer.15–17, 19 However, the theory

was solved in the asymptotic limit of long chains, neglecting,

e.g., the interaction between the pore and the polymer. It was

pointed out already by Storm et al.7 that this interaction may

significantly alter the dynamics of driven translocation, which

was further demonstrated in simulations.29, 32, 33, 44 Hence, the

agreement of the theories with experiments and simulations

remained modest.

Recently,42 we have generalized Sakaue’s tension prop-

agation (TP) model of driven translocation for finite chain

lengths and included the pore-polymer interaction as an addi-

tional friction force. It was shown that the model is in excel-

lent agreement with high-accuracy molecular dynamics sim-

ulations. In addition, we showed that due to the pore friction

and finite size corrections to the tension propagation equa-

tions, the asymptotic limit is well beyond the present compu-

tational capabilities and simulation algorithms. For example,

the scaling exponent α, which relates the mean translocation

time τ to the chain length N0 as τ ∼ Nα
0 , actually retains a

fairly strong dependence on the chain length even up to N0

≈ 105. Therefore, the scatter (non-universality) of α, widely

studied and reported in the literature, is in fact a finite chain

length effect.

The purpose of this work is to study further the non-

universalities in driven polymer translocation brought on by
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finite chain length effects, and to see how the asymptotic

limit is approached in different regimes. To this end, we use

a combination of theoretical methods and molecular dynam-

ics (MD) simulations. For the former, we use the theoretical

Brownian dynamics tension propagation (BDTP) model in-

troduced in Ref. 42, which is based on the tension propaga-

tion description and incorporates the finite size effects, and for

the latter, we use full N0-particle Langevin thermostatted MD

simulations. The BDTP model and its numerical solution are

described in Sec. II, while the details of the MD simulations

are included in Appendix A.

The central assumption of the tension propagation the-

ory is that the effect of the trans side subchain on the non-

equilibrium dynamics is small, and therefore its contribution

to the effective total friction is neglected. This approxima-

tion is very good in the parameter regime typically used in

experiments and simulations. However, in certain cases, the

influence of the trans side chain on the dynamics may be

non-negligible. Therefore, we do not expect perfect agree-

ment with the BDTP model and the MD simulations. The

limitations of the model are discussed in Sec. III. However,

it will be shown that for most relevant situations, the BDTP

model gives extremely good match with MD. In addition, it

allows one to go beyond the chain length regime available to

MD simulations (N0 ≈ 103 for high driving force), and to see

how the finite chain length effects diminish as the asymptotic

limit is approached. In addition, in Sec. III, we present de-

tailed comparison between the theory and MD simulations

for the time evolution of the translocation coordinate s(t),

the scaling of translocation time with the driving force and

the monomer waiting time distribution. In our previous work

we have explained and demonstrated the applicability of the

BDTP model to both two- and three-dimensional systems.43

In this work we provide new results for three-dimensional

geometry, some of which are directly relevant to gain better

understanding of the experimental results for DNA transloca-

tion through nanopore. We also relate our findings to previous

MD simulations found in the literature, and to the theories of

Refs. 15–17 and 19–21.

II. MODEL

A. General framework

The purpose of the BDTP model is to present a coarse-

grained, minimal model of driven polymer translocation.42

Since the driven translocation is a complex, non-equilibrium

dynamical process, the rigorous solution of the full problem

from first principles seems impossible at present. Instead, the

BDTP model presents a phenomenological description, which

interpolates between the low-force and high-force regimes. In

the low-force regime, the fluctuations and the chain entropy

become important. Hence, as a general framework, we adopt

the description used by Sung and Park9 and Muthukumar,10

the one-dimensional barrier crossing problem of the translo-

cation coordinate s. Here, the chain starts from the cis side

with one end inside the pore and is considered as translocated

once s = aN0, with a the segment length. The free-energy

due to chain entropy and the chemical potential difference

�μ is F(s) = (1 − γ ′)kBT ln[ s
a

(N0 − s
a

)] + s
a
�μ. Here γ ′

is the surface exponent (γ ′ = 0.5, ≈0.69, ≈0.95 for an ideal

chain, and a self-avoiding chain in 2D and 3D, respectively),

and kBT is the thermal energy. From F(s), the Brownian dy-

namics equation for s in the overdamped limit follows as

Ŵ ds
dt

= (1 − γ ′)kBT [ 1
aN0−s

− 1
s
] −

�μ

a
+ ζ (t). Here Ŵ is the

effective friction, and ζ (t) is Gaussian white noise satisfying

〈ζ (t)〉 = 0 and 〈ζ (t)ζ (t′)〉 = 2ŴkBTδ(t − t′). In this frame-

work, the non-equilibrium memory effects at larger driving

forces are then taken into account by allowing the effective

friction to depend on time, Ŵ = Ŵ(t). This time-dependence is

then solved from the tension propagation (TP) formalism.

The central idea of the tension propagation theory is

to divide the subchain on the cis side into two distinct

domains.15–17, 19 The first domain, closer to the pore, consists

of all the monomers that are pulled towards the pore by the

external driving force. The second domain consists of the re-

maining monomers, which are at rest (on the average). As the

driving force is applied at the pore, the chain begins to move

in stages, with the segments closest to the pore being set into

motion first. A close analogue is a coil of rope pulled from one

end, which first has to uncoil and become tense before starting

to move as a whole. To keep track of the moving part of the

chain, one defines a tension front, which divides the chain into

the moving and nonmoving domains. The front propagates in

time as parts of the chain further away from the pore are set in

motion, as shown in Fig. 1. As the monomers enter the front

and start to move, the effective friction Ŵ̃ increases due to the

increased drag between the polymer and the solvent. After a

certain tension propagation time, t̃tp, the front reaches the end

of the chain and the tension propagation process stops. After

this time, the chain as a whole is pulled towards the pore. Dur-

ing this stage, the overall length of the subchain on the cis side
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FIG. 1. The time evolution of the polymer configuration during the translocation process, with time advancing from left to right. The arc denotes the position

of the tension front R̃, which separates the chain into the moving and nonmoving domains. The last monomer inside the front is denoted by N and the number

of translocated monomers by s̃.
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decreases, which reduces the effective friction Ŵ̃. This stage

continues until the last monomer reaches the pore and finally

translocates at time t̃ = τ̃ .

B. Coarse-grained equations of motion

In the BDTP model, the translocation process is de-

scribed using only two degrees of freedom. The first one, the

translocation coordinate s, describes the chain’s position with

respect to the pore, while the second one, the location of the

tension front R, describes the response of the cis side chain to

the driving force. To both of these degrees of freedom one has

a corresponding equation of motion, which are coupled via

the effective friction Ŵ. In the extremely high driving force

limit, the location of the tension front can be described by

only one equation, while in the more general case considered

in this work, one needs to solve a system of several equations.

The derivation of the BDTP model is presented in Ref. 42 and

the tension propagation theory in Refs. 15–17 and 19. There-

fore, in this work we do not reiterate the full derivation of the

model, but rather present the resulting equations and outline

the method of their numerical solution.

For convenience, we first introduce dimensionless units

denoted by the tilde symbol as X̃ ≡ X/Xu, with the unit of

length au ≡ a, force fu ≡ kBT/a, time tu ≡ ηa2/kBT, velocity

vu ≡ a/tu, and friction ηu ≡ η, where η is the solvent friction

per monomer. In these units, the Brownian dynamics equation

for s̃ = s/a reads

Ŵ̃(t̃)
ds̃

dt̃
= (1 − γ ′)

[

1

N0 − s̃
−

1

s̃

]

+ f̃ + ζ̃ (t̃) ≡ f̃tot,

(1)

where Ŵ̃ ≡ Ŵ/η and, for simplicity, we have assumed that

the pore length lp = a. Generalization of Eq. (1) to different

pore lengths is straightforward (see, e.g., Ref. 24 for a simi-

lar case). The dynamics of Eq. (1) is essentially determined

by the effective friction Ŵ̃, which therefore must comprise

all the dominant contributions of the non-equilibrium dynam-

ics of the full polymer chain. Although under sufficiently

large f̃ , also the trans side subchain assumes a highly out-

of-equilibrium configuration, it has been shown in Ref. 42,

that for most cases the influence of the trans side chain on the

dynamics is extremely small. This matter will also be further

elucidated in Sec. III of this work. Therefore, to a very good

approximation it is sufficient to consider the drag force due

to the cis side subchain and the frictional interaction between

the pore and the polymer. Although the latter is negligible for

infinitely long chains, it can significantly change the dynam-

ics for finite chains. Formally, we can write Ŵ̃ as the sum of

the cis side subchain and pore frictions, Ŵ̃(t̃) = η̃cis(t̃) + η̃p.

The first contribution can be calculated from the tension prop-

agation formalism, while the pore friction η̃p has to be deter-

mined empirically. In the special case of extremely large driv-

ing force, one can find η̃cis explicitly from the TP equations.42

More generally, however, it is easier to derive the velocity of

the monomers at the pore entrance, ṽ0. In such a case, the

effective friction is defined as

Ŵ̃(t̃) =
f̃tot

σ̃0(t̃)ṽ0(t̃)
, (2)

where σ̃0 is the line density of monomers near the pore and

σ̃0ṽ0 ≡ ds̃/dt̃ is the flux of monomers through the pore en-

trance. In either case, determining Ŵ̃(t̃) essentially reduces to

calculating the number of moving monomers, whose com-

bined drag force then constitutes the time-dependent part of

the friction.

For moderate driving forces (to be defined rigorously be-

low) the chain on the cis side assumes a trumpet-like shape

due to the higher stretching close to the point of action of the

driving force. In this so-called trumpet (TR) regime, the line

density near the pore is σ̃0 = f̃
1−1/ν

0 , where f̃0 ≈ f̃tot − η̃pṽ0

is the force at the pore entrance.38 To solve the velocity ṽ0,

one needs to solve a system of four equations:

dR̃(t̃)

dt̃
= ṽR(t̃)

[

1

ν
A−1/ν

ν σ̃R(t̃)−1R̃(t̃)1/ν−1

]−1

, (3)

σ̃R(t̃)1/(1−ν) =
ṽ0(t̃)R̃(t̃)

νb tanh(b)
ln

[

cosh

(

b
σ̃R(t̃)ν/(1−ν)

R̃(t̃)

)]

,

(4)

ṽR(t̃) = ṽ0(t̃)
tanh(bσ̃R(t̃)ν/(1−ν)/R̃)

tanh(b)
, (5)

ṽ0(t̃)R̃(t̃)Cb = νf̃
1/ν

0 , (6)

where ν is the Flory exponent, Aν relates the chain end-to-end

distance to its contour length as R̃ee = AνN
ν . From MD sim-

ulations we have measured Aν ≈ 1.15 ± 0.03 in three dimen-

sions. The coefficient Cb ≡
ln[cosh(b)]

b tanh(b)
with b a dimensionless

parameter that describes the velocity profile on the cis side

and ensures global conservation of mass.42 The line density

and velocity at the tension front are given by σ̃R and ṽR , re-

spectively. The numerical solution of Eqs. (3)–(6) is described

in Sec. II C.

Equations (3)–(6) are used when the line density of the

monomers at the pore entrance is greater than unity, i.e., for

f̃0 < 1. For slightly higher forces, the chain assumes a shape

consisting of a fully elongated stem followed by a trumpet-

shaped flower. In this stem-flower (SF) regime, the velocity at

the pore entrance is given by

ṽ0(t̃)R̃(t̃)Cb = f̃0 + ν − 1. (7)

Also in this regime, the line density and the velocity at

the boundary are given by Eqs. (4) and (5), respectively,

and the time evolution of the front by Eq. (3). Note that

Eqs. (6) and (7) ensure a smooth cross-over between the TR

and SF regimes at f̃0 = 1. In practice, we solve Eqs. (1)–(7),

choosing Eq. (6) over Eq. (7) if f̃0 < 1, and vice versa.

In deriving Eqs. (4)–(7) we have adopted the form

ṽ(x̃, t̃) = ṽ0(t̃)
tanh[b(x̃/R̃+1)]

tanh(b)
for the velocity profile of the cis

side subchain. Here b is a dimensionless parameter that con-

trols the sharpness of the profile and is fixed by enforcing

global conservation of monomers, i.e., requiring that at the

time of translocation s̃(τ̃ ) = N0 and R̃(τ̃ ) = 0. Although the

adopted profile is a good approximation to MD simulations

(see Appendix B), the exact functional form of the profile is

not crucial. The essential requirements are that the profile is
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non-constant, goes to zero at the tension front (x̃ = −R̃), and

allows the global conservation of mass.

C. Numerical solution of the BDTP equations

To solve the model numerically, we first set the initial

values for the translocation coordinate s̃ and the location of

the tension front R̃. In the initial configuration, the first chain

segment is through the pore entrance and s̃(t̃0) = 1. This gives

the initial condition for Eq. (1). Correspondingly, the initial

location of the tension front is given by R̃(t̃0) = 1/f̃0 for f̃0

< 1 and R̃(t̃0) = 1 otherwise. This gives the initial condition

for Eq. (3).

At the beginning of each time step, the random force ζ̃ (t̃)

is sampled from a Gaussian distribution with the mean and

variance given in Sec. II A. Since the value of s̃ is known at

the start of the time step, the value of the total force f̃tot is

then also known. The task is then to determine the effective

friction Ŵ̃ for the next time step. For this, we need to find the

value for the velocity ṽ0 and the line density σ̃0 [cf. Eq. (2)].

The velocity ṽ0(t̃) is given by Eq. (6) in the TR regime, and

by Eq. (7) in the SF regime. The latter can be solved explicitly

for ṽ0, while the former is solved numerically by the Newton-

Raphson method.39 Knowing ṽ0 then gives f̃0 = f̃tot − η̃pṽ0

and σ̃0 = f̃
1−1/ν

0 . The effective friction is then given by

Eq. (2), and Eq. (1) can be advanced in time by the explicit

Euler algorithm.41

To solve the effective friction for the subsequent time

steps, one also has to find the time evolution of R̃ from Eq. (3).

Therefore, one has to know the velocity ṽR and the line den-

sity σ̃R near the tension front. The line density is σ̃R = ξ̃
1/ν−1

R ,

with ξ̃R solved from Eq. (4) by Newton-Raphson iteration.

The velocity ṽR is then given by Eq. (5) and, with both ṽR

and σ̃R known, the location of the tension front R̃ for the next

time step can be solved from Eq. (3).

We emphasize that the BDTP model is not an alterna-

tive formulation of molecular dynamics. It is a model of two

degrees of freedom, s̃(t̃) and R̃(t̃). In addition, it has no free

parameters that could be used to adjust the results. Therefore,

the agreement of the model with MD simulations presented

in both Ref. 42 and in Sec. III of this work is not self-evident,

but a demonstration of the tension propagation formalism’s

capability to capture the essential physics of driven polymer

translocation.

D. Determining the pore friction ηp

To complete the BDTP model, we still need to determine

the pore friction ηp. Because ηp characterizes the interactions

between the pore and the polymer chain, we do not expect

it to have any universal value. Rather, it should depend on

the geometry and dimensions of the pore and, in a more re-

fined model, on the chemical details of the pore and its im-

mediate vicinity. In the context of this work, we only consider

coarse grained models of the pore, where the pore consists

of immobile monomers placed in a configuration that forms

the edges of the pore (cf. Appendix A). The same approach

has been used widely in the literature for MD simulations of

polymer translocation.21, 23, 28, 30, 31, 34, 35 While it is possible to

determine the pore friction also from experimental data, in

this work we only consider the numerical pores used in our

benchmark MD simulations.

To determine ηp, we look at the movement of the first few

monomers and fix ηp in the BDTP model so that the velocity

matches MD simulations. In this early stage of translocation,

where the tension front R̃ is still close to the pore, the friction

in the system is largely determined by the friction between

the pore and the polymer, giving the most accurate estimate

for ηp. In practice, we look at the waiting time per monomer

w(s̃), defined as the time that the individual monomer spends

inside the pore. With f̃ sufficiently large, w̃ ∝ Ŵ̃/f̃ . For small

s̃, the friction Ŵ̃ and w̃ are mostly determined by η̃p. In

Ref. 42, we have measured ηp specifically for the pore ge-

ometries used in Refs. 23 and 34, for which we had access to

the waiting time distributions. In these cases, we have ηp ≈ 5

and ηp ≈ 4 in 3D and 2D, respectively. Other pore geometries

and the effect of ηp on the translocation dynamics will be dis-

cussed further in Sec. III. Finally, it should be noted that for

each pore geometry, ηp is fitted only once, as opposed to be-

ing done separately for each combination of f̃ , η, etc. Thus,

ηp is not a freely adjustable parameter, but is a property of the

pore.

III. RESULTS AND DISCUSSION

A. Waiting time distribution

We begin the analysis of the results by looking at the

waiting time w(s̃) of individual monomers. We do this by

solving the BDTP model with parameters typical for molec-

ular dynamics simulations: f = 5.0, kBT = 1.2, η = 0.7,

ν = 0.588 (3D) and pore friction ηp = 5.0, corresponding to

the pore geometry used in, e.g., Ref. 34. The resulting waiting

time distribution is an important measure of translocation dy-

namics. Previously, we have shown that the waiting time dis-

tribution is reproduced almost exactly by the BDTP model as

compared to MD simulations in 2D and 3D.42 In addition, the

shape of the waiting time distribution is non-monotonic, with

the initial part of increasing waiting time w(s̃) describing the

tension propagation stage, and the second part of decreasing

w(s̃) being the tail retraction stage (cf. Fig. 2). It is reassuring

to note that the normalized waiting time distribution for N0

= 256 looks very similar to that for N0 = 128 for the same

parameters reported earlier in Ref. 42.

Between the two stages is the maximum of w(s̃), i.e., the

moment of maximum friction Ŵ̃, which occurs when the ten-

sion front reaches the N0th monomer of the chain. For suf-

ficiently large N0, the translocation velocity is, according to

Eqs. (6) and (7), ṽ0(t̃) ∝ R̃(t̃)−1. Immediately after the ten-

sion propagation stage, the location of the tension front is

R̃ ∝ N ν
0 . Therefore, the maximum waiting time, wmax, should

scale with chain length as wmax ∝ [ṽ0(t̃tp)]−1 ∝ N ν
0 . This is

indeed the case, as shown in Fig. 3, which displays the col-

lapse of the waiting time distributions for different N0 onto

a single master curve. Since the area under the w(s̃) curve

gives the average translocation time, one has τ ∼ Nα
0 with α

≈ 1 + ν. However, even for N0 = 105 , the location of wmax
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FIG. 2. Comparison of waiting times w for MD (squares) and the BDTP

model (circles). The agreement of the BDTP model with MD simulations is

excellent, and reveals the two stages of translocation: the tension propaga-

tion stage of increasing w(s̃) and the tail retraction stage characterized by

decreasing w(s̃). For both MD and BDTP the data have been averaged over

2000 successful translocation events and the system parameters are the same

(N0 = 256, f = 5, kBT = 1.2, η = 0.7).

slowly moves to the right and the collapse to the master curve

is not exact. This shows that the chain length N0 = 105 is still

not in the asymptotic limit! Consequently, for N0 = 105, the

scaling of the average translocation time is also not exactly

τ ∼ N1+ν
0 , as we will discuss below.

B. Dependence of τ on the chain length N0

Previously the BDTP model has been compared with MD

simulations in several regimes, and has been shown to repro-

duce the correct dependence of the average translocation time

τ on the chain length N0 within the numerical accuracy.42

Some of the results are gathered in Fig. 4, where we show

the translocation time exponent α (defined via τ ∼ Nα
0 ) for

both the BDTP model and MD simulations. The figure shows

that merely by using the same numerical values for the param-

eters in the BDTP model and in the MD simulations, the MD
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FIG. 3. The waiting times per monomer w(s̃) as a function of monomer

number s̃. In the long chain length limit, w(s̃/N0) ∼ Nν
0 , implying the scal-

ing τ ∼ N1+ν
0 . Model parameters used are f = 5.0, kBT = 1.2, η = 0.7,

ν = 0.588 (3D).
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FIG. 4. The exponent α (τ ∼ Nα
0 ) as a function of driving force f̃ and chain

length N0. The position of the circle denotes the combination of (f̃ , N0) and,

the size reflects the value of α. Next to the symbols, the numerical values of

α from the BDTP model are shown in comparison with the values from MD

simulations written in parentheses. The asymptotic value of α is indicated in

the upper right corner.

results are reproduced by the theory with good accuracy. It is

also clear that the numerical value of α depends on several pa-

rameters such as chain length, driving force, friction, and pore

structure. However, as shown by our analysis of the waiting

time distribution w(s̃) and discussed in Ref. 42, all the results

shown in Fig. 4 are in the finite chain length regime. There-

fore, the apparent non-universality of α is not surprising. To

further study the finite size effects, we look at the dependence

of τ on the chain length N0, first for different driving forces f̃

and then for different pore geometries by varying the dimen-

sionless pore friction η̃p.

1. Effect of the driving force

To study the dependence of the average translocation

time τ on the chain length N0, we define the effective (run-

ning) exponent α(N0) ≡ d ln τ
d ln N0

. In the finite chain length

regime, the effective α(N0) is a function of the chain length

and approaches the asymptotic value for long chains. In

Fig. 5, we show α(N0) for different driving forces up to chain

length N0 = 104. Throughout this regime, the exponent α(N0)

shows clear dependence not only on the chain length, but

also on the driving force f. This is a clear indication of non-

equilibrium behavior and finite chain length effects. As the

chain length is increased further, the different curves approach

the same asymptotic value of α(N0 → ∞) = 1 + ν, as shown

in the inset of Fig. 5. However, the approach is extremely

slow: within the numerical accuracy of the BDTP model, the

asymptotic value is not reached until N0 ≈ 109.

Another interesting fact is the dependence of α on the

driving force f. Our results show that as f is increased, α

decreases for any fixed chain length N0 � 104. However,

in the literature, there are conflicting reports on the depen-

dence of α on f. In Ref. 34 it is reported that α decreases

as f is increased, in agreement with our results. The BDTP

model also agrees with the numerical values of α reported in

Ref. 34 with excellent accuracy (see Fig. 4 and Ref. 42). On

the other hand, MD simulation studies by Lehtola et al.26

and more recently by Dubbeldam et al.21 report the exactly
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FIG. 5. The effective exponent α(N0) ≡ d ln τ
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as a function of chain length

N0 for the BDTP model solved for driving forces f = 0.75, 1.5, 2.0, 3.0, 5.0,

10.0. Other parameters are kBT = 1.2, η = 0.7, ηp = 5.0. Errors are of the

order of the symbol size. Inset: α(N0) for f = 3.0, 5.0, 10.0 up to N0 = 1010,

showing the approach to the asymptotic value α(N0 → ∞) = 1 + ν.

opposite behavior that α increases with f. However, we ar-

gue that neither of these studies corresponds to the canoni-

cal driven translocation problem, where the chain starts ini-

tially on the cis side and may either successfully translocate

or slip back to the cis side, depending on the fluctuations. In

Ref. 26, the low-force simulations were performed by placing

the polymer chain initially halfway through the pore to facil-

itate successful translocation.45 Because of the intrinsic non-

equilibrium nature of driven translocation, this approach does

not give results that can be directly compared with theory or

experiments, where the process always starts with the whole

chain initially on the cis side. In Ref. 21, another method was

used to make the low-force simulations possible. Here, the au-

thors prevented the chain from escaping back to the cis side

by making the first monomer too large to fit through the pore.

This is equivalent to enforcing an artificial reflecting bound-

ary condition on the first monomer that prevents the escape.

Although such a boundary condition has been used several

times in the literature, it fundamentally changes the system’s

behavior in the low-force limit, as we will discuss below.

2. Effect of pore size and pore friction ηp

In the finite chain length regime, it is conceivable that

the translocation dynamics is affected by the local neighbor-

hood of the pore. The effect of the pore size and geometry

has been previously studied with MD simulations in, e.g.,

Refs. 29, 43, and 44. It has been shown that the exponent α

depends on the details of the pore, although no systematic

study on the nature of the dependence has been performed.

In the BDTP model, the effect of pore geometry is mapped

into one parameter, the pore friction ηp. To study the effect

of local pore geometry, we have measured ηp for different

pore diameters d by running MD simulations (for details, see

Appendix A) and matching the waiting time distribution with

the BDTP model by fixing ηp separately for each pore diame-

ter d. The results are shown in Fig. 6. For the smaller pore, the

interactions between the pore and the polymer are stronger,

1 2 3 4 5

Pore diameter d

0

2

4

6

8

10

  
- 

p

=0.35
=0.7
=1.4

2.73/(d-1)

p

FIG. 6. The pore friction ηp as a function of the pore diameter d. The sym-

bols indicate the results obtained from MD simulations for different solvent

frictions η, while the solid line is an empirical fitting function. The pore fric-

tion ηp includes a non-vanishing contribution pη from the p monomers inside

and in the immediate vicinity of the pore. For p, we find p ≈ 2.5, giving the

total pore friction ηp ≈ 2.73/(d̃ − 1)ηLJ + 2.5η, where ηLJ is given by the

choice of the Lennard-Jones units (see text). The chain length is N0 = 100,

with other parameters the same as in Fig. 3.

with ηp increasing rapidly as the diameter of the pore ap-

proaches the size of the monomer. In addition to the friction

between the pore walls and the polymer, ηp includes the ef-

fective drag force of the monomers inside the pore and in its

immediate vicinity. The latter constitutes a non-vanishing

contribution to the pore friction, and is extracted from

Fig. 6 by collapsing the data for different η on a single mas-

ter curve. Empirically, the total pore friction is thus approxi-

mately given by ηp ≈ 2.73/(d̃ − 1)ηLJ + 2.5η, where the first

term describes the interaction between the pore walls and the

polymer, and is similar in form to the one used by Storm

et al.7 The factor ηLJ is given by the energy (ǫ) and length

scale (σ ) of the Lennard-Jones interaction and the monomer

mass m (see Appendix A) as η =
√

mǫ/σ 2. The numerical

values may depend on the specific geometry (triangular lat-

tice vs. square lattice, pore length lp, etc.).

In Fig. 7, we examine the dependence of the translocation

time exponent α on the pore diameter. Since the exponent α

depends on the chain length, we average α(N0) over different

chain length ranges, giving the average 〈α(N0)〉N0
as a func-

tion of pore diameter d. For extremely long chains, the size of

the pore affects the translocation dynamics only slightly. This

is because for long chains, the overall friction of the system

is dominated by the friction between cis side subchain and

the solvent, with the pore friction adding only a minor con-

tribution. For shorter chains, however, the exponent α clearly

decreases with decreasing pore size. For short chains and nar-

row pores, the pore friction dominates the solvent friction, and

the dynamics approaches the constant-friction limit, where α

= 1.10 Similar behavior was seen using MD simulations in

Ref. 44, where α was measured as 1.35, 1.30, and 1.21 for

64 ≤ N0 ≤ 256 and pore diameters 1.5, 1.3, and 1.1, respec-

tively. Using the same parameter values for the BDTP model,

we obtain the values 1.37, 1.32, and 1.24 for α. The values

agree within the statistical error, although there seems to be a

systematic error of about 0.02. This may be due to a slightly
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regimes shown as a function of pore diameter d. Model parameters are the

same as in Fig. 6.

different pore geometry (triangular vs. our circular) used in

Ref. 44.

To further illustrate the finite size effect of the pore fric-

tion, the effective exponent α(N0) is solved for different val-

ues of the pore friction η̃p. The results are shown in Fig. 8. The

exponent α(N0) asymptotically approaches 1 + ν for all η̃p.

However, the values for finite N0 and the rate of the approach

depend on η̃p. For small η̃p, i.e., wide pores or very viscous

solvents, α(N0) is larger and the asymptotic limit is reached

for shorter chains than for large η̃p (tight pores or low solvent

viscosities). Similar results were obtained in the MD simula-

tions of Ref. 36. The data of Fig. 8 indicate that for typical

parameters and in the chain length regime relevant for simu-

lations and experiments, the pore friction η̃p can be a major

contribution to the total friction and significantly changes the

translocation dynamics.

C. Dependence of τ on the driving force f

In addition to the exponent α, another important mea-

sure of translocation dynamics is the dependence of τ on
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FIG. 8. The effective exponent α(N0) as a function of chain length N0 for

the BDTP model solved for different ratios η̃p of pore and solvent friction.

Parameters used are the same as in Fig. 6.
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FIG. 9. The dependence of τ on f measured from the BDTP model

with N0 = 128 and kBT = 1.2, γ = 0.7. The inset shows the ex-

ponent δ (τ ∼ fδ) as a function of f for both BDTP and MD. Here

MD (1) corresponds to η = 0.7 and k = 15, MD (2) to η = 10 and

k = 15, and MD (3) to η = 10 and k = 150. For δ, the error is of the or-

der of the size of the symbols.

the driving force f. Usually, this dependence is character-

ized by the scaling exponent δ, defined as τ ∼ fδ . The sim-

plest argument, namely, translocation at constant velocity

ṽ0 ∼ f̃ , gives the scaling exponent δ = −1, which is also

supported by some theoretical studies,9, 10, 12, 20, 21 numerical

simulations,23, 26–28, 30, 31 and experiments.6 For the determin-

istic tension propagation theory, Sakaue predicts that δ = −1

for the SS and equilibrium regimes, δ ≈ −1.26 for the TR

regime and δ ≈ −0.74 for the SF regime. In Refs. 20 and 21,

on the other hand, the exponent δ = −1 is predicted even for

the TR and SF regimes. In most MD simulations, the mea-

sured exponent is slightly larger than −1, typically between δ

≈ −0.9 and δ ≈ −0.97. For the BDTP model, we have mea-

sured δ ≈ −0.94 for N0 = 128, kBT = 1.2, η = 0.7, and 0.25

≤ f ≤ 15, which is in good agreement with both experiments

and simulations.

However, looking at δ more closely reveals interesting

details. As shown in Fig. 9, for f � 1, δ ≈ −0.9 and turns

over to δ ≈ −1 for f ≫ 1. Similar behavior for the low-force

regime was reported in Ref. 34. However, in the high force

regime the MD simulations of Ref. 34 give δ ≈ −0.8 instead

of δ ≈ −1. On the other hand, the scaling δ ≈ −1 given by

BDTP for large f is in agreement with the theoretical pre-

diction of Refs. 15–17 and 19–21. To investigate the matter

more closely, we have performed extensive MD simulations.

We have used the same parameters (η = 0.7, kBT = 1.2) as

in Ref. 34 to allow direct comparison. In addition, we have

studied the effect of solvent viscosity by running simulations

with η = 10.0 and the effect of bond strength by using a FENE

spring constant k = 150 (hard bonds) and k = 15 (soft bonds).

The results of the MD simulations are shown in the inset

of Fig. 9. The effective exponent δ as a function of the force

is found by linear least squares fit from three consecutive

[log (τ ), log (f)] data points. For low to intermediate forces,

we measure δ ≈ −0.9, in agreement with Ref. 34 and the

BDTP model. For the large forces, we have −0.8 � δ � −0.7

for η = 0.7 and k = 15, also in agreement with Ref. 34. How-

ever, for the large driving forces the MD results depend on
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the friction η and the spring constant k. For the smaller η, one

has significantly larger δ, and similarly for the spring constant

k. The reason for the former is that for very low friction, the

response of the system to the force is not linear due to the

inertial term in the equations of motion (see Appendix A).

When the friction is increased, the mass term becomes less

significant and the exponent δ decreases. Similarly, for ex-

tremely high forces and small k, the bonds can be significantly

stretched by the driving force. This increases the exponent δ

for small k, as shown in Fig. 9. However, we have confirmed

that even using overdamped dynamics without the inertial

term (see Appendix A) and sufficiently hard bonds, the expo-

nent does not reach −1, but stays between −0.9 � δ � −0.95.

Therefore, although the low friction and soft bonds typically

used in MD simulations contribute significantly to the differ-

ence between BDTP and MD, they do not explain it fully.

The most probable cause for the remaining difference is the

absence of the trans side subchain from the BDTP model. For

sufficiently high f, significant crowding of monomers close to

the pore on the trans side occurs, which could increase the

scaling exponent δ. For very long chains, the effect should

be small, because the high friction due to the long tail on the

cis side leads to slow translocation even for large f, and the

friction due to crowding becomes less significant.

D. Time evolution of the translocation coordinate s

Finally, we look at the time evolution of the translocation

coordinate s̃(t). In Fig. 10 we compare the results given by the

BDTP model with MD simulations for a fixed chain length

N0 = 100 with different driving forces. Overall, the BDTP

model agrees very well with the MD results. The curves prac-

tically overlap, except for the beginning of the process, where

the s̃ measured from MD simulations lags behind the BDTP

solution. This difference increases with the driving force f.

However, as shown in the inset of Fig. 10, the difference dis-

appears when the solvent friction is increased from η = 0.7

to η = 10.0. This shows that the difference is caused by the

inertial effects in the low-friction MD simulations: here the

0.01 0.1 1 10 100 1000

t

1

10

100

s
(t

)

f=0.75 (MD)
f=0.75 (BDTP)
f=2 (MD)
f=2 (BDTP)
f=5 (MD)
f=5 (BDTP)
f=10 (MD)
f=10 (BDTP)

0.01 0.1 1 10

t

1

s
(t

)

f=10, =0.7 (MD)
f=10, =0.7 (BDTP)
f=10, =10 (MD)
f=10, =10 (BDTP)

2

3

4

~

~

FIG. 10. The translocation coordinate s̃ as a function of time for the BDTP

model (filled symbols) and MD simulations (open symbols) for N0 = 100.

Other parameters are the same as in Fig. 3. Inset: s̃(t) for η = 0.7 and η = 10,

showing the difference between the inertial and overdamped regimes.
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monomers of mass m need to be accelerated for a time tacc ∝

m/η before they reach the friction-limited velocity.

The time-dependence of s̃ can also be characterized by

the scaling exponent β, which we define as 〈s̃(t)〉 ∼ tβ .47

For the chain lengths 100 ≤ N0 ≤ 500 we obtain β = 0.75,

which agrees with the MD simulations of Ref. 31 within the

statistical accuracy, and is also similar to the value reported

in Ref. 28, where slightly different parameter values were

used. We have also solved β from the BDTP model for much

longer chains. The results are shown in Fig. 11 for N0 ≤ 106.

Once again, the data show the extremely slow approach to the

asymptotic limit. Even for N0 = 1010, the value of β continues

to decrease, although extremely slowly (not shown).

In addition to β, we examine the product αβ. Since at

the moment of translocation, s̃(τ ) = N0, the exponents α and

β are related by αβ = 1. The relation can be exact only in

the asymptotic limit N0 → ∞, since for finite chain lengths,

the scaling s̃(t) ∼ tβ is not exact, as shown in Fig. 10. How-

ever, we expect the relation to hold approximately even for

finite N0. The results are shown in Fig. 11. For short chains,

the product quickly increases from αβ ≈ 1 to αβ ≈ 1.07 at

N0 ≈ 100, where it attains its maximum value. Thereafter the

product slowly decreases, approaching the theoretical asymp-

totic limit αβ = 1. Also in this case, the approach is extremely

slow. For N0 = 1010 we have measured αβ ≈ 1.015, with the

value still gradually decreasing towards 1. In the finite chain

length regime, the BDTP model is in excellent agreement with

the available MD simulation data. For 100 ≤ N0 ≤ 500 we

have on the average αβ = 1.065, which matches exactly with

the results of Ref. 31.

Finally, we look at the fluctuations of the BDTP model.

To do this, we have measured the fluctuations of the translo-

cation coordinate 〈δs̃2(t)〉 ≡ 〈s̃2(t)〉 − 〈s̃(t)〉2 as a function of

time for both the BDTP model and directly from MD simula-

tions. In the BDTP model, the trans side subchain is not in-

cluded, and therefore we expect that the total amount of noise

is smaller in the BDTP model than in MD. This is indeed the

case, as is shown in Fig. 12. Initially, 〈δs̃2(t)〉 scales similarly

for the BDTP and MD, but as the chain translocates and the

length of the chain on the trans side increases, the fluctuations

in the MD simulation start to increase faster. The effect of the



085101-9 Ikonen et al. J. Chem. Phys. 137, 085101 (2012)

0.01 0.1 1 10 100 1000

t

0.001

0.01

0.1

1

10

100

1000
s
  

(t
)

MD
BDTP

0.8 0.9 1 1.1 1.2 1.3

 (normalized)

0

100

200

300

400

500

600

n
u

m
b

e
r 

o
f 

c
o
u

n
ts

BDTP

0.6 0.8 1 1.2 1.4 1.6

 (normalized)

0

50

100

150

200

250

300

n
u

m
b

e
r 

o
f 

c
o
u

n
ts

MD

2
~

FIG. 12. The fluctuations of the translocation coordinate s̃ (left) and the dis-

tribution of translocation times (right) for the BDTP model and molecular

dynamics simulations. In the BDTP model, the trans side subchain is not

modeled, which reduces fluctuations.

missing trans side fluctuations can also be seen in the distribu-

tion of the translocation times. As shown in Fig. 12, the stan-

dard deviation of the translocation times is roughly two times

larger in the MD simulations, as compared to the BDTP so-

lutions. Including additional noise from the translocated part

of the chain may bring both the scaling of 〈δs̃2(t)〉 and the

distribution of translocation times closer to the MD results.

However, a proper implementation of the trans side fluctua-

tions would also require considering the out-of equilibrium

effects of monomer crowding in front of the trans side pore

entrance. This is a subject of future study and is not within the

scope of the present work.

E. Initial stages of translocation

Finally, we wish to discuss the initial stages of the

translocation process. Several authors have suggested that in

the early stages of translocation, an initial tension blob should

be formed at the pore entrance before the tension propagation

process can begin.17, 20, 21 The theory predicts that the time

it takes for the initial blob to form, τ init, decreases with in-

creasing force, as the size of the blob gets smaller. In MD

simulations, this process should be visible as an initial period

of time during which the translocation coordinate s̃ changes

only slightly (say, from 1 to 2).

We have investigated the prediction by running extensive

MD simulations and looking at the time evolution of s̃ and

the dependence of the corresponding scaling exponent β on

the driving force. The results are shown in Fig. 13 as open

symbols. At least for f̃ � 0.6, the initial time evolution of s̃

seems to be insensitive to the driving force. Hence, we find

no indications of the blob initiation process. In addition, we

find that the scaling exponent β, as measured using values in

the range N0/2 � s̃ � N0, is also quite insensitive to the driv-

ing force for f̃ � 3, and decreases with decreasing force for

f̃ � 1. This result is in agreement with the BDTP model’s re-

sult that for low forces the exponent α decreases with increas-

ing force and the approximate relation αβ ≈ 1. However, the

result is contrasted by the recent study by Dubbeldam et al.21
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FIG. 13. The translocation coordinate s̃ as a function of time from MD sim-

ulations. The chain is either allowed to escape the pore to the cis side (open

symbols, same data as in Fig. 10) or such an escape is prevented by a reflect-

ing boundary condition (RBC, filled symbols). The results change drastically,

if the RBC is used. Inset: the scaling exponent β (〈s̃(t)〉 ∼ tβ ) as a function

of the driving force f both without and with the RBC. Parameters are the same

as in Fig. 10.

where it is found that β decreases with increasing force, and

where the blob initiation process is observed to increase the

time that the system remains close to the initial value of s̃ ≈ 1.

In an attempt to resolve the contradiction, we have re-

peated the MD simulations with an additional reflecting

boundary condition (RBC) that prevents the escape of the first

monomer to the cis side. A similar boundary condition was

also used in the MD simulations of Ref. 21. The results are

shown in Fig. 13 as solid symbols. In this case, the results

agree with Ref. 21, showing a decrease of β with increasing

force, and correspondingly a decrease in the time that the sys-

tem remains close to s̃ ≈ 1. The behavior of the translocation

process in these two cases (with or without the RBC) is there-

fore qualitatively different, especially at low driving forces.

We argue that the difference is due to a fundamental

change in the system’s free energy, introduced by imposing

the reflective boundary condition. For the canonical translo-

cation problem, where the chain is allowed to escape to the

cis side, the free energy has a maximum but no minimum.9, 10

Preventing the escape to the cis side creates a local minimum

in the free energy where the system can oscillate, changing

the problem into a thermally activated escape process, sim-

ilar to the famous Kramers problem.46 Therefore, the initial

period of slow growth of s̃ is not related to the blob initia-

tion, but to the thermal motion of the chain in the free-energy

well near s̃ ≈ 1, which precedes the eventual escape across

the free-energy barrier to the trans side. In fact, according

to our MD simulations with the RBC, the time that is spent

in evolving from s̃ = 1 to, say, s̃ = 2, increases roughly ex-

ponentially with decreasing force. This is a clear indication

of a thermally activated barrier crossing process. In addition,

the influence of the RBC disappears for large driving forces

where the activation barrier becomes negligible, also in sup-

port of our argument.

Finally, we should acknowledge that while our MD sim-

ulations show no signs of the blob initiation process, it is

possible that the process becomes practically observable only
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for significantly smaller driving forces (f̃ ≪ 1). Unfortu-

nately, that regime may be out of reach of current MD sim-

ulations.

IV. CONCLUSIONS

In this work, we have employed theoretical methods and

Langevin dynamics simulations to examine the finite chain

length effects and the resulting non-universalities in driven

polymer translocation. We show that the driven translocation

problem can be accurately described by the non-equilibrium

tension propagation mechanism proposed by Sakaue.15 How-

ever, finite chain length effects prevail for extremely long

chains. Thus, for chain lengths relevant for experiments or

numerical simulations, these effects need to be taken into ac-

count. Especially, the frictional interaction between the pore

and the polymer has to be included in the theory, if quan-

titative accuracy is required. This result underlines the sig-

nificance of understanding the interactions between the poly-

mer and the pore also from the point of view of fundamental

physics, and is especially important for interpretation of ex-

perimental data.

In addition, we discuss the potential limitations of the

present tension propagation theory. Although very accurate

in the typical experimental and simulation regimes, the ab-

sence of the trans side subchain from the theory may result in

less-than-accurate predictions in the extremely strong force

regime (f � kBT N ν
0 ) and in the extremely low force regime

(f � kBT N−ν
0 ). In the first case, the non-equilibrium crowd-

ing of monomers on the trans side could increase the effec-

tive friction. In the other extreme, the fluctuations from the

trans side chain, which are neglected in the model, may be-

come important. In addition, the tension propagation theory of

Refs. 15–17 and 19–21 is inherently a deterministic theory.

However, in the low-force regime the tension propagation

process becomes increasingly stochastic, instead of determin-

istic. Exploring the implications of diffusive tension propa-

gation is not within the scope of the present work, but is a

subject of future study.
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APPENDIX A: MOLECULAR DYNAMICS SIMULATIONS

The details of the molecular dynamics simulations that

we have used for benchmarking are explained in this ap-

pendix. In the MD simulations, the polymer chain is modeled

as Lennard-Jones particles interconnected by FENE (finitely

extensible nonlinear elastic) springs. Excluded volume inter-

action between monomers is given by the short-range repul-

sive Lennard-Jones potential:

ULJ(r) =

⎧

⎨

⎩

4ǫ
[

(

σ
r

)12
−

(

σ
r

)6
]

+ ǫ for r ≤ 21/6σ

0 for r > 21/6σ

.

(A1)

Here, r is the distance between monomers, σ is the diame-

ter of the monomer, and ǫ is the depth of the potential well.

Consecutive monomers are also connected by FENE springs

with

UFENE(r) = −
1

2
kR2

0 ln
(

1 − r2/R2
0

)

, (A2)

where k is the FENE spring constant and R0 is the maximum

allowed separation between consecutive monomers. For the

chain, we use the parameters ǫ = 1, k = 15, and R0 = 2, unless

otherwise indicated. The main part of the wall is constructed

using a repulsive external potential of the Lennard-Jones form

Uext = 4ǫ
[

(

σ
x

)12
−

(

σ
x

)6
]

+ ǫ for x ≤ 21/6σ and 0 otherwise.

Here x is the coordinate in the direction perpendicular to the

wall, with x < 0 signifying the cis side and x > 0 the trans

side. The neighborhood of the pore is constructed of immo-

bile Lennard-Jones beads of size σ . All monomer-pore parti-

cle pairs have the same short-range repulsive LJ-interaction as

described above. We have verified that using the simple exter-

nal potential Uext for the wall gives the same results (within

statistical error) as using a wall made of monomers in fixed

lattice sites, at least as long as the interaction between the

wall and the polymer is purely repulsive. On the other hand,

the geometry of the pore itself may have significant effect on

the results, as is discussed in the main text.

Similarly to most of the molecular dynamics simulations

in the literature,21, 23, 26–28, 30, 31, 34, 35 we take the surrounding

solvent into account through frictional and random forces.

Thus, each monomer is described by the Langevin equation

of motion

mr̈i = −∇(ULJ + UFENE + Uext) − ηvi + ζi, (A3)

where m is the monomer mass, η is the friction coeffi-

cient, vi is the monomer velocity, Uext is the external po-

tential that gives the external force f = −∇Uext in the pore

and ζ i is the random force with the correlations 〈ζ i(t)ζ j(t
′)〉

= 2ηkBTδi, jδ(t − t′), where kBT is the thermal energy. Typ-

ically, we have used the parameter values m = 1, η = 0.7,

kBT = 1.2. The equations of motion are solved with the BBK

(Brünger-Brooks-Karplus) algorithm40 with time step δt =

0.005. Initially, the polymer chain is placed at the pore en-

trance as shown in Fig. 14. Equation (A3) is then solved nu-

merically while keeping the first monomer fixed until an un-

correlated initial configuration is generated. After that, the

whole chain is allowed to evolve according to Eq. (A3) un-

til the chain escapes either to the cis or trans side. The latter

is recorded as a successful translocation event. Typically, we

average our data over at least 104 such events.

In analyzing the dependence of translocation time τ on

the driving force f we also used overdamped Langevin dynam-

ics to study the translocation dynamics in the limit of negligi-

ble inertial effects. In this case, we neglect the inertial term
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FIG. 14. (Left panel) Geometry of the pore used in the 3D MD simulations.

The pore is formed by placing 16 monomers of diameter σ equidistantly on

a circle of radius (d + σ )/2, resulting in a pore of diameter d. (Right panel) A

side-view of the pore and the wall, also showing a typical initial configuration

of the chain and the direction of the driving force f.

in the equations motion, giving the overdamped Langevin

equations

ηvi = −∇(ULJ + UFENE + Uext) + ζi, (A4)

for each monomer. The conventions are the same as in

Eq. (A3). Equation (A4) is solved with the explicit Euler

method42 with time step δt ≤ 0.0001. In this case, we aver-

age our data over 105 successful translocation events.

APPENDIX B: VELOCITY PROFILE

We have measured the velocity profile ṽ(x̃, t̃) of the cis

side subchain by running extensive MD simulations in 3D,

with a relatively high driving force f = 10. In Fig. 15 we

present the velocity profile for N0 = 500 obtained as an aver-

age over 10 000 independent translocation events and a short

time window of �t = 1. From the figure, one immediately

notices that the curves corresponding to different times t col-

lapse onto a single master curve if the perpendicular distance

x̃ from the wall is scaled by the location R̃ of the tension

front, defined as the distance where the average velocity goes

to zero and, if the velocity is scaled by the maximum velocity.

This master curve can be approximated by the expression

ṽ(x̃, t̃) = ṽ0(t̃)
tanh[b(x̃/R̃ + 1)]

tanh(b)
, (B1)

where b is the parameter that controls the sharpness of the

profile. In principle, b would be nontrivial function of sev-

eral parameters, such that b = b(ν, f, kBT, η). However, in the

BDTP model, the parameter b is not found by fitting to MD

data, but fixed by enforcing global mass conservation, i.e., re-

quiring internal consistency within the model.

In addition, it turns out that for the purposes of the BDTP

model, the exact form of the velocity profile is not crucial.

The model seems to be very robust with respect to the differ-

ent forms of the profile, as long as the number of monomers

is globally conserved. In fact, we also implemented the model

with a piecewise linear velocity profile such that ṽ(x̃, t̃) = ṽ0

for x̃ ≥ −R̃ + �R̃ and ṽ(x̃, t̃) = ṽ0
x̃+R̃

�R̃
. Here �R is a pa-

rameter that controls the shape of the velocity profile and is

fixed by requiring conservation of mass, similar to the param-

eter b in Eq. (B1). Typically, the difference in numerical re-

sults given by the piecewise linear profile and those given by

x̃( t̃)/R̃( t̃)

ṽ
x̃
(x̃

,
t̃)

/
ṽ

0
(t̃

)

x̃( t̃)/R̃( t̃)

ṽ
x̃
(x̃

,
t̃)

/
ṽ

0
( t̃

)

FIG. 15. The velocity perpendicular to the wall of individual monomers ṽx

for chain lengths N0 = 100 (upper panel) and N0 = 500 (lower panel) as a

function of normalized perpendicular distance x̃ from the wall. The location

of the tension front is given by R̃. The different plots correspond to different

instances in time, with the average 〈 · 〉 taken over 10 000 independent runs

and a time window �t = 1. The solid black line indicates the empirical fitting

function of Eq. (B1) with b ≈ 1.9. In the BDTP model, the parameter b is not

found by fitting, but fixed by global mass conservation. However, the result-

ing numerical value is comparable to the value found in MD simulations.

Eq. (B1) was comparable to the statistical uncertainty, al-

though Eq. (B1) seems to give a slightly better match with

MD simulations. Furthermore, in both cases, the asymptotic

limit of the exponent α is α∞ = 1 + ν.
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