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Abstract. In order to make offshore wind power a cost effective solution that can compete
with the traditional fossil energy sources, cost reductions on the expensive offshore support
structures are required. One way to achieve this, is to reduce the uncertainty in wave load
calculations by using a more advanced model for wave kinematics. As offshore wind turbines
are generally sited in shallow water, nonlinear effects which results in steeper waves with higher
velocities and accelerations are common. Whereas extreme waves are modeled with higher-order
nonlinear regular wave models, fatigue loads are calculated from kinematics obtained by a low-
fidelity linear irregular wave model. In this paper, a second-order wave model that is employed
to simulate the dynamic response due to nonlinear irregular waves on a full set of IEC-standard
load cases. This method is computationally efficient, which is particularly useful for design
optimization studies. It is shown that by using this method for a 25 m deep site in the German
Bight, equivalent fatigue loads increase by 7.5 % compared to the traditional linear wave model.
The effect of nonlinear waves on fatigue is most prevalent in the foundation and tower parts
near the sea surface. Furthermore, it is found that the increase in fatigue damage accumulation
is most prevalent in wind-wave misaligned load cases, in which aerodynamic damping is absent.

1. Introduction
Going offshore and upscaling are the current technological trends in wind energy. Upscaling
poses several fundamental design challenges mainly on the rotor [1], and going offshore makes
in general the design more expensive than onshore wind turbines [2]. Cost reduction of the
support structures has a fundamental importance, since it acts as a bottleneck to the realization
of offshore wind farms that can compete with traditional energy sources [3].

Currently, offshore wind farms are typically sited in coastal areas with water depths around
or less than 30 m [4, 5]. For these water depths, the monopile foundation type is by far the most
popular. Due to the limited water depth, nonlinear effects cause the waves to become more
sharp-crested while the troughs are flattened. Besides that, the magnitude of particle velocities
and accelerations below the waves are higher, which leads to higher hydrodynamic loads on the
wind turbine support structure.

In the kinematic wave models used in offshore engineering, irregular waves are usually
approximated with classical linear (Airy) wave theory [6]. Since this method only describes wave
kinematics up to the mean sea level, Wheeler stretching [7] is often applied to redistribute the



velocity and acceleration profiles up to the actual sea surface, but other extension and stretching
methods exist and are sometimes used instead [8]. This traditional approach, based on deep
water experience from the oil and gas industry is accurate enough when the wave amplitude is
small with respect to water depth, but in shallow water kinematics magnitudes are likely to be
underestimated.

In order to be able to account for strong nonlinear effects in the highest waves that may occur
during the lifetime of an offshore structure, a nonlinear regular wave model such as the analytical
5th-order Stokes method or a numerical Fourier approximation based on stream function theory is
commonly employed [9, 10]. This separate deterministic extreme wave is inserted in a stochastic
wave record, such that in a aero-servo-elastic simulation of an extreme wave in the time-domain,
the turbine dynamics due to an irregular sea state are included in the simulation.

Whereas in extreme wave events nonlinear effects are thus accounted for, a nonlinear model
for irregular waves is uncommon in engineering practice. To compensate for the lack of
accuracy of linear wave theory in shallow water, a safety factor is usually applied to obviate
an underestimation of wave loads. Using a more accurate irregular wave model, the amount
of uncertainty in fatigue load estimation could be lowered, which may lay the ground for a
discussion on the safety factor that is used. Altough nonlinear irregular waves are expected
to result in higher wave loads, the possible safety factor reduction might still result in a lower
structural mass and hence reduced cost.

When it comes to modeling nonlinear irregular waves, there are several options. The second-
order nonlinear irregular wave model developed by Sharma and Dean [11] is the one that has
received the most attention in similar research topics. In this model, which is a second-order
perturbation expansion of linear wave theory, the contribution of sum- and difference frequencies
are added to the first-order solution from linear wave theory. The Hybrid wave model by
Zhang [12] is a similar model with the addition of nonlinear effects due to short waves riding on
top of larger waves, which are empirically mixed with the results of second-order theory. Fully
nonlinear waves can be modeled with more advanced Boussinesq models [13], but since these are
very computationally expensive, using this type of model is outside the scope of this research.
Since the second-order wave model is mentioned as an alternative for linear wave theory in
DNV Recommended Practice (DNV-RP-C205) [14], this is the model that will be used for this
research.

To this date, knowledge about the influence of nonlinear irregular waves on offshore wind
turbine fatigue loads is fairly limited. Several studies provided evidence that fatigue loads
due to nonlinear irregular waves will increase [15, 16, 17]. A recent load extrapolation study by
Agarwal [18] showed that long-term loads increase with approximately 10% when using nonlinear
waves. It must be remarked that this study was limited to two governing environmental states
only, in which the significant wave height was high with respect to the water depth.

In general however, a large part of the wind turbine fatigue life is consumed during operation
in mild conditions, in which nonlinear effects are much weaker. Therefore it may very well be
the case that the overall fatigue load increase is less than the mentioned 10%. However, such
an investigation of the influence of nonlinear waves on fatigue while taking into account a full
set of design load cases (IEC Standards 61400-3) [19], is not known by the author. This paper
therefore aims at analyzing the influence of nonlinear irregular waves on response behavior and
fatigue load for a complete set of load cases with a realistic design configuration, rather than
inspecting a single environmental state or using a simplified structural model. Additionally,
since the method employs a frequency domain formulation, it is computationally very efficient.
This trick together with some other useful techniques developed by the authors [20, 21] enables
design optimization studies where several thousand of function evaluations per optimization
iteration are required.

This paper is structured as follows: First, the methods required to generate time-series of



hydrodynamic loads on offshore wind turbines are presented. This comprises the procedure to
generate a random wave record, the theoretical formulation of linear and second-order wave
theory and the Morison equation to predict hydrodynamic loads from wave kinematics time-
series. We then present the results of the second-order wave model simulations. The qualitative
effect of the second-order contributions on a typical wave record and the spectral representation
of the sea surface elevation and in-line bending moment are shown. The result of using nonlinear
wave loads as input in the dynamic response simulation, which is carried out by the Siemens
software package BHawC in the time-domain, is then presented. In these simulations, a Siemens
wind turbine from a wind farm in the German Bight, supported by a monopile foundation,
is used. Next, we present the results of the calculated equivalent fatigue load and make a
comparison with the outcome of simulations performed with the wave loads from the linear
wave model. Finally, the paper is concluded by an analysis of the observations, conclusions and
recommendations for follow-up research.

2. Methodology
In order to simulate the dynamic response due to the hydrodynamic forces acting on a monopile
support structure, time-series of the hydrodynamic load for a number of vertical coordinates has
to be realized. Regardless of the type of model that is used for wave kinematics, the empirical
Morison equation is currently considered to be the most appropriate tool to create these time-
series. In the Morison equation, the drag and inertia forces due to horizontal fluid particle
velocities and accelerations, U and U̇ respectively, are added together to estimate the total
in-line wave force:

fMorison = fD + fI =
1

2
ρCdD |U |U + ρCm

πD2

4
U̇ (1)

where ρ and D denote the water density and structural diameter, respectively. The magnitude of
the force components furthermore strongly depends on a proper selection of appropriate values
for the added inertia and drag force coefficients, Cm and Cd. In this formulation, structural
motion is ignored, but the Morison equation can easily be extended to use the relative wave
kinematics instead, see for example [18]. To account for diffraction effects, the MacCamy-Fuchs
correction can be applied as a low-pass filter on the acceleration terms [22]. Since this is a
correction to account for linear diffraction only, in this paper the MacCamy-Fuchs correction is
assumed to be valid on first-order acceleration terms only.

In many occasions, a current due to tidal motion is to be taken into account. Since the
interaction between currents and wave kinematics is hard to predict and thus to model, a simple
assumption is often made to simply vectorially add a steady current velocity profile to the
wave kinematics. Additionally, the Doppler shift that appears in the observed wave frequency
observed from a stationary frame of reference, can be taken into account [23].

2.1. Simulation of linear and nonlinear irregular waves
The common approach to simulate a random wave field is to take a high number of frequency
components, and use linear superposition to create an irregular wave record. This superposition
of random waves and the application of linear wave theory to predict wave kinematics is described
in many textbooks, for example [24, 25]. According to linear wave theory, the first-order surface
elevation can be expressed as follows:

η(1)(t) =

N∑
m=1

am cos(ωmt− kmx− φm) (2)

Randomness in the simulations is obtained by uniformly distributing the phase angles φm
between 0 and 2π. Besides that, the amplitudes am follow from the Rayleigh distributed



amplitude variances, which has an expected value that is obtained from the wave spectrum:
E(a2m) = 2S(ωm)∆ω. The wave number km is related to the angular frequency ωm through the
linear dispersion relation, ω2

m = gkm tanh(kmd), where d is the water depth below mean sea
level.

To ensure randomness, a high number of frequencies, typically more than 200, is desirable [25].
The maximum or cut-off frequency of the simulations, if not bounded by the Nyquist sampling
criterion, can be assumed four times the peak frequency of the wave spectrum [26]. Using this
cut-off frequency, a good compromise between frequency discretization density and simulation
bandwidth is achieved.

According to classical linear wave theory, the 1st-order velocity potential that corresponds to
the surface elevation given in Eq. 2 reads:

Φ(1)(z, t) =

N∑
m=1

bm
cosh km(z + d)

cosh kmd
sin(ωmt− kmx− φm) (3)

where bm are the amplitude coefficients given by:

bm =
amg

ωm
(4)

In the reference system used in these expressions, x is positive in the propagation direction
of the waves. For a monopile support structure, x can simply be assumed zero. The vertical
coordinate z is positive upward and is zero at mean sea level. By deriving the velocity potential,
expressions for the first-order horizontal velocity and acceleration can be obtained :

U (1)(z, t) =
∂Φ(1)

∂x
, U̇ (1)(z, t) =

∂

∂t

(
∂Φ(1)

∂x

)
(5)

For the second-order nonlinear irregular wave model by Sharma and Dean [11], similar
expressions can be derived for the sea surface elevation and kinematics. The second-order
accurate sea surface elevation, being a perturbation expansion of the first-order formulation,
reads:

η(2)(t) = η(1) + ∆η(2) (6)

Here, ∆η(2) = ∆η(2+)+∆η(2−) is the second-order perturbation, which comprises the difference-
and sum frequency corrections given by:

∆η(2)(t) =

N∑
m=1

N∑
n=1

[
aman

{
B−
mn cos(ψm − ψn) +B+

mn cos(ψm + ψn)
}]

(7)

The expressions for the transfer functions of the 2nd-order amplitude, B−
mn and B+

mn, are lengthy
and are therefore given in the Appendix section. Furthermore, ψm and ψn are short notations
of the argument in the cosine in Eq. 2:

ψm = ωmt− kmx− φm (8)

The second-order difference- and sum velocity potential that corresponds to the surface elevation
perturbations from Eq. 7 read:

∆Φ(2)(z, t) =
1

4

N∑
m=1

N∑
n=1

[
bmbn

cosh k±mn(z + d)

cosh k±mnd

D±
mn

(ωm ± ωn)
sin(ψm ± ψn)

]
(9)

In a similar fashion as for the first-order kinematics, second-order perturbation contributions
can be obtained by deriving the above velocity potential.



2.2. Frequency-domain formulation
The linear and second-order nonlinear irregular wave models are formulated in the time-domain.
As a large number of waves is to be superimposed, especially the double-summations in the
second-order model will be time consuming. To avoid the numerical inefficiency of performing
summations in the time-domain, a better approach is to carry out the calculations in the
frequency-domain and subsequently use the Inverse Fast Fourier Transform (IFFT) to realize a
time series.

This approach based on the Discrete Fourier Transform requires that the frequency
components are equally spaced, such that ωm = m∆ω, where m = 1, 2, . . . , N . For each

frequency component m, the Fourier coefficients for the first-order surface elevation, X
(1)
η,m(ω),

are then calculated as follows:

X(1)
η,m(ωm) = am exp(−iφm) (10)

The IFFT can then be employed to create a time-series from the Fourier coefficients
corresponding to the frequency samples ωm:

η(1)(tp) = <
{

IFFT
[
X(1)
η,m

]}
(11)

where tp = p∆t are the discrete time samples with p = 1, 2, . . . , N . In a similar way, Fourier
coefficients for the 1st-order horizontal velocity and acceleration can be calculated and a time-
series can be realized for each z-coordinate. Since the number of required summations is not
astronomical, the time gain by using a frequency-domain approach for the linear wave model is
limited. This is quite different for the second-order expressions, as will be shown below. The
Fourier coefficients of the second-order surface elevation components ∆η(2), as defined by Eq. 7,
can calculated by:

X(2)
η,mn(ωm, ωn) = amanB

±
mn exp(−i(φm ± φn)) (12)

Since m = n = 1, 2, . . . , N , the double summation causes the number of Fourier coefficients
and therefore the required amount of Fourier transforms to be N2 rather than N . However,
since an equal spacing is used in the frequency discretization, the coefficients with an equal
difference or sum frequency can be collected together in a single-summation Fourier coefficient
Yη,j . This collection of the Fourier coefficients for difference and sum contributions, with the
indices j− = |m− n| and j+ = m+ n respectively, is described in great detail by Agarwal [18].
Provided that the number of time samples is adjusted according to the new number of frequency
samples in the replacement time vector tq, the second-order contributions can be transformed
to a time-series with the IFFT:

∆η(2)(tq) = <
{

IFFT
[
Y

(2)
η,j

]}
(13)

This procedure is fully accurate and considerably reduces the amount of required Fourier
transforms from N2 to 2N , since the highest sum frequency is (N + N)∆ω. Similarly, the
Fourier coefficients for the second-order kinematics can be calculated and collected in a single-
summation form.

3. Comparison of results obtained from different wave models
In this Section, the results from simulations using the second-order wave model are compared
with the traditional approach using linear wave theory. First, an overview of the qualitative
characteristics of nonlinear waves is presented using results from a simulation of a single sea
state. Next, the influence of nonlinear wave modeling on equivalent fatigue load is presented
from the time-domain simulations that have been performed on a realistic offshore wind turbine
configuration. Here, all design load cases as specified by IEC standards are used in the fatigue
load accumulation.



3.1. Qualitative characteristics of second-order wave simulations
To illustrate the behavior of the second-order nonlinear irregular wave model in a qualitative
way, Figure 1 shows two snapshots of a surface elevation time series with a comparison between
a linear and a nonlinear wave. Two types of waves are shown: the top figure (a) represents
a regular wave and in the bottom figure (b) an irregular wave is depicted. To illustrate how
the difference- and sum terms contribute to the 2nd-order wave, these perturbations are shown
separately in both graphs.
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Figure 1. The 1st- and 2nd-order surface elevation for a regular (a) and an irregular wave (b).
The sum-contributions are responsible for the typical nonlinear sharp crests and flat troughs,
while the difference-terms cause a setdown of the water level below a group of large waves. Sea
state: HS = 8.1 m, TP = 13.1 s, γ = 3.3 and water depth d = 20 m.

The regular wave shows that the 2nd-order wave features the sharpened crests and flattened
troughs that are typical for nonlinear waves. Contrary to the regular wave, where only sum-
interactions appear in the wave record, the difference terms do contribute to the 2nd-order wave
in the irregular sea surface. It can be observed that the difference interactions produce a long
wave that causes a setdown of the water level below high wave groups and a slight water level
rise in the calmer parts of the sea surface.

Besides the time-series analysis, we can inspect the behavior in the frequency-domain. In
Figure 2 (a), the wave spectrum of the linear and nonlinear sea surface elevation is compared
with the JONSWAP spectrum that was used to generate the waves. The results show the
average of 500 wave simulations. It can be observed that the linear wave model returns the
same spectrum, while the second-order model shows additional low- and high-frequency peaks.
The low frequency energy is added by the difference-interactions, while a second addition near
0.15 Hz follows from the sum-interactions, which as expected peaks at approximately twice
the peak frequency. Although the 2nd-order model results in a higher spectral power than the
theoretical JONSWAP shape, this additional power does not need to be corrected for since
typically it also appears in the results from sea surface elevation measurements [17].

An impression of the influence of second-order wave simulations on wave loads can be
shown by the Power Spectral Density (PSD) of the in-line bending moment, which is shown
in Figure 2 (b). A simple monopile with a diameter of 6 m. and force coefficients CD = 1 and
Cm = 2 were assumed for this simulation. It can be observed that the sum-frequencies cause a
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Figure 2. Wave spectrum of the surface elevation(a) and PSD of the in-line bending moment
(b), averaged over 500 first- and second-order wave model simulations, using a JONSWAP input
spectrum. Sea state: HS = 8.1 m, TP = 13.1 s, γ = 3.3 and water depth d = 20 m.

significant increase in bending moment power near twice the peak frequency, while the difference
contribution is hardly noticeable.

3.2. Equivalent fatigue loads due to nonlinear wave simulation
The nonlinear irregular wave model presented in this paper is used to produce hydrodynamic load
time-series for a Siemens offshore wind turbine, which is supported by a monopile foundation.
The soil-structure interaction is also considered based on the work of [27]. The site is located
in the German Bight, with a water depth of approximately 25 m. Currents are assumed to be
acting in the direction of the waves in all load cases, while the change in observed frequency
due to the Doppler shift is ignored. All load cases are taken into account, which means that
the difference in equivalent fatigue load between the wave models gives a good indication of the
influence of nonlinear waves on fatigue life. Besides that, the wind turbine components that are
influenced by nonlinear wave modeling can be identified.

The equivalent fatigue load was evaluated for the bending moments in various components
of the offshore wind turbine. Effects on the shaft, hub and blades appeared to be insignificant (¡
1%) and are therefore not mentioned further in this section. The analysis can thus be constrained
to the tower and the foundation supporting the wind turbine. Since the effect on torsion proved
to be neglibible, only the influence of nonlinear waves on the bending moment around the axes
perpendicular and parallel to the wind direction is assessed. The results of the equivalent fatigue
load as a percentage of the linear wave results are shown in Tables 1 and 2.

It can be observed that the foundation is affected most by the higher wave loads, while
nonlinear waves only influence the tower in the lower part. Also in the foundation, the highest
sensitivity to nonlinear wave action is found near the foundation/tower interface. A significant
difference is found in the equivalent fatigue loads between the bending moment axes. The results
show that fatigue loads due to bending moments around the axis parallel to wind direction are
much higher than those around the axis perpendicular to the wind. This means that an increase
in wave loads acting perpendicular to the wind has significantly more influence than higher wave
loads in the wind direction.

Furthermore, an analysis on the origin of the increased fatigue loads reveiled that one load
case in particular was influencing fatigue loads. This load case DLC 6.4, in which the wind
turbine is idling in high wind speeds, only one wave seed was responsible for a relatively high
contribution to fatigue damage.



Table 1. Equivalent fatigue load due to the bending moment around the axis perpendicular to
the wind direction. Linear waves = 100 %. Wöhler exponent: 3.5 (Tower) and 5.0 (Foundation)

Linear waves [%] Nonlinear waves [%]

Tower
Top 100 100
Interface 100 101.5

Foundation
Interface 100 102.1
Seabed 100 101.7

Table 2. Equivalent fatigue load due to the bending moment around the axis parallel to the
wind direction. Linear waves = 100 %. Wöhler exponent: 3.5 (Tower) and 5.0 (Foundation)

Linear waves [%] Nonlinear waves [%]

Tower
Top 100 100
Interface 100 103.5

Foundation
Interface 100 107.5
Seabed 100 104.9

4. Analysis and conclusion
It was shown that for a typical monopile supported offshore wind turbine in 25 m. deep water,
the equivalent fatigue load on the support structure increases with 7.5 % when nonlinear irregular
waves are used in dynamic response simulation. This is obtained by simulating all the load cases
required by IEC standards, and it is a confirmation and good match with the results obtained
by [17]. It was found that the largest difference in fatigue damage accumulation is caused by
waves perpendicular to the wind, which indicates that wind-wave misalignment is important to
the increase in fatigue loads due to nonlinear waves. This can be explained by the aerodynamic
damping effect of the rotor, which is much less effective at attenuating the response loads when
wind and waves are not in line. Furthermore it was noticed that the influence of nonlinear waves
is most prevalent near the interface between support structure and tower. A direct conclusion
can not be drawn from this observation.

The simulations also reveiled that a single wave seed was responsible for a high amount of
fatigue damage in a load case with environmental conditions above the cut-out wind speed. Since
the particular wind speed at which this was observed only used one wave seed, randomness of
the simulations could cause an unexpected high fatigue damage. This research will therefore be
continued with a larger amount of wave seeds.

5. Recommendations for future work
Since nonlinear effects become more pronounced in shallower water, it is expected that nonlinear
irregular waves will have a larger influence on fatigue loads when the water depth is further
reduced. A similar in-depth analysis for a wind farm situated in shallower water is therefore



strongly recommended for a follow-up research. Besides the influence of depth, evidence exists
that fatigue loads may be affected by the shape of the input spectrum that is chosen to generate
the random waves [17]. A sensitivity study should be carried out to quantify this influence.

Furthermore, the authors have observed that modeling the action due to a current is often
somewhat ambiguous in the industry: out of conservatism currents are sometimes assumed to
act only in wave propagation direction, and the effect of a Doppler shift is not always applied.
An assessment of the impact of these assumptions on fatigue loads is thus recommended to
provide ground for a well-founded decision upon the method to model currents. Finally, it is
expected that directional waves will decrease hydrodynamic loads [16]. The current assumption
that waves act in a single direction may hence be conservative for fatigue load estimation. One
of the challenges in modeling multi-directional waves however, is to obtain the directional wave
spectrum, since wave propagation direction is both hard to measure and very site-specific [24].

Appendix - Additional transfer functions in second-order wave model
The transfer functions used in the second-order amplitudes are given as follows:

B−
mn =

1

4

[
D−
mn − (kmkn +RmRn)√

RmRn
+ (Rm +Rn)

]
(14)

B+
mn =

1

4

[
D+
mn − (kmkn −RmRn)√

RmRn
+ (Rm +Rn)

]
(15)

where

D−
mn =

(√
Rm −

√
Rn
) {√

Rn(k2m −R2
m)−

√
Rm(k2n −R2

n)
}(√

Rm −
√
Rn
)2 − k−mn tanh k−mnd

+ 2

(√
Rm −

√
Rn
)2

(kmkn +RmRn)(√
Rm −

√
Rn
)2 − k−mn tanh k−mnd

(16)

D+
mn =

(√
Rm +

√
Rn
) {√

Rn(k2m −R2
m) +

√
Rm(k2n −R2

n)
}(√

Rm +
√
Rn
)2 − k+mn tanh k+mnd

+ 2

(√
Rm +

√
Rn
)2

(kmkn −RmRn)(√
Rm +

√
Rn
)2 − k+mn tanh k+mnd

(17)

The reduced wave numbers Rm, Rn, and the difference- and sum wave numbers k−mn, k+mn are
given by:

Rm =
ω2
m

g
(18)

k−mn = |km − kn| (19)

k+mn = km + kn (20)

References
[1] T. Ashuri and M.B. Zaaijer. Size effect on wind turbine blade’s design driver. In European Wind

Energy Conference and Exhibition, Brussels, Belgium, pages 1–6, 2008. 1

[2] B. Erdogan, Y. Mehmet, and S. Abdulkadir. Offshore wind power development in europe and its
comparison with onshore counterpart. Ren. and Sust. Energy Reviews, 15(2):905–915, 2011. 1

[3] T. Ashuri. Beyond Classical Upscaling: Integrated Aeroservoelastic Design and Optimization of
Large Offshore Wind Turbines. PhD thesis, Delft University of Technology, the Netherlands, 2012.
1



[4] S.P. Breton and G. Moe. Status, plans and technologies for offshore wind turbines in europe and
north america. Ren. Energy, 34(3):646–654, 2009. 1

[5] T. Ashuri and M.B. Zaaijer. Review of design concepts, methods and considerations of offshore
wind turbines. In European Offshore Wind Conference and Exhibition, Berlin, Germany, pages
1–10, 2007. 1

[6] G.B. Airy. Tides and waves. Encyclopaedia Metropolitana, 1845. 1

[7] J.D. Wheeler. Methods for calculating forces produced on piles in irregular waves. J. of Petr. Tech.,
1:1–2, 1970. 1

[8] O.T. Gudmestad. Measured and predicted deep water wave kinematics in regular and irregular seas.
Marine Struct., 6(1):1–73, 1993. 1

[9] J.D. Fenton. A fifth-order stokes theory for steady waves. J. of Waterway, Port, Coastal and Ocean
Eng., 111(2):216–234, 1985. 1

[10] J.D. Fenton. Numerical methods for nonlinear waves. Adv. in Coastal and Ocean Eng., 5:241–324,
1999. 1

[11] J.N. Sharma and R.G. Dean. Second-order directional seas and associated wave forces. Old SPE J.,
21(1):129–140, 1981. 1, 2.1

[12] J. Zhang, L. Chen, M. Ye, and R.E. Randall. Hybrid wave model for unidirectional irregular waves,
part I. theory and numerical scheme. Appl. Ocean Res., 18(2):77–92, 1996. 1

[13] P.A. Madsen, H.B. Bingham, and H. Liu. A new boussinesq method for fully nonlinear waves from
shallow to deep water. J. of Fluid Mech., 462(1):1–30, 2002. 1

[14] Det Norske Veritas. Recommended practice - DNV-RP-C205 - Environmental conditions and
environmental loads. DNV, 2007. 1

[15] A.R. Henderson and P.W. Cheng. Wave loads on slender offshore structures: Comparison of theory
and measurement. In German Wind Energy Conf. [DEWEK], 2002. 1

[16] K. Mittendorf, M. Kohlmeier, A. Habbar, and W. Zielke. Influence of irregular wave kinematics
description on fatigue load analysis of offshore wind energy structures. In Proc. of DEWEK, pages
22–23, 2006. 1, 5

[17] H.F. Veldkamp and J. Van Der Tempel. Influence of wave modelling on the prediction of fatigue for
offshore wind turbines. Wind Energy, 8(1):49–65, 2005. 1, 3.1, 4, 5

[18] P. Agarwal and L. Manuel. Incorporating irregular nonlinear waves in coupled simulation and
reliability studies of offshore wind turbines. Appl. Ocean Res., 2011. 1, 2, 2.2

[19] International Electrotechnical Commission. IEC-61400-3 - Wind Turbines: Part 3: Design
Requirements for Offshore Wind Turbines. IEC, 2009. 1

[20] T. Ashuri, M.B. Zaaijer, G.J.W. van Bussel, and G.A.M. van Kuik. An analytical model to extract
wind turbine blade structural properties for optimization and up-scaling studies. In The Science of
Making Torque from Wind, Crete, Greece, pages 1–7, 2010. 1

[21] T. Ashuri, M.B. Zaaijer, G.J.W. van Bussel, and G.A.M. van Kuik. Controller design automation
for aeroservoelastic design optimization of wind turbines. In The Science of Making Torque from
Wind, Crete, Greece, pages 1–7, 2010. 1

[22] R.C. MacCamy and R.A. Fuchs. Wave forces on piles: A diffraction theory. Technical report, DTIC
Document, 1954. 2

[23] O.T. Gudmestad and D.T. Karunakaran. Wave current interaction. In Environmental Forces on
Offshore Structures and Their Predictions: Proc. of an Int. Conf., 1990. 2

[24] L.H. Holthuijsen. Waves in oceanic and coastal waters. Cambridge Univ Pr, 2007. 2.1, 5

[25] S.K. Chakrabarti. Handbook of offshore engineering, volume 1. Elsevier, 2005. 2.1, 2.1

[26] G.Z. Forristall. Wave crest distributions: Observations and second-order theory. J. of Phys.
Oceanography, 30(8):1931–1943, 2000. 2.1

[27] R. Haghi, T. Ashuri, P.L.C. van der Valk, and D.P. Molenaar. Integrated multidisciplinary
constrained optimization of offshore support structures. In The Sciense of Making Torque from
Wind, Oldenburg, Germany, 2012. 3.2


