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Abstract Laboratory geophysics tests including bender

elements and acoustic emission measure the speed of prop-

agation of stress or sound waves in granular materials to

derive elastic stiffness parameters. This contribution builds

on earlier studies to assess whether the received signal char-

acteristics can provide additional information about either

the material’s behaviour or the nature of the material itself.

Specifically it considers the maximum frequency that the

material can transmit; it also assesses whether there is a sim-

ple link between the spectrum of the received signal and the

natural frequencies of the sample. Discrete element method

(DEM) simulations of planar compression wave propagation

were performed to generate the data for the study. Restrict-

ing consideration to uniform (monodisperse) spheres, the

material fabric was varied by considering face-centred cubic

lattice packings as well as random configurations with differ-

ent packing densities. Supplemental analyses, in addition to

the DEM simulations, were used to develop a more compre-

hensive understanding of the system dynamics. The assembly

stiffness and mass matrices were extracted from the DEM

model and these data were used in an eigenmode analysis

that provided significant insight into the observed overall

dynamic response. The close agreement of the wave veloc-

ities estimated using eigenmode analysis with the DEM

results confirms that DEM wave propagation simulations can
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reliably be used to extract material stiffness data. The data

show that increasing either stress or density allows higher

frequencies to propagate through the media, but the low-pass

wavelength is a function of packing density rather than stress

level. Prior research which had hypothesised that there is a

simple link between the spectrum of the received signal and

the natural sample frequencies was not substantiated.
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1 Introduction

Investigations of the nature of wave propagation through

granular materials provide essential material properties and

are often conducted for engineering applications. For exam-

ple, the velocity of the propagating wave can be related to the

small-strain stiffness of granular materials and is important

in geophysics, geotechnical engineering and fundamental

research into granular materials [1–3]. In these dynamic geo-

physics tests, the wave velocity can be obtained using either

time domain techniques (e.g. [4,5]) or frequency domain

techniques (e.g. [6–9]). This paper explores whether addi-

tional information, i.e. in addition to the elastic stiffness

parameters, can be obtained about the tested samples by

relatively simple analyses of the received signal. A testing

scenario is considered which involves a controlled distur-

bance to generate an inserted signal at one sample boundary

and monitoring of the received signal at another sample

boundary.

Two research questions are considered here:

1. Granular materials act as a low-pass filter to seismic

(stress) or acoustic waves. Santamarina and Aloufi [10]
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and Santamarina et al. [11] related the maximum trans-

mitted frequency ( flow−pass) and the associated wave-

length (λlow−pass) to particle size, while Mouraille and

Luding [12] related λlow−pass to the layer spacing. In

their analysis of bender element tests and simulations,

O’Donovan et al. [13] found that the relationship between

particle size and flow−pass differs from that proposed

by Santamarina and Aloufi [10] and Santamarina et

al. [11]. Data presented in O’Donovan [14] indicates that

flow−pass varies with confining pressure in randomly

packed monodisperse materials. Lawney and Luding [15]

examined a 1-D chain of spheres and observed that a nar-

rower band of frequencies is transmitted when there is

a variation in the sphere masses, in comparison with the

case of perfectly uniform spheres. At a given stress and

void ratio, the contact model also alters the frequency

limit [16]. A better understanding of the material char-

acteristics that determine flow−pass would enable us to

assess whether measurement of flow−pass in laboratory

seismic tests can provide useful information about how

to characterise the material. In addressing these issues

here, the influence of confining stress and void ratio on

flow−pass and λlow−pass are discussed.

2. The study also examines whether comparison of inserted

and received signals in the frequency domain can pro-

vide details on the fundamental vibration modes of the

sample. Taking a simple fast Fourier transform (FFT) of

the received signal in a laboratory test reveals a num-

ber of local maxima, i.e. high amplitudes associated with

specific frequencies. Alvarado and Coop [17] proposed

that the frequencies of fundamental vibration modes can

be identified from the local maxima of the ratio of the

Fourier transforms of the received and inserted signals.

They based their hypothesis on a simple analysis of a

single degree of freedom system. This idea was further

developed in continuum analyses of the overall sample

dynamics by O’Donovan et al. [13]. The current study

adopts a more rigorous approach where the eigenfrequen-

cies of a model granular material created with DEM are

directly compared with the received signal obtained in a

simulated seismic test.

Considering DEM simulations of wave propagation O’Don-

ovan et al. [13] showed that the system response observed in

DEM simulations of dynamic tests gives a reasonable match

to that observed in equivalent physical laboratory tests. The

particle-scale data available in the DEM simulations enable

a range of analyses to better understand the system response

and so they can be used to explore the two research ques-

tions stated above. The dynamic response of a system is

determined by its natural vibration frequencies/periods and

corresponding modes. These frequencies and modes can-

not be directly obtained from the responses observed in the

DEM simulations or laboratory geophysics tests. Adopting

techniques used in matrix structural analysis [18] enables

an eigenvalue decomposition to obtain these data. The dis-

persion relation of a propagating wave is also investigated

following Mouraille et al. [19] and compared with results of

eigenmode analysis considering all the particles as used in

DEM simulations. The use of three different approaches to

analyse the system enabled a more comprehensive picture

to be developed than would be the case if DEM simulations

alone were considered. Furthermore, agreement between the

results of the three methods serves as a verification that

each model formulation is reasonable and has been correctly

implemented.

2 DEM simulations

DEM simulations were performed using a modified version

of the LAMMPS molecular dynamics code [20]. Uniformly

sized spheres with a radius (R) of 1.27 mm were used

with a particle density ρp = 2230 kg/m3. Using monodis-

perse particles enables the effects of fabric to be isolated

from any particle inertia effects. A simplified Hertz–Mindlin

(HM) contact model was considered with Young’s modulus

E p = 60 GPa and particle Poisson’s ratio νp = 0.2, which

are typical properties for borosilicate glass ballotini. This sys-

tem configuration was also considered in Otsubo et al. [16].

Referring to Table 1, a regular FCC packing and various

random packings were considered. Representative sample

images are presented in Fig. 1; Fig. 1a is a FCC sample

and Fig. 1b is a random sample (test case 22, Table 1),

both of which are isotropically compressed to 100 kPa. Use

of random samples enables consideration of the effects of

geometric disorder on wave propagation, developing on the

contributions of [12,15]. As was the case in earlier contribu-

tions [12,16,19], the lateral boundaries were periodic while

the boundaries in the longitudinal direction were fixed walls

with the same material properties as the contacting spheres.

The FCC sample consisted of 3200 particles (4 × 4 × 200

layers) and so is equivalent to that considered by Mouraille

et al. [19] and Mouraille and Luding [12]; it was created

by considering the lattice geometry of the packing. For the

FCC samples, a coefficient of friction μcomp = 0 was used

during controlled compression to the stress levels (σ ) listed

in Table 1. The random samples all consisted of 35,201

particles. They were prepared by applying a controlled com-

pression to initial “clouds” of non-contacting spheres to

achieve isotropic confining stresses, σ , of between 10 kPa

and 10 MPa. The borosilicate ballotini which are nominally

considered in the DEM simulations would most likely be

crushed at σ > 10 MPa; however particle crushing is not

considered here. To vary the packing density, values of the

inter-particle friction coefficient, μcomp, were varied during
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Table 1 Specification of test cases and results

Test case Sample σ μcomp(μwave) e1 kPa e CN ,1 kPa CN VP,d L/dt f DE M
low−pass

(kHz)

f
theor y

low−pass λlow−pass/D

MPa m/s 1% 2% kHz 1% 2%

1 FCC 0.01 0 (0.1) 0.353 0.353 12.0 12.0 523 94.5 94.1 93.8 1.4 1.4

2 0.1 0.353 12.0 767 138.9 138.1 137.7 1.4 1.4

3 1 0.351 12.0 1125 203.6 202.8 202.1 1.4 1.4

4 10 0.341 12.0 1645 296.6 294.5 296.4 1.4 1.4

5 R0 0.01 0 (0.1) 0.545 0.545 5.91 5.96 360 15.8 14.5 – 8.3 8.9

6 0.1 0.544 6.08 535 24.0 21.9 8.2 8.9

7 1 0.539 6.36 801 44.5 36.9 6.5 8.0

8 10 0.516 6.93 1229 86.3 65.2 5.2 7.0

9 R002 0.01 0.02 (0.12) 0.581 0.581 5.64 5.68 355 16.6 13.8 – 7.7 8.0

10 0.1 0.580 5.79 527 22.3 19.9 6.8 9.2

11 1 0.574 6.04 793 32.8 31.7 8.5 8.5

12 10 0.549 6.57 1216 61.7 56.0 7.2 7.3

13 R005 0.01 0.05 (0.15) 0.608 0.607 5.41 5.45 345 13.6 11.8 – 8.4 9.7

14 0.1 0.606 5.57 512 19.6 18.0 8.9 10.4

15 1 0.600 5.83 771 30.9 29.0 9.2 9.2

16 10 0.574 6.35 1186 54.4 49.5 7.9 8.9

17 R01 0.01 0.1 (0.2) 0.630 0.629 5.05 5.11 327 10.1 9.5 – 11.0 11.0

18 0.1 0.628 5.26 492 18.1 15.7 8.5 10.0

19 1 0.621 5.56 741 28.7 26.0 8.5 9.9

20 10 0.595 6.11 1150 50.3 45.4 7.0 8.7

21 R015 0.01 0.15 (0.25) 0.648 0.648 4.80 4.83 312 9.7 8.3 – 10.9 13.6

22 0.1 0.646 5.03 474 16.3 14.1 9.6 10.6

23 1 0.640 5.34 717 27.2 23.3 8.8 10.4

24 10 0.613 5.89 1119 53.9 44.1 5.9 7.3

25 R025 0.01 0.25 (0.35) 0.674 0.674 4.30 4.45 290 9.3 6.3 – 8.0 17.2

26 0.1 0.672 4.68 444 12.9 11.3 12.9 12.9

27 1 0.665 5.07 680 21.1 19.4 10.8 12.6

28 10 0.638 5.65 1070 47.2 37.4 7.6 10.1

29 R04 0.01 0.4 (0.5) 0.689 0.688 3.84 4.09 273 10.4 5.0 – 12.3 17.6

30 0.1 0.687 4.40 418 11.2 8.7 12.9 16.8

31 1 0.680 4.85 648 17.9 16.4 11.5 13.6

32 10 0.652 5.47 1040 38.8 33.7 8.9 9.8

this compression process, as listed in Table 1, to create a

total of 32 samples. The sample lengths (L) were between

141D and 146D, where D stands for the particle diameter,

with aspect ratios ≃10. The void ratio (e) and mean coor-

dination number (CN ) of the isotropic, random samples are

summarised in Table 1.

Referring to Fig. 1, P-waves were generated by moving

the lower source boundary (at z = 0) in the longitudinal

(Z) direction. A single-period, sinusoidal pulse with phase

shifted by 270◦, maximum double amplitude (2A) of 5 nm

and frequency ( finput ) of 100 kHz was used for most of

the simulations (Fig. 2a) so that A/L ≃ 7.0 × 10−9 and

A/D = 9.8 × 10−7. A nominal 100 kHz frequency pulse

can excite a broad range of frequencies including main fre-

quencies of up to 200 kHz (Fig. 2b). As discussed below, a

higher nominal frequency of finput = 200 kHz was used for

two of the FCC simulations (test cases 3 and 4) when fre-

quency domain analysis was performed (and so frequencies

of up to 400 kHz were inserted). During wave propagation,

the particle displacements in the Z direction and the stress

responses in the Z direction at the source wall (z = 0) and

receiver wall (z = L) were recorded.

The present study used an inter-particle friction coeffi-

cient of 0.1 for the FCC samples during wave propagation
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Fig. 1 Examples of samples: a

FCC sample b random sample

(test case 22) at σ = 100 kPa.

Coordination number (CN ) per

particle is plotted for the random

sample
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Fig. 2 Displacement and normalised spectral amplitude of the source

wall for input frequencies of 100 and 200 kHz

simulations (μwave). Mouraille and Luding [21] varied the

inter-particle friction coefficient (μ) values for their FCC

DEM samples and reported a sensitivity to μ at μ < 0.01 for

their simulated test conditions. In the current study, for the

random samples, if a coefficient of friction μwave = μcomp

had been used during wave propagation the samples would

not have exhibited an elastic response due to slip at the con-

tacts, as many of the contacts carried a tangential contact

force that was close to friction limit (μ N where N is the

normal contact force) under isotropic confinement. There-

fore, before applying the input motion, μwave was increased

to give μwave = μcomp + 0.1. A check confirmed that an

increment in friction coefficient exceeding 0.1 does not affect

the sample response during wave propagation. Table 1 lists

the friction coefficient values (μwave) used during the wave

propagation simulations. Viscous damping was applied once

the sample packing became stable at the required confining

pressure to remove any kinetic energy imparted to the parti-

cles during isotropic compression. No damping was applied

to the particles during wave propagation.

The displacements of particles along a line connecting

the source wall to the receiver wall were considered to give

insight into the dynamic response. Representative particle

displacements in the Z-direction at distances of approxi-

mately z = 10D, 50D and 100D from the source wall are

plotted in Fig. 3 for the FCC packing, and the dense and

loose random samples at σ = 0.1 MPa. The compression

wave (P-wave) propagates faster in the denser packing and

arrives earlier at the monitored particles. It is also clear that

the frequency of particle motion is affected by packing den-

sity. The amplitude of particle displacements is attenuated as

the wave propagates particularly in looser samples. Disper-

sion of the wave, conversion of energy into either rotation or

displacement in other directions, and frictional dissipation all

contributed to this attenuation. However, frictional dissipa-

tion was not significant in the simulations as the inter-particle

friction was increased by 0.1 before applying the stress dis-

turbance. The simplified Hertz–Mindlin contact model used

does not allow for frictional energy dissipation prior to slid-

ing.

The influence of an increased confining stress on the sam-

ples’ responses is illustrated in Fig. 4 where displacements

of a particle in the Z direction at about z = 50D are com-

pared for an input frequency finput = 100 kHz. Increasing

isotropic stress reduces the void ratio of the samples as illus-

trated in the legend of Fig. 4. The amplitude of particle

displacements increases clearly with increasing stress and

the wave arrival time is reduced considerably with increas-

ing stress.

The particle displacements along a line from the source

wall to the receiver wall at various distances from the source

wall (z) are displayed in Fig. 5 for representative FCC

and random dense samples at σ = 0.1 MPa (test cases 2
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wall at σ = 0.1, 1 and 10 MPa (test cases 2–4, 6–8 and 30–32). Input

frequency of 100 kHz was used for all cases presented here

and 6). For the random sample, rattler particles that are

not involved in the coherent movement were excluded. In

similar FFT analyses of received signals in wave propaga-

tion experiments, Jia [3] observed a low-frequency ballistic

component followed by higher frequency inherent (scat-

tered) waves. A similar trend is confirmed in the DEM data

for the random samples; low amplitude high-frequency (or

short-wavelength) waves that followed the more coherent

low-frequency waves are evident at least over a short distance

from the source as shown in Figs. 3 (e = 0.687) and 5b.

Referring to Fig. 5a, b, the first peaks propagate almost

linearly with time and distance from the wall, the gradients

of straight lines fitted to these data were used to obtain the

P-wave velocities (VP ) for each sample. This approach was

adopted for all samples. These VP data are summarised for

all the stress levels and densities considered in Table 1 (as

VP,d L/dt ) and Fig. 6. For all stress levels considered, VP

increases with increases packing density (reducing void ratio)

(Fig. 6a). When compared with the random samples, the FCC

samples exhibit larger velocities (i.e. the extrapolated trend

lines for the random samples lie below the FCC data points

on Fig. 6a). Data on Fig. 6b are grouped by the void ratio at

1 kPa, e1 kPa. VP increases with increasing stress (Fig. 6b)

and as predicted by Hertzian contact theory, the power coef-

ficient (b) in the VP − σ relationship is approximately 1/6

for the FCC samples where the changes in e are small and

CN stays constant. The random samples show b > 1/6; in

this case both e and CN change with stress and b increases

with increases e1 kPa.

Effective medium theory (EMT) enables estimation of the

sample stiffness and elastic wave velocity [22]. The sample

shear modulus (G0) estimated using EMT was compared

with DEM data in [16] where it was shown that for the FCC

samples, EMT and DEM data agree well, while EMT over-

estimates G0 for the random samples. The reason may be

related to the assumption of affine displacements made in

EMT as discussed in [23].

3 Eigenmode anaysis

If the mass and stiffness matrices of a system can be created,

for example in a finite element or structural matrix analysis,

the fundamental natural vibration modes can be found via

eigenvalue decomposition, where the eigenvector gives the

fundamental shape of vibration associated with an angular

frequency (ω) equal to the square root of the correspond-

ing eigenvalue (e.g. [18]). As discussed in O’Sullivan and

Bray [24] and Otsubo et al. [25], the particles in a DEM

simulation are analogous to the nodes in a finite element

model, while the contacts are roughly equivalent to the ele-

ments. This conceptual model of a granular material is used

in implicit discrete element method formulations such as

the particulate form of discontinuous deformation analysis

(DDA) as outlined in [26–28]. For the 3-D analyses consid-

ered here, each particle has 3 translational degrees of freedom

and 3 rotational degrees of freedom and so the diagonal mass

matrix (M) includes the mass (m) and rotational inertia val-

ues for each particle.

The global stiffness matrix (K) can be created using the

stiffness matrix assembly techniques described in [28] once

the local contact stiffness matrix describing pairwise inter-

action of two particles is obtained. Here the local contact

stiffness matrix was created using the data available in the

DEM model once the inter-particle friction was set at μwave.
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Fig. 5 Spatial and temporal plot of particle displacement at σ = 100 kPa. a FCC sample (test case 2), b random dense sample (test case 6)

e
0.3 0.4 0.5 0.6 0.7

V
P

 :
 m

/s

200

500

1000

2000

FCC

 = 10 MPσ

σ

σ

σ

σ

a
 = 1 MPa
 = 0.1 MPa
 = 0.01 MPa

 : MPa
10

-2
10

-1
10

0
10

1

V
P

 :
 m

/s

200

500

1000

2000

FCC e
1kPa

 = 0.353

e
1kPa

 = 0.545

e
1kPa

 = 0.581

e
1kPa

 = 0.608

e
1kPa

 = 0.630

e
1kPa

 = 0.648

e
1kPa

 = 0.674

e
1kPa

 = 0.689

(a) (b)

Fig. 6 P-wave velocity (VP , labelled as d L/dt in Table 1) for all test cases

The local contact stiffness matrix is a 12×12 element matrix;

expressions for this matrix are given in [29] and the entries

depend on the particle coordinates and contact stiffnesses.

For the analyses presented here, the parameters required to

construct the local stiffness matrix (particle coordinates, con-

tact orientations and contact stiffnesses) were obtained from

the DEM sample configurations following isotropic com-

pression. For a sample composed of n particles, there are

6 × n degrees of freedom; for the systems considered here

(K) consisted of up to 211,206×211,206 elements for the ran-

dom samples. The contact stiffnesses between particles and

boundaries were also included in K. The eigenvalue decom-

position is achieved by solving:

(

K − ω
2M

)

ϕ = 0 (1)

where ω
2 are the eigenvalues and ϕ are the eigenvectors; each

eigenvalue ω2
i is associated with a particular eigenvector ϕi .

The frequency of the i th mode is fi = ωi/2π . Here, built-in

MATLAB functions (MathWorks, 2015) were used to obtain

the eigenvalues and eigenvectors.

Previous researchers have used this approach to analyse

the dynamic response of granular materials. Based on their

1-D chain model, Lawney and Luding [15] showed that the

low-frequency eigenmodes are not affected by small random

variations in particle mass. Somfai et al. [30] considered a

2-D configuration of disks, and linked eigenmodes to peaks

observed in the received signal frequency spectrum. They

also noted that the eigenmodes corresponding to the low non-

zero eigenfrequencies have a similar vibration mode during

wave propagation. Marketos and O’Sullivan [31] performed

an eigenmode analysis for 2-D regular arrays and linked to a

DEM simulation for the same packing. Application of eigen-

mode analysis to a 3-D packing is challenging, not just due to

the increased number of degrees of freedom, but also because

the eigenvector (mode) shapes are more complex.

The natural frequencies, fi , are plotted against the nor-

malised mode number in Fig. 7a for the FCC sample and

random dense and loose packings at 100 kPa (test cases 2,

6, 30); the corresponding density distributions are given in

Fig. 7b. Figure 7a includes data for a FCC sample where

the rotational degrees of freedom are ignored (FCC trans.
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sample, random dense sample (R0), random loose sample (R04), FCC

sample excluding rotational degrees of freedom, and theory of disper-

sion relation for P-wave propagation (Eq. 10)

only), this is discussed further below. Excluding considera-

tion of FCC trans. only, the natural frequencies are distributed

between 0.7534 and 211.2 kHz for the FCC sample and

between 0 and 216.1 kHz, and 0 and 214.1 kHz for the ran-

dom dense and loose samples, respectively. The very low

frequency data (≈0 kHz) are associated with the presence of

rattler particles [30]. The density distribution indicates sev-

eral peaks (local maxima) for the FCC packing which are not

evident in the data for the random samples. Figure 8 illus-

trates the variation in the maximum eigenfrequency ( fi,max )

with stress level for the three sample types, again data for

the FCC sample where rotational degrees of freedom are

suppressed are also included. The three samples exhibit sim-

ilar values where the differences between them were <3%

across the wide range of stresses between 10 kPa and 10 MPa.

The maximum eigenfrequency relates to the element with the

highest stiffness:mass ratio in the system [32], so that a lower

mass gives a higher eigenfrequency. Following O’Sullivan

and Bray [24], the mass of each particle is distributed to its

contacts (which represent the elements) so when the con-

tact density is higher, less mass is assigned to each contact.

Assuming a uniform distribution of contact stiffness, the

maximum value of the stiffness:mass ratio is therefore deter-

mined by the particle with the greatest number of contacts.

While the random samples have average coordination num-

bers that are significantly lower than the FCC coordination

number (CN ,1k Pa = 5.91 and 3.84 in comparison with 12),

in each case there are local regions of dense packing so that

particles with contact numbers of 11–12 exist in all the ran-

dom dense samples and contact numbers of 9–10 are locally

found in the random loose samples. Even though only a few

particles show these high contact numbers this explains the

lack of sensitivity of the maximum eigenfrequency to the

packing.

To find the fundamental eigenmodes associated with P-

wave propagation, a correlation index (χzi ) was calculated

for each mode, i :

χzi =
1

n

n
∑

s=1

u2
zi,s (2)

where ūzi,s = Z component of the normalised eigenvec-

tor for particle s. When χzi = 1 the displacement of all

the particles is in the Z-direction (i.e. the eigenvectors have

no X or Y components). Processing Eq. 2 for the full-set

of eigenvectors is computationally expensive, and so for the

analyses presented here a linear chain of particles connecting

the source and receiver wall boundaries was considered. The

index χzi is plotted against fi for both a FCC and a random

sample at σ = 0.1 MPa in Fig. 9a. For the FCC packing,

modes giving χzi = 1 were observed across the entire range

of eigenfrequencies. For the random dense sample, modes
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Fig. 9 Correlation indices against eigenfrequencies for a FCC sample (test case 2) and a random dense sample (test case 6) at σ = 100 kPa

with χzi > 0.9 are evident for fi ≤ 10 kHz; however, the

maximum χzi value observed at a given frequency drops to

about 0.33 for fi > 15 kHz, indicating arbitrary displace-

ments occurring in any directions. For loose samples the

maximum χzi value observed tends to decrease below 0.9

at lower fi values in comparison with the data on Fig. 9b,

while at a higher stress the maximum χzi values attained

are higher (>0.9) and these high χzi values are observed at

higher fi values than those illustrated on Fig. 9b.

Mode shapes associated with typical resonant frequencies

are illustrated in Fig. 10 for the FCC and random packings.

The boundary conditions in the Z-direction considered in

this analysis are the fixed-wall boundaries used in the DEM

simulations. Thus the wavelength (λr ) and wave number (κr )

for resonant mode r can be expressed as:

λr =
2L

r
(3)

κr =
2π

λr

=
π

L
r (4)

The agreement between the frequencies corresponding to

peaks in χzi values and resonant modes of the sample is

confirmed in Fig. 10. In Fig. 10a–d the mode shapes (deter-

mined from the z-component of eigenvector) associated with

the 1st, 2nd, 5th, 10th maxima of χzi are shown; the wave-

lengths associated with these sinusoidal mode shapes agree

with Eq. 3. The mode shapes illustrated in Fig. 10e, f also cor-

respond with χzi = 1; however, referring to Figs. 7b and 9a,

at these eigenfrequencies there are a larger number of eigen-

modes present with very similar eigenfrequencies. Therefore

the fundamental modes were identified both from the χzi

value and visual observation of the mode shapes. Thus the

1st mode of resonance (Fig. 10a) at 1.06 kHz gives a wave

length λ = 2L , while the 200th mode of resonance (Fig. 10f)

at 137.6 kHz gives λ = L/100. At the 1st mode of reso-

nant vibration, all the particles move in the same direction

(� z > 0), while for the 200th mode neighbouring layers

move in opposite directions; in all cases the horizontal (x, y)

components of the eigenvectors were negligible. As shown

in Fig. 9a, fundamental frequencies higher than 137.6 kHz

exist for the FCC sample; however, these modes excite rota-

tional components and the corresponding eigenvectors were

more complex than the purely compressional modes with dis-

placement restricted to be in the Z-(vertical) direction. For

the random packing the modes are more easily identifiable by

simply considering the maxima of χzi in Fig. 9b. Referring

to Fig. 10g–k the lowest resonant modes were clearly iden-

tifiable just as in the case of FCC packing and in agreement

with the observations of Somfai et al. [30]. As fi increases

and χzi decreases, the resonant eigenvectors identified do not

have a clean sinusoidal shape. For the random samples the

rattler particles are not involved in any mode of vibration.

The combinations of fr and κr obtained for the first 10 reso-

nant modes for all the packings considered at σ = 0.1 MPa

are tabulated in Table 2.

A comparison of data from the eigenmode analysis with

the DEM wave propagation simulation serves to verify the

ability of the DEM model to correctly give data on the sys-

tem’s elastic properties. Using the measurements of stress

recorded at the source and receiver walls, and applying fre-

quency domain analyses [9] the group and phase velocities

were found at σ = 0.1 MPa as given in Fig. 11a, b for

the FCC and random dense samples, respectively. Note that

the inserted signal contains a range of frequencies and the

phase velocity, Vphase, is the velocity of a particular compo-

nent. The group velocity, Vgroup , is the velocity with which

the overall waveform propagates through the sample. While

there are some fluctuations in the data for the random sam-

ple, in both cases the group and phase velocities approach

each other at low frequencies, as expected. These veloci-
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Fig. 10 Normalised eigenvectors in the Z-direction at fundamental resonant modes at σ = 100 kPa. a–f correspond to r = 1, 2, 5, 10, 50, 200

resonant modes for FCC sample (test case 2), and g–l correspond to r = 1, 2, 5, 10, 15, 20 resonant modes for random dense sample (test case 6)
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Table 2 Resonant frequency ( fr ) and corresponding wavenumber (κr ) for various void ratio at σ = 100 kPa

Test case e Resonance mode

1 2 3 4 5 6 7 8 9 10

P-2 0.353 fr kHz 1.06 2.13 3.19 4.25 5.32 6.38 7.44 8.51 9.57 10.63

(FCC) κr rad/m 8.73 17.5 26.2 34.9 43.6 52.4 61.1 69.8 78.6 87.3

P-6 0.544 fr kHz 0.76 1.52 2.28 3.04 3.80 4.55 5.30 6.05 6.80 7.55

(R0) κr rad/m 8.73 17.5 26.2 34.9 43.6 52.4 61.1 69.8 78.5 87.3

P-10 0.580 fr kHz 0.73 1.47 2.20 2.93 3.66 4.39 5.11 5.84 6.54 7.29

(R002) κr rad/m 8.70 17.4 26.1 34.8 43.5 52.2 60.9 69.6 78.3 87.0

P-14 2.353 fr kHz 0.70 1.42 2.12 2.83 3.55 4.24 4.92 5.61 6.33 7.01

(R005) κr rad/m 8.64 17.3 25.9 34.6 43.2 51.9 60.5 69.1 77.8 86.4

P-18 0.606 fr kHz 0.68 1.36 2.00 2.69 3.34 3.99 4.66 5.31 5.96 6.61

(R01) κr rad/m 8.60 17.2 25.8 34.4 43.0 51.6 60.2 68.8 77.4 86.0

P-22 0.628 fr kHz 0.60 1.31 1.90 2.54 3.20 3.81 4.45 5.06 5.69 6.28

(R015) κr rad/m 8.57 17.1 25.7 34.3 42.8 51.4 60.0 68.5 77.1 85.7

P-26 0.646 fr kHz 0.58 1.20 1.78 2.36 2.95 3.53 4.12 4.67 5.32 5.80

(R025) κr rad/m 8.51 17.0 25.5 34.0 42.5 51.1 59.6 68.1 76.6 85.1

P-30 0.687 fr kHz 0.55 1.13 1.66 2.24 2.81 3.35 3.88 4.33 4.93 5.39

(R04) κr rad/m 8.48 17.0 25.4 33.9 42.4 50.9 59.4 67.8 76.3 84.8

ties are also similar to the VP based on direct measurements

(d L/dt) as listed in Table 1. The group and phase veloci-

ties were also directly calculated from the eigenmode data as

Vgroup = dω
dκ

and Vphase = ω
κ

, where ω(= 2π f ) and κ are

the angular frequency and wave number for the fundamental

modes, respectively; these can be derived from the data in

Table 2. This analysis of the eigenmode data is plotted in

Fig. 11c, d, and for the initial (low frequency) modes con-

sidered, the group and phase velocity data calculated using

both methods agree and they agree with Vp,d L/dt . Note that

[16] considered alternative methods of interpreting the DEM

dataset in the time and frequency domain and obtained a good

match between the shear wave velocity values obtained from

direct measurement (dL/dt), the peak-to-peak method, the

approach given in [9], and 2-D dispersion. The direct com-

parison with the eigenmode analysis presented here further

increases confidence in the use of simple interpretation of the

received signal to infer elastic properties for these systems.

4 Dispersion relation for FCC packing

The dispersion relation describes the relationship between

angular frequency ω and wave number κ . The derivation of

the dispersion relation for a 1-D chain of identical spheres

has been previously shown [33]. The theory can be extended

to a 3-D regular array of equal spheres [33–35] to give:

ω = 2

√

C

m

∣

∣

∣

∣

sin
l

2
κ

∣

∣

∣

∣

(5)

where C = stiffness constant between neighbouring layers,

l =distance between the neighbouring layers and m =mass

of a particle. As κ → 0 (long wave limit):

Vlongwave = Vgroup,max = Vphase,max = l

√

C

m
(6)

For ideal regular packings, there is a linear relationship

between the maximum transmitted frequency, i.e. low-

pass frequency ( flow−pass) and the long wave velocity

(Vlongwave):

Vlongwave = πl flow−pass (7)

The layer stiffness for a FCC packing (C FCC ) in the Z-

direction associated with a compressional distortion can be

expressed using the normal and tangential contact stiffnesses

(kN and kT , respectively) considering its geometry:

C FCC = 2
(

k
FCC

N + k
FCC

T

)

(8)

Thus, kT also contributes to the layer stiffness; however

rotation of spheres is not involved in the motion considered.

Here the k FCC
N and k FCC

T data were extracted from DEM

results to calculate C FCC . In the absence of DEM data, the

k FCC
N and k FCC

T values can be estimated as explained in

[36,37]; a cross-check confirmed that this approach gives

equivalent data. For P-wave propagation in a FCC packing,

the dispersion relationship is then given by:
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Fig. 11 Group velocity and phase velocity at σ = 0.1 MPa in com-

parison with directly measured P-wave velocity, VP (d L/dt). a FCC

sample (test case 2), b Random dense sample (test case 6), c FCC sam-

ple in comparison with results of eigenmode analysis, d Random dense

sample in comparison with results of eigenmode analysis

ω = 2

√

C FCC

m

∣

∣

∣

∣

sin
l FCC

2
κ

∣

∣

∣

∣

(9)

where l FCC is the layer distance and is approximately
√

2R

for the considered direction. The maximum transmitted fre-

quency, i.e. the low-pass frequency limit, flow−pass , is then:

flow−pass =
ωlow−pass

2π
=

1

π

√

C FCC

m
(10)

The low-pass frequencies obtained for FCC samples at

various stress levels using Eq. 10 are given in Table 1 as

f
theor y

low−pass .

5 Frequency domain response

Using the DEM dataset in combination with the eigenvalue

decomposition and the dispersion relationship enabled a

comprehensive picture of the frequency domain response of

the system to be developed. The synthesis of the available

data focussed on two aspects of the response: the maximum

transmitted frequency and resonance.

5.1 Maximum transmitted frequency

As noted above, granular materials act as low-pass filters to

inserted seismic/stress/acoustic waves, removing the high-

frequency contents of the signal with distance. The low-pass

frequency limit depends on the particle characteristics and

the porosity of the assembly [38]. Following Mouraille and

Luding [12], the variation in the frequency content of the

particle displacement responses with the distance from the

source wall can be investigated by considering a linear chain

of particles connecting the source and the receiver. Figure 12

was developed by repeatedly applying a fast Fourier trans-

form (FFT) to the particle displacements along such a chain

to create a plot of frequency versus distance from the source

wall where the shading gives the associated amplitude. Four

samples were considered, given as test cases 2, 6, 22 and 30
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Fig. 12 Frequency spectra at varying distances from the source wall at σ = 100 kPa. a e = 0.353, FCC sample (test case 2), b e = 0.544 (test

case 6), c e = 0.646 (test case 22), and d e = 0.687 (test case 30)

in Table 1, all at σ = 0.1 MPa. The regular lattice structure

of the FCC packing enables significantly larger frequencies

to be transmitted in comparison with the random packings.

The maximum transmitted frequency ( flow−pass) varies with

distance in all cases. The trend for flow−pass to decrease

with distance for the FCC sample (Fig. 12a) resulted from

the short recording time period [12]. The recording time was

limited to exclude interference in the signals due to reflection

at the receiver wall. For random packings, high frequencies

are evident close to the source wall (<0.05 m), and these

high frequencies are removed gradually as the waves prop-

agate. A constant, stable value of maximum frequency was

attained after a distance from the source wall and flow−pass

was defined for this stable frequency. The flow−pass values

considered here correspond to the coherent low-frequency

wave rather than the high-frequency (or short-wavelength)

scattered waves measured near the source wall. The stress-

dependency of flow−pass was examined; Fig. 13 confirms the

observations based on data in [13] and shows that flow−pass

increases with stress for the random dense packing (test cases

7 and 8).

To quantify flow−pass for each sample, a specific thresh-

old value had to be determined to avoid the effects of the low

amplitude high-frequency data (noise) that always appeared

during the wave propagation simulations. This noise was

partially a consequence of the lack of damping in the wave

propagation simulations. In this study, the flow−pass value

was taken to be the frequency associated with a displace-

ment amplitude of 2% of the maximum value. This threshold

was decided based on visual analysis using the flow−pass

- distance plot (e.g. Fig. 12). However, the flow−pass val-

ues obtained depended on the threshold value, with the

random samples being more sensitive than the FCC sam-

ples. The flow−pass values determined using a 1% threshold

exceeded those obtained using a 2% threshold whereas the

flow−pass values were similar when thresholds of either

2 or 3% were used. Further analyses of the sensitivity of

both flow−pass and λlow−pass to the threshold value indicate

that where thresholds of 1% or less are used the calculated
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Fig. 13 Frequency spectra at varying distances from the source wall. a σ = 1 MPa, e = 0.539, b σ = 10 MPa, e = 0.516

flow−pass and λlow−pass values are affected by the noise in

the data. For completeness, Table 1 summarises the flow−pass

data based on thresholds of 1 and 2%; the following dis-

cussions and associated figures are based on using a 2%

threshold.

For the FCC sample, the three approaches agree; maxi-

mum transmitted frequencies of flow−pass = 137.7, 137.6

and 138.1 kHz are obtained using dispersion theory (Eq. 10),

eigenmode analysis and DEM simulation (Table 2), respec-

tively. It is also interesting to examine the link between

flow−pass and the maximum eigenfrequency, fi,max . Refer-

ring to Fig. 8, when the rotational degrees of freedom

are included, the fi,max values are significantly larger than

flow−pass ; e.g. for the random dense sample at 100 kPa

fi,max = 216.1 kHz, while flow−pass is 21.9 kHz. However,

for the FCC sample, when the rotational degrees of freedom

are excluded from the eigenvalue decomposition analysis,

flow−pass ≈ fi,max ; the flow−pass data obtained from dis-

persion theory for the FCC sample are overlain on Fig. 8.

This is an interesting result as it links the natural vibration

frequencies of the sample to the low-pass frequency limit.

The dispersion relation can be obtained from the DEM

data [12]. Figures 14 and 15 show the dispersion relation

for the samples discussed in Figs. 12 and 13. The results of

eigenmode analysis summarised in Table 2 are overlain on

the DEM data in Figs. 14 and 15 as open white circular sym-

bols for the random sample and open black circular symbols

for the FCC sample. For the FCC sample the theoretical dis-

persion relationship (Eq. 9) is also shown as a dashed line.

For the random samples, initially the relationship is linear,

and this is captured by eigenmode analysis. However, the

curvature of the dispersion relation at higher wave numbers

(or frequencies) is not observed as in the case of the FCC

packing.

Figure 16 summarises the combined influences of void

ratio and stress on flow−pass . For the FCC samples at σ =
1 MPa and 10 MPa, finput = 200 kHz was used (Fig. 2) so

that the low-pass frequency could be observed clearly. The

observed trends exhibited a similarity with the VP data in

Fig. 6; flow−pass is observed to increase with increased stress

and packing density. This suggests a relationship between

VP and flow−pass ; Fig. 17 shows the VP − flow−pass rela-

tionship in which the FCC sample responses exhibit a linear

relationship. This agrees with the dispersion relation theory

where the maximum frequency is proportional to VP (long

wave velocity, Eq. 7). On the other hand, the relationship

for the random samples was slightly different. If the data

are grouped by e1 kPa, the VP − flow−pass relationship is

again linear, with a slope of between 1.2 and 1.4; this slope

increases with reducing packing density. Note that these data

were generated assuming an (arbitrary) amplitude threshold

of 2% of the maximum displacement; if the threshold ampli-

tude is reduced the data shift upwards, but the overall trends

are invariant.

The low-pass wavelength (λlow−pass) which corresponds

to flow−pass for each sample was obtained using the DEM

dispersion relation plot (as illustrated for example in Figs. 14,

15) (recall that λ = 2π /κ); λlow−pass values considered

here correspond to the coherent low-frequency wave as in

the case for flow−pass . The resultant λlow−pass data are tab-

ulated in Table 1 based on both the 1 and 2% thresholds

and Fig. 18 illustrates the variation in λlow−pass (based on

the 2% threshold) with void ratio. The geometry of the FCC

samples is invariant and so the resultant λlow−pass is insensi-

tive to changes in void ratio and stress, which contrasts with

the observations for VP or flow−pass . λlow−pass increases

with increasing void ratio and seems to be independent of

stress level. In contrast, for the random samples there are

variations in the sample topology with stress or μcomp. The
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Fig. 14 Dispersion relation of particle displacement at σ = 100 kPa. a e = 0.353, FCC sample (test case 2), b e = 0.544 (test case 6), c e = 0.646

(test case 22), and d e = 0.687 (test case 30)

Fig. 15 Dispersion relation of particle displacement. a σ = 1 MPa, e = 0.539, b σ = 10 MPa, e = 0.516
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Fig. 18 Influence of void ratio on low-pass wavelength (λlow−pass)

normalised by particle diameter for all test cases

data here give λlow−pass values of between about 7 and 18

times the particle diameter (D) for the 2% threshold, and

5 to 12D for the 1% threshold. Santamarina et al. [11] and

Santamarina and Aloufi [10] assumed the particle diame-

ter to be an internal scale ( α) of granular materials where

λlow−pass = 2α, while Mouraille and Luding [12] took α to

be the layer distance for a FCC sample, i.e. α =
√

2R. The

DEM and eigenmode analysis data for the FCC packing sup-

port the observation by Mouraille and Luding [12]. For the

random samples; λlow−pass is density dependent (Fig. 18). It

seems logical that there must be some link between void ratio

and layer distance; a lower void ratio indicating a smaller

layer distance, however in a random packing this link cannot

be determined simply. It seems more appropriate to qualify

the conclusions in [10,11] and state that λlow−pass depends

on both void ratio and particle size.

5.2 Resonance

Following earlier geomechanics contributions [9,17], a fre-

quency domain technique was applied that considered the

gain factor: the ratio of the frequency spectra of the stress

responses at the source and receiver walls. Taking the stress

responses at the boundary walls as the input for FFT analyses,

gain factor data for the FCC samples and random samples

at σ = 0.1, 1.0 and 10 MPa (test cases 2–4 and 6–8) are

illustrated in Fig. 19a, b across the entire range of received

frequencies. The maximum value of the gain factors exceeds

1 because of the fixed-end condition at the receiver wall, i.e.

the kinetic energy is converted into strain energy. In general,

the gain factor decreases with increasing frequency. As is

clear from the data presented in Figs. 12 and 13, higher fre-

quencies propagate through the FCC samples in comparison

with the random samples. Restricting consideration to the

low frequency data <10 kHz, Fig. 19c, d compare the gain

factor with the resonant frequencies data from Table 2. The
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frequency interval at which local maxima in the gain factor

are observed roughly corresponds to the frequency interval

at which natural (resonant) frequencies are observed. The

peaks in the gain factor neither correspond exactly with res-

onant modes exhibiting mode shapes that reflect the applied

disturbance; nor do they correspond with resonant frequen-

cies having more complex mode shapes. This contrasts with

the discussions/hypotheses in [17]. Somfai et al. [30] also did

not find a perfect match between the resonant frequencies and

actually excited frequencies for their 2-D DEM analyses.

6 Conclusions

This contribution aimed to address two questions arising

from previous research and a review of the literature:

1. What are the factors that determine the low-pass fre-

quency limit, flow−pass , and can measurement of

flow−pass provide useful information about the sample?

2. Can the fundamental vibration modes of a sample be

easily identified from the received signals in laboratory

seismic tests?

To address these questions, data were generated using a

series of DEM simulations of planar compression wave prop-

agation in both FCC and randomly generated samples. In

all cases the particles used were monodisperse spheres to

isolate inertia effects from the observed response. Applying

approaches used in implicit DEM formulations and matrix

structural analysis, mass and stiffness matrices were formed

and eigenmode analyses were carried out. In addition, for

the FCC samples, a theoretical dispersion expression was

derived. The group velocity and phase velocity obtained from

stress responses at the source and receiver wall using DEM

simulation exhibited good agreement between the velocities

estimated using eigenmode analysis where the dispersion

theory also agreed. The good agreement in the data serves

as a cross-validation of the three approaches considered. The

agreement also verifies the use of simple analysis of received

123



Influence of packing density and stress on the dynamic response of granular materials Page 17 of 18 50

signals to infer elastic parameters from laboratory geophysics

experiments.

Considering the frequency limit, the P-wave velocity,

VP , and the low-pass frequency limit, flow−pass , exhibited

similar sensitivities to variations in stress and packing den-

sity. Increasing either stress or density resulted in a larger

VP and higher flow−pass . For the FCC samples with a sta-

ble regular lattice packing, Hertzian contact theory gives a

linear relationship between VP and flow−pass ; this was con-

firmed from the DEM simulation data. On the other hand,

the configuration of a random packing depends on packing

density and stress level. The resultant relationship between

VP and flow−pass differed slightly from that for a FCC

packing; however a linear relationship was still observed.

The low-pass wavelength λlow−pass was not sensitive to

stress level but was affected considerably by packing den-

sity. For the FCC samples where the packing was invariant

λlow−pass /D ≈
√

2, i.e. λlow−pass is twice the layer spac-

ing. Considering the low-frequency compression waves the

ratio λlow−pass /D observed for the random samples varied

between 5 and 18 depending on the void ratio and the thresh-

old used to identify flow−pass . This observation does not

relate to the low amplitude high-frequency scattered waves

that emerged subsequent to the main low frequency response.

These data highlight that for non-crystalline materials it is

difficult to quantitatively relate λlow−pass to a characteristic

of the sample. The layer spacing relates to void ratio and par-

ticle size and establishing a link between layer spacing and

these two parameters is non-trivial.

The natural (fundamental) frequencies of the samples

were obtained using eigenvalue decomposition of the mass

and stiffness matrices derived from the DEM data. The reso-

nant modes were identified by searching for the eigenvectors

that had negligible components in the X- and Y-directions,

i.e. those mode shapes were exclusively vertical. For the

FCC samples, up to 200 resonant modes were found; i.e.

the number of resonant modes agreed with the number of

layers in the sample. The mode shapes were sinusoidal and,

in agreement with theory, for a given mode, the relation-

ship between the wavelength λr and the mode number (r)

was given by λr = 2L
r

. For the random samples the mode

shapes associated with shorter wavelengths/higher frequen-

cies could not easily be identified using eigenmode analysis

(using the DEM data the dispersion relation could also not

easily be identified for these wavelength:frequency com-

binations). In principle, if the data for the high frequency

responses were clearer, the number of modes could be deter-

mined with confidence to get a measurement of the layer

spacing which then could be related to λlow−pass . The reso-

nant frequencies and corresponding wavelengths agreed with

the dispersion relation obtained using DEM data; for the

FCC samples there was also agreement with the theoreti-

cal dispersion relationship. The relationship between the low

pass frequency limit ( flow−pass) and the maximum eigen-

frequency ( fi,max ) of samples was also investigated. For

P-wave propagation, flow−pass < fi,max for all the samples;

however, flow−pass ≈ fi,max was observed for FCC samples

where the rotational degrees of freedom were excluded from

the eigenvalue decomposition analysis. The ratio between

the spectrum of the received signal and the spectrum of the

inserted signal was taken as the gain factor. While resonant

frequencies were found close to the local maxima in the

gain factor, the data presented here do not support earlier

hypotheses linking these maxima to resonant frequencies, as

the local maxima in the gain factor do not coincide with reso-

nant frequencies corresponding to a motion that agreed with

the applied disturbance, nor do they give an exact match with

any other resonant frequency.
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