
Influence of Parallelism Property of Streaming

Engines on Their Performance

Nigel Franciscus1, Zoran Milosevic2 and Bela Stantic1

1 Institute for Integrated and Intelligent Systems, Griffith University, Australia
2 Deontik, Brisbane, Australia

Abstract. Recent developments in Big Data are increasingly focusing
on supporting computations in higher data velocity environments, in-
cluding processing of continuous data streams in support of the discov-
ery of valuable insights in real-time. In this work we investigate perfor-
mance of streaming engines, specifically we address a problem of iden-
tifying optimal parameters that may affect the throughput (messages
processed/second) and the latency (time to process a message). These
parameters are also function of the parallelism property, i.e. a number of
additional parallel tasks (threads) available to support parallel computa-
tion. In experimental evaluation we identify optimal cluster performance
by balancing the degree of parallelism with number of nodes, which yield
maximum throughput with minimum latency.

1 Introduction

In Big Data environment, there are two types of data processing engines ba-
sically dedicated for different purposes, namely batch and streaming engines.
Batch processing is concerned with handling of massive volume of data while
streaming is concerned with processing data of high velocity. Several platforms
and tools have been developed to support big data environments, of which the
most widely known is Hadoop3 which utilizes MapReduce batch processing. The
Hadoop is however not adequate for real time streaming requirements, as for ex-
ample is needed for stock market pattern monitoring, ad-serving [5] or real-time
personalised recommendation 4. Total time T to process a message is

T = B+M

where B is the time to collect data in the Hadoop input buffer and M as the time
to process the data through MapReduce. It is obvious that some applications
require near real-time analysis and this type of analysis can be supported by
streaming engines. Two most popular Streaming Processing Engines (SPEs) are
Storm and Spark Streaming which are fault tolerant and guarantee message
delivery.

3 Apache Hadoop, http://hadoop.apache.org/
4 Spotify Labs, https://labs.spotify.com/2015/01/05/how-spotify-scales-apache-
storm/



2

Due to simultaneous threads execution, it is expected that degree of paral-
lelism will improve the throughput. However, it has been mentioned in literature
that when the degree of parallelism reaches certain threshold there may be a la-
tency penalty which will impact overall performance [7]. In order to identify the
optimal configuration and performance of SPEs with varying degree of paral-
lelism, we have carried out a series of experiments across the clusters in Storm
and Spark and looked closely in throughput and latency performance param-
eters. In experimental evaluation, which is based on counting words extracted
from sentences submitted to the SPEs in continuous stream, we varied different
degrees of parallelism and number of nodes used. In addition, we investigated
possible relation between network bandwidth and threshold that each engine
can support. We have not considered the impact of the CPU usage and memory
consumption.

2 Related Work

To the best of our knowledge, there is no existing work focusing on the Streaming
Processing Engines regarding to the degree of parallelism. However, some of the
benchmarking has been done in term of performance.

Work on Discretized Stream provided a performance analysis of Spark and
Storm throughput [10, 9]. Bell - Labs explored Storm inner core to get Storm
performance optimisation by looking at parameter configuration [7, 1]. The inner
core that has been tested includes number of parallelism hint, network usage,
CPU usage and horizontal scalability. Bell - Labs have found that the configu-
ration is critical and they are planning to build an engine which can determine
the best configuration for every job automatically. The key attribute to consider
in the implementation of the engine is the horizontal scalability configuration.

Our work is built on this specific criterion of parallelism degree which exploits
the benefit of distributed systems by increasing the number of parallel threads
and distribute them reliably across the nodes. However, it has been shown that
the effect of spout-bolt parallelization has reach level of threshold with 24 degree
of parallelism. Our work proved that we can overcome the level of threshold
by investigating network bandwidth. Note that threshold is also dependent on
environment hardware.

Analysis presented in [8] describes the use of Storm within Twitter includ-
ing Storm architecture and methods. An investigation of comparison between
Apache Storm and Apache Flink (Formerly known as Nephele) was presented
in[4, 3] in relation to latency constraint and throughput. Since latency is a non-
trivial property in streaming context, this work has studied on how the system
accommodates such latency restriction while producing maximum throughput.
While study conducted in [6, 2] provided architectural comparison of Spark and
Storm, it concluded that Storm performs well in sub-second latency and no data
loss while Spark performs better where throughput and stateful processing are
required.



3

3 Influence of Parallelism Property

We have investigated the dependency of throughput and latency measures in
streaming engines considered from i) the degree of parallelism parameters and
ii) number of worker nodes as variables. We performed the analysis on the in-
dividual engine basis which subsequently led us to establish some comparative
results of one-at-the-time and micro-batch processing. The purpose of these ex-
periments was to better understand the interplay of various parameters that are
configurable in both engines, and various choices that can be adopted to support
performance tuning

Our experiment was conducted on a cluster of 20 nodes interconnected via
Giga Ethernet. Each node has quad core Intel(R) Core(TM) i5-2400 CPU @
3.10GHz with 4GB RAM and 500GB SATA HDDs. The nodes run Scientific
Linux release 6.3 and are connected using standard 100Mb/s Ethernet and 1Gb/s
Ethernet. For the experiment, datasets are handled by Apache Kafka, where
messages are injected into Kafka to build up queue. Our method to collect the
statistics of throughput and latency is during the peak time of the message being
processed. Thus, it will allow engine to apply the latency constraint while trying
to achieve maximum throughput.

For each collection we calculate the mean of the average throughput-latency
within the interval of biggest output with average of 5 minutes after job sub-
mission. We use both Storm and Spark metrics to collect statistics for both
throughput and latency. In this experiment, we use Apache Storm 0.9.3, Apache
Spark 1.4.0 and Apache Kafka 0.8.2.1. Both Apache Storm and Spark are given
4 slots (executors) allocation for each nodes.

As mentioned before, we use word count job as the measurement benchmark
for testing Storm and Spark Streaming capabilities. This job imposes high pro-
cessing demand on CPU resource. Each experiment is tested within the same
cluster and same configuration for degree of parallelism parameter to facilitate
comparison. Both engines have the degree of parallelism parameter that defines
replication of receiver and processor to handle multiple streaming connections.

In order to get message reliability, we implement Apache Kafka as the dis-
tributor. Messages are generated in Kafka cluster before proceed to streaming
engine. Each message consists of 30 - 35 words that has record size for about
5 - 10 bytes. It is important to note that degree of parallelism of Storm spout
and Spark receiver is dependent on the number of topic partitions from Kafka
brokers. In order to get desired degree of parallelism, each topic with different
number of partition needs to be set upon implementation.

Our experiments with storm demonstrated significant contribution of the
spout and bolt parallelization on single node. Figure 1 depicts the combination
of spout and bolt parallelization resulting in linearly increasing throughput (tu-
ple/sec). It can be seen that spout replication allows more tuple in the stream
supporting increase in traffic and throughput. However, each replication requires
more workers as spout replications use most of threads in single node (with 4 ex-
ecutors allocation) because spout component is the first in the topology and thus
is first to be served through available slots. This has been noticed when degree of



4

Fig. 1. Measuring Storm throughput and latency on single node.

parallelism reached 8. Since there are only 4 executors initially, bolt performance
decrease dramatically with increased spout replication beyond threads threshold
with 8 replicas. Figure 1 also indicates the latency for bolt degree of parallelism
processing within single node. It was initially expected that latency will be stable
throughout the duration of topology processing. However, we found that, due to
overloading threads consumption, latency spikes drastically when bolt gets over-
loaded. This is because numbers of messages emitted from spout are building up
the queue in internal buffer system that bolts access and bolt can only process
as much as it is available in the buffer. Note that, it is also due to the fact that
spouts have used all the available executors which results in ’overstressed’ bolts.
This suggests that Storm has a good respond in maintaining the topology under
low level of resources. It is evident that there must be a restriction mechanism
system similar to Spark to handle such circumstances.

Fig. 2. Measuring Storm throughput and latency based on multiple nodes.



5

In order to compare one-at-the-time ability for horizontal scaling, we carried
out a performance test with Storm on multiple nodes as a comparison with single
node. Figure 2 indicates the horizontal scalability that supports data distribu-
tion and load balance through adding more worker nodes. With the increasing
of degree of parallelism degree, more executors are needed to maintain number
of threads spawned. Thus, there is need to try to balance the number of worker
nodes with degree of parallelism (e.g. 4 degree of parallelism = 4 worker nodes).
As the number of worker nodes increases to match degree of parallelism, through-
put is steadily increased because for each increasing input stream in spout it will
allow more tuples to be consumed by the topology.

Fig. 3. Measuring Storm Throughput and Latency based on Ethernet switch transfer
speed (100Mb and 1Gb).

In relation to latency, by adding more workers it has been proven to re-
duce the load of internal processing by distributing it across the cluster. This is
achieved by sharing incoming tuple to each given workers to reduce bottleneck
in the internal buffer. We have identified that by adding more worker nodes de-
crease overloading of bolts by exploiting more executors, which was also evident
from the decrease in bolt capacity. Bolt capacity is measured 0 to 1 - where the
capacity over 1 indicates overloading bolt and one should increase the degree of
parallelism. Note that in part this is also due to data distribution across nodes
which help Storm reducing excessive tuple queues in the internal buffer. Fur-
thermore, it is worth to note that Storm internal processing (bolt) is powerful to
handle huge amount of streaming data and then process it with very low latency
less than 1 ms.

In terms of the impact of network protocol, since messages are delivered
from socket to socket through TCP/UDP connection protocol, we expected that
improvement in transport layer will affect the message deliveries. This was indeed
the case. Figure 2 demonstrates that with 100Mb Ethernet switch, our cluster
has reached the threshold when the degree of parallelism was 24, but with faster



6

network (1Gb) threshold was 32. Figure 3 indicates not only improvement in level
of threshold, but also in overall performance for both throughput and latency.

Fig. 4. Measuring Spark throughput and latency based on multiple nodes.

Our experiments have showed a significant throughput improvement from
micro-batch compared to Storm. It may be noted that our prior experience has
suggested insignificant differences in using different micro-batch interval size; the
results are sufficiently general with the case of 1 second batch interval. Result
shows that degree of parallelism does not significantly benefit neither throughput
nor latency. Spark Streaming performance on multiple nodes is worse compared
to the single node performance with default degree of parallelism configuration.
In comparison to Storm, on single node Spark is able to perform 15 times better
in terms of throughput and on average 4 times faster on multiple nodes. However,
the trade-off from having big throughput is the increasing of latency into seconds.
Note that latency on the order of seconds is not sufficient for process real-time
analysis. Our experiment also shows that Spark Streaming will randomly choose
worker nodes for the scheduler task. A drawback from this approach is that each
opening and closing connection between master - workers will increase network
traffic which affects the latency.

Figure 5 highlights the comparison between Storm and Spark based on max-
imum throughput and latency. Note that on Storm we measure the throughput
based on spout as it represents how many tuples have been processed inside the
topology. We performed several tests on different Spark micro-batching interval
from 2 to 0.1 second. It is evident that, the micro-batch interval does not affect
the maximum throughput (calculated in message per second) or latency. Spark
Streaming does not benefit from degree of parallelism on multiple worker nodes.

Additionally, Spark has the restriction mechanism that will not allow for total
number of executors to be less than the degree of parallelism, for example on a
single node with 4 cores you cannot have more than 4 degrees of parallelism. On
the other hand, in Storm, it would be possible to have 8 degrees of parallelism on
the 4 core node, but this will put the workers into overloading state. Since Spark



7

Fig. 5. The comparison between Storm and Spark in Throughput and Latency.

core framework exploits main memory its mini-batch processing can appear as
fast as one at a time processing adopted in Storm, in spite the fact that the
RDD units are larger than Storm tuples.

The benefit from mini-batch is to enhance the throughput in internal engine
by reducing data shipping overhead such as lower overhead for ISO/OSI trans-
port layer header which will allow the threads to concentrate on computation
[3]. However, one may argue that the consequence of batching concept will add
additional latency compared to one at a time. Since the processing of message
transfer between worker nodes is performed in network transport layer, message
transfer in batch will decrease network I/O. Thus, this will directly reduce CPU
consumption and network bandwidth.

4 Conclusion and Future Work

In this work we evaluated performance of streaming engines as a variable of their
degree of parallelism and number of worker nodes. We showed that by choosing
appropriate degree of parallelism in combination with the right number of worker
nodes one can achieve better performance. For example in case of 20 cluster nodes
with four executors on each nodes optimal is 24 degree of parallelism, as after
24 the performance will drop.

We have also demonstrated that network bandwidth will increase perfor-
mance of streaming engines and the level of threshold however also after the
threshold the performance drops.

Another finding was that Storm has lower latency (in milliseconds) and lower
throughput both on single and multiple nodes compared to Spark. Note that in
Storm architecture, throughput can be improved by adding more worker nodes
to allow more degree of parallelism. Spark micro-batch processing delivers high



8

throughput with high latency penalty (second). In our experiments, Spark had
better throughput compared to Storm (15 times on single worker node and 4 times
on multiple worker nodes with 4 executors on each node) but Storm delivered
better latency over Spark.

In our future work, we plan to investigate the impact of configuring different
number of tasks, which in these experiments was not explicitly defined, rather
it was left to engine to select them. Second, we would like to explore the impact
of data locality on performance. We would also like to consider the impact of
the maximum tuples that a spout will allow to be processed in the topology on
engine performance.

References

1. Bedini, I., Sakr, S., Theeten, B., Sala, A., Cogan, P.: Modeling perfor-
mance of a parallel streaming engine: Bridging theory and costs. In: Pro-
ceedings of the 4th ACM/SPEC International Conference on Performance
Engineering. pp. 173–184. ICPE ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2479871.2479895

2. Casale, G., Ustinova, T.: State of the art analysis (2015)
3. Lohrmann, B., Janacik, P., Kao, O.: Elastic stream processing with latency guar-

antees (2015)
4. Lohrmann, B., Warneke, D., Kao, O.: Nephele streaming: stream process-

ing under qos constraints at scale. Cluster Computing 17(1), 61–78 (2014),
http://dx.doi.org/10.1007/s10586-013-0281-8

5. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed stream comput-
ing platform. In: Data Mining Workshops (ICDMW), 2010 IEEE International
Conference on. pp. 170–177 (Dec 2010)

6. da Silva Morais, T.: Survey on frameworks for distributed computing: Hadoop,
spark and storm (2015)

7. Theeten, B., Bedini, I., Cogan, P., Sala, A., Cucinotta, T.: Towards the opti-
mization of a parallel streaming engine for telco applications. Bell Labs Technical
Journal 18(4), 181–197 (2014)

8. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S.,
Jackson, J., Gade, K., Fu, M., Donham, J., et al.: Storm@ twitter. In: Proceedings
of the 2014 ACM SIGMOD international conference on Management of data. pp.
147–156. ACM (2014)

9. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation. pp. 2–2. USENIX
Association (2012)

10. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
Fault-tolerant streaming computation at scale. In: Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. pp. 423–438. ACM
(2013)


