SCISPACE

formerly Typeset

〇 Open access • Journal Article • DOI:10.1111/CEA. 13113

Influence of peanut matrix on stability of allergens in gastric-simulated digesta : 2S albumins are main contributors to the IgE reactivity of short digestion-resistant

peptides - Source link $\quad \square$
Ivana Prodic, Dragana Stanic-Vucinic, Danijela Apostolovic, Jelena Mihailovic ...+8 more authors
Institutions: University of Belgrade, Karolinska Institutet, Ghent University
Published on: 01 Jun 2018 - Clinical \& Experimental Allergy (Clin Exp Allergy)

Related papers:

- Heat processing of peanut seed enhances the sensitization potential of the major peanut allergen Ara h 6
- Digestion of peanut allergens Ara h 1, Ara h 2, Ara h 3, and Ara h 6: a comparative in vitro study and partial characterization of digestion-resistant peptides.
- A standardised static in vitro digestion method suitable for food - an international consensus
- Peanut digestome: Identification of digestion resistant IgE binding peptides
- IgE cross-reactivity between the major peanut allergen Ara h 2 and the nonhomologous allergens Arah 1 and Ara h 3

Share this paper: 9 in \square
View more about this paper here: https://typeset.io/papers/influence-of-peanut-matrix-on-stability-of-allergens-in4fhejj7zur

Supplementary data for the article:

Prodic, I.; Stanic-Vucinic, D.; Apostolovic, D.; Mihailovic, J.; Radibratovic, M.; Radosavljevic, J.; Burazer, L.; Milcic, M.; Smiljanic, K.; van Hage, M.; et al. Influence of Peanut Matrix on Stability of Allergens in Gastric-Simulated Digesta: 2S Albumins Are Main Contributors to the IgE Reactivity of Short Digestion-Resistant Peptides. Clinical and Experimental Allergy 2018, 48 (6), 731-740. https://doi.org/10.1111/cea. 13113

Supporting Information

Influence of peanut matrix on stability of allergens in gastric-simulated digesta: 2 S albumins are main contributors to the IgE-reactivity of short digestion resistant peptides

Ivana Prodic ${ }^{\# 1}$, Dragana Stanic-Vucinic ${ }^{\# 2,3}$, Danijela Apostolovic ${ }^{4}$, Jelena Mihailovic ${ }^{2}$, Milica Radibratovic ${ }^{5}$, Jelena Radosavljevic ${ }^{2}$, Lidija Burazer ${ }^{6}$, Milos Milcic ${ }^{7,8}$, Katarina Smiljanic ${ }^{2}$, Marianne van Hage ${ }^{4}$ and Tanja Cirkovic Velickovic*2,8,9

Affiliations: : ${ }^{l}$ University of Belgrade - Faculty of Chemistry, Innovation Centre Ltd., Serbia; ${ }^{2}$ University of Belgrade - Faculty of Chemistry, Centre of Excellence for Molecular Food Sciences, Serbia; ${ }^{3}$ University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Serbia; ${ }^{4}$ Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden; ${ }^{5}$ Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, University of Belgrade, Serbia; ${ }^{6}$ Institute of Immunology, Virology and Sera Production, Torlak - Department of Allergy, Belgrade, Serbia, ${ }^{7}$ University of Belgrade - Faculty of Chemistry, Department of Inorganic Chemistry, Serbia; ${ }^{8}$ Ghent University Global Campus, Yeonsu-gu, Incheon, South Korea; ${ }^{9}$ Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

Running Title: Gastric digesta of peanut reveals the highest IgE reactivity to 2 S albumin peptides.
\#equally contributing authors

*Correspondence:

Professor Tanja Cirkovic Velickovic, PhD

Ghent University Global Campus, Yeonsu-gu, Incheon
Department of Environmental Technology, Food Technology and Molecular Biotechnology Songdomunhwa-Ro 119, \#114 (1F), 201985 Yeonsu-Gu, South Korea

E-mail: Tanja.Velickovic@ghent.ac.kr, tcirkov@chem.bg.ac.rs,

[^0]
Methods

Materials

α-Amylase from human saliva (EC 3.2.1.1; A0521-500 UN; Type IX-A, lyophilized powder $1000-3000 \mathrm{U} / \mathrm{mg}$ protein) and porcine pepsin from gastric mucosa (EC 3.4.23.1; P6887-1G, lyophilized powder 3200-4500 U/mg protein) were purchased from Sigma-Aldrich (St. Louis, MO, USA). The enzyme activities were measured according to the assays detailed by Minekus et al. [1]. Chemicals for gel electrophoresis as Tris(Hydroxymethyl)aminomethane (Tris), glycine, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), urea, thiourea, dithiotritol (DTT), dimethylformamide, acrylamide, bis-acrylamide, trichloroacetic acid (TCA), Coomassie Brilliant Blue R-250 (CBB), and iodoacetamide (IAA), sequencing grade trypsin, formic acid, and acetonitrile of HPLC grade were also purchased from Sigma-Aldrich. Ampholytes and immobilised pH gradient (IPG) strips were supplied by GE Healthcare (Uppsala, Sweden). All other chemicals were of the analytical reagent grade, and Milli-Q water ($18 \mathrm{M} \Omega \mathrm{cm}$ at $25^{\circ} \mathrm{C}$) was used (Millipore, Bedford, MA, USA) in all the experiments.

Simulated oral and gastric in vitro digestion conditions

Oral phase: Solid milled peanut (0.4 g) was mixed with $320 \mu \mathrm{~L}$ SSF stock solution. Human salivary α-amylase ($40 \mu \mathrm{~L}, 1500 \mathrm{U} / \mathrm{mL}$ in water) was added to achieve a final concentration of $75 \mathrm{U} / \mathrm{mL}$ in the digestion mixture, followed by addition of $\mathrm{CaCl}_{2}(40 \mu \mathrm{~L}, 15 \mathrm{mM})$ to achieve final concentration of 0.75 mM . The reaction mixture was incubated for 2 minutes at $37{ }^{\circ} \mathrm{C}$ with agitation. All reagents were previously pre-warmed at $37{ }^{\circ} \mathrm{C}$ for 5 minutes. Controls without peanut (solid peanut replaced by sand) and controls without amylase (amylase replaced by water) were also included.

Gastric phase: Complete oral phase material was mixed with $400 \mu \mathrm{~L}$ of SGF stock solution and $8 \mu \mathrm{~L}$ of $\mathrm{CaCl}_{2}(15 \mathrm{mM})$ to achieve a final concentration of $75 \mu \mathrm{M}$ in the digestion mixture. Porcine pepsin ($320 \mu \mathrm{~L} ; 10,000 \mathrm{U} / \mathrm{mL} 10 \mathrm{mM} \mathrm{HCl}$) was added, to achieve a final concentration of $2000 \mathrm{U} / \mathrm{mL}$ in the digestion mixture. The mixture was adjusted to pH 3 with 1 M HCl , then water was added, such that the final volume of reaction mixture was $1600 \mu \mathrm{~L}$. The reaction mixture was incubated for 120 minutes at $37{ }^{\circ} \mathrm{C}$ with intense agitation (600 rpm). Control samples were run in parallel: pepsin control (oral bolus without amylase with addition of $160 \mu \mathrm{~L} 10 \mathrm{mM} \mathrm{HCl}$ instead of pepsin solution) at 0 (P 0) and 120 (P 120), and
peanut control (with 0.4 mL of SSF stock solution and 0.4 g of sand instead of oral bolus) at $120^{`}(\mathrm{C} 120)$. Digestion was stopped by addition of $200 \mu \mathrm{~L} 1 \mathrm{M} \mathrm{NaHCO} 3$ to change the pH of the final reaction mixture to 8 . The samples were centrifuged at $10,000 g$ for 20 minutes; the liquid phase was separated from solid material and immediately frozen at $-20^{\circ} \mathrm{C}$. Protein concentration was determined using BCA assay (Thermo Fisher Scientific Inc., Bremen, Germany) after diluting the liquid phase of digestion mixtures 20 times in phosphate buffered saline (PBS).

Identification of digested peanut proteins

Identification of peanut proteins was performed by PEAKS Studio 8.5 (Bioinformatics Solutions Inc., Canada). Signature MS/MS spectra were searched using PEAKS DB algorithm against a hybrid database consisting of a UniprotKB/Swiss-Prot (reviewed only) peanut (Arachis hypogaea) database (downloaded on 14/08/2017 from http://www.uniprot.org/) and cRAP (The common Repository of Adventitious Proteins) database (downloaded on 18/01/2017 from http://www.thegpm.org/crap/). The following modifications were taken into account as variables: oxidation (Met), deamidation (Gln, Asn), and hydroxylation (Pro), while carbamidomethylation (Cys) was set as fixed. Up to 2 missed cleavages with non-specific cleavage at both ends of a peptide were allowed. Mass tolerances were set to $\pm 10 \mathrm{ppm}$ for parent ions and $\pm 0.5 \mathrm{Da}$ for fragment ions. Protein filters were as follows set to a one unique peptide and -10logP of value 20. Peptide filters were as follows: input of $-10 \log P$ for Peptide-Spectrum Matches (PSM) was the lowest values securing less than 0.5% of resulting peptide sequence FDR and 0% FDR at protein level and de novo ALC Score $\geq 80 \%$.

1D SDS-PAGE was performed on a 14% gels according to Laemmli method [2], stained with CBB. Dried TCA/acetone protein pellets from liquid portion of gastric-simulated digesta were re-suspended in Laemmli sample buffer (reducing and non-reducing conditions). Isoelectrofocusing and 2D SDS-PAGE were done as per method of Apostolovic et al. [3]. Briefly, dried TCA/acetone pellets were re-suspended in isoelectrofocusing rehydration buffer (8 M Urea, 2% CHAPS, 0.5% IPG buffer $3-10 \mathrm{NL}$, 50 mM DTT, and 0.002% bromophenol blue). Protein samples ($250 \mu \mathrm{~g}$) were applied on 13 cm ; $\mathrm{pH} 3-10$, nonlinear IPG strips (GE Healthcare, Uppsala, Sweden). Isoelectrofocusing was done with Ettan IPGphor system (GE Healthcare) and strips were reduced with DTT, and alkylated with IAA according to the method of Apostolovic et al. [3]. The second dimension was carried out on 14% gels, and protein spots were visualized with colloidal CBB staining. The 2D gels were
scanned with Typhoon FLA 7000 (GE Healthcare) and spots were quantified and matched with Image Master 2D Platinum software v7.0 (GE Healthcare).

Separation of SDRPs obtained after gastric-simulated digestion and their analyses with Orbitrap shotgun peptidomics identification

Ethanol (2.4 mL) was added to $800 \mu \mathrm{~L}$ of liquid phase separated from the digestion mixture and incubated at $4{ }^{\circ} \mathrm{C}$ for 20 hours. After centrifugation at $4^{\circ} \mathrm{C}$ and $12,000 g$ for 10 minutes, the supernatant containing the released SDRPs was separated and dried in a vacuum concentrator in low binding tubes. The dried peptides were dissolved in $500 \mu \mathrm{~L}$ of 10 mM HCl and subjected to size-exclusion chromatography. The Sephadex G25 column $(0.8 \times 30$ cm) was equilibrated, and the separation was carried out with 10 mM HCl at a flow rate of 5 mL / h at room temperature. Fractions of $500 \mu \mathrm{~L}$ were collected, and the separation was monitored by ultraviolet absorption at $214 \mathrm{~nm}, 280 \mathrm{~nm}$, and 220 nm (Figure S1). To minimize low molecular mass species other than peptides (such as polyphenols), fractions with highest absorbance values at 214 nm and lowest absorbance values at 280 and 340 nm (fractions 8-20 Figure S1) were pooled, and were analysed by electrophoresis and immunoblotting with Ara h 2 antibodies to confirm the absence of intact allergens. They were then divided into two parts. One part was concentrated 4 times on SpeedVac (Eppendorf, Hamburg, Germany) and used for the ImmunoCAP inhibition assay. The second part was evaporated, and then subjected to nLC-MS/MS analysis as intact or pre-treated by reduction, alkylation, and trypsin digestion according to the method of Johnson et al. [4], where reduction time was prolonged to 1.5 hours at $80^{\circ} \mathrm{C}$. The peptides obtained were analysed according to the method reported by Apostolovic et al. [3,5] using LTQ Orbitrap XL mass spectrometer with an EASY- nano liquid chromatography (nLC) II system (Thermo Fisher Scientific Inc., Bremen, Germany), with change in the Orbitrap resolution from 30000 to 60000. Identification of peanut peptides was performed using PEAKS Studio 8.5 (Bioinformatics Solutions Inc., Canada). Signature MS/MS spectra were searched using PEAKS DB algorithm against a hybrid database consisting of a UniprotKB/Swiss-Prot (reviewed only) peanut (Arachis hypogaea) database (downloaded on 14/08/2017 from http://www.uniprot.org/) and cRAP (The common Repository of Adventitious Proteins) database (downloaded on 18/01/2017 from http://www.thegpm.org/crap/). The following modifications were taken into account as variables: oxidation (Met), deamidation (Gln, Asn), and hydroxylation (Pro), while carbamidomethylation (Cys) was set as fixed. Up to 2 missed cleavages with non-specific cleavage at both ends of a peptide were allowed. Mass tolerances
were set to $\pm 10 \mathrm{ppm}$ for parent ions and $\pm 0.8 \mathrm{Da}$ for fragment ions. Protein filters were as follows set to a one unique peptide and - 10logP of value 20. Peptide filters were as follows: input of -10logP for Peptide-Spectrum Matches PSM was the lowest values securing less than 0.5% of resulting peptide sequence FDR and 0% FDR at protein level and de novo ALC Score $\geq 80 \%$. Identified peptides were searched in the IEDB database (Immuno Epitope Database and Analysis, http://www.iedb.org) in order to find sequences overlapping with characterized epitopes. The following IEDB search parameters were applied: linear sequence for epitope structure, substring for BLAST option, and human as host.

IgE-binding properties of peanut digests

ELISA inhibition. The IgE-binding properties of the liquid phase from the digestion mixtures, as well as standard defatted peanut extracts were analysed using an inhibition ELISA. Standard defatted raw peanut extract was prepared according to the method reported by Radosavljevic et al. [6]. Half-area microtiter plates (96 wells, Greiner bio-one, Frickenhausen, Germany) were coated with $50 \mu \mathrm{~L}$ per well of $10 \mu \mathrm{~g} / \mathrm{mL}$ with defatted peanut extract, and incubated overnight at $4{ }^{\circ} \mathrm{C}$ in coating buffer ($15 \mathrm{mM} \mathrm{Na}_{2} \mathrm{CO}_{3}, 35 \mathrm{mM} \mathrm{NaHCO} 3$ pH 9.6). The remaining binding sites were blocked with 1% BSA in TPBS (20 mM phosphate buffer with $0.9 \% \mathrm{NaCl} \mathrm{pH} 7.4$ containing 0.05% of Tween $20(\mathrm{w} / \mathrm{v})$), for 1 hour at $37{ }^{\circ} \mathrm{C}$. Serum pooled from 10 peanut sensitised patients (patient \#1-10, Table S3) was prepared by following the EMEA Note for Guidance on Allergen Products (EMEA/CHMP/BWP/304831/2007). Samples (defatted raw peanut extract, defatted liquid phase of control and digested peanut) were diluted 2 -fold with 1% BSA in tPBS (concentration range $10-0.04 \mu \mathrm{~g} / \mathrm{mL}$). Samples were pre-incubated $1: 1$ with the serum pool (final dilution of serum pool was 30 -fold in blocking buffer) for 1 hour at $37^{\circ} \mathrm{C}$ before their addition on the plate for incubation of 1 hour at $37{ }^{\circ} \mathrm{C}$. Detection of bound IgE was performed with $50 \mu \mathrm{~L}$ mouse-anti-human IgE monoclonal antibody (2000 times diluted in TPBS containing 1% BSA; Abcam, Cambridge, UK) conjugated to horseradish peroxidase. Finally, staining was performed by enzymatic conversion of $3,3^{\prime}, 5$, 5^{\prime}-tetramethylbenzidine (Biolegend, San Diego, CA, USA). Inhibition of IgE-binding was calculated as [${\left(O D_{n o} \text { inhibitor }\right.}^{\text {a }}$ $\left.-\mathrm{OD}_{\text {inhibitor }}\right) / \mathrm{OD}$ no inhibitor $\times 100$, and the concentration needed to inhibit 50% of this signal was calculated $\left(\mathrm{IC}_{50}\right)$. The results were analysed using GraphPad Prism6 (La Jolla, CA, USA).

ImmunoCAP inhibition. IgE-binding of the SDRPs fraction of digested peanut was determined using ImmunoCAP inhibition (ImmunoCAP System, Phadia/Thermo Fisher Scientific, Uppsala, Sweden). Seven undiluted individual sera ($200 \mu \mathrm{~L}$; patients \#1-7 Table S2) were pre-incubated with $200 \mu \mathrm{~L}$ peptides prior to the measurement for allergen-specific IgE to: peanut (f13), Ara h 1 (f422), Ara h 2 (f423) and Ara h 3 (f424). Applied peptides are released from about 3.3 mg of milled peanut e.g. released from about $800 \mu \mathrm{~g}$ of peanut proteins extracted to liquid phase during digestion. The inhibition of IgE-binding was expressed as percentage based on non-inhibited serum, using the following formula: \% IgE inhibition $=100-(\operatorname{IgE}$ binding to the solid surface in the presence of the inhibitor/IgE binding to the solid surface) $\times 100$).

Immunoblotting. After TCA precipitation, samples were resuspended in 2\% SDS. 1D electrophoresis was carried out on a 14% gel. The samples ($25 \mu \mathrm{~g}$) were loaded in the well. Proteins were separated on 1-DE and transferred onto nitrocellulose membranes with $0.2 \mu \mathrm{~m}$ pore size (Bio-Rad, Solna, Sweden). Ponceau S staining was used to verify success of the transfer. The membranes were blocked with 2% BSA in PBS pH 7.4 containing 0.05% Tween 20 (TPBS) for 1 hour at room temperature (RT). Subsequently, membrane was incubated overnight at $4{ }^{\circ} \mathrm{C}$ with 1:10 diluted serum pool from patients with proven peanut allergy. The serum pool consisted of sera of seven peanut sensitised patients (\#4-10 Table S3; range and mean of total peanut-specific IgE: 11-415 kU/L and $146 \mathrm{kU} / \mathrm{L}$, respectively; range and mean of Ara h 2-specific IgE: 5-192 kUA/L and $61 \mathrm{kUA} / \mathrm{L}$, respectively). The secondary antibody, anti-human IgE produced in rabbit (Miab, Uppsala, Sweden), was diluted 1:2000 and incubated for 1 hour at RT. Tertiary antibody, AP-labelled goat anti-rabbit IgG (Jackson ImmunoResearch, West Grove, PA, USA), diluted 1:2000, was added to the strips and incubated for 1 hour at RT. The binding patterns were visualized with a substrate solution consisting of 1.5 mg BCIP and 3 mg NBT in 10 mL of 100 mM Tris, containing 150 mM NaCl , and $5 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 9.6$.

Circular Dichroism (CD) Spectroscopy

CD spectroscopy was performed on control and digested samples after re-solubilization of TCA/acetone pellet in 2% SDS. Samples were diluted in 10 mM sodium phosphate buffer (pH 7.4) to achieve final concentrations of $1 \mathrm{mg} / \mathrm{mL}$ for far-UV CD (SDS concentration was < 0.2 \%). Far UV CD spectra were recorded using a Jasco J-815 spectrophotometer (Japan Spectroscopic Co. Ltd., Tokyo, Japan) at RT.

De novo modelling and molecular graphics
The sequences of Ara h 1, Ara h 2, Ara h 3 and Ara h 6 were obtained from UniProt (www.uniprot.org, identifiers P43238, Q6PSU2-2, B5TYU1 and A5Z1R0, respectively). For Ara h 6 structure PDB code 1W2Q, model \#1 was used. The missing regions in the Ara h 1, Ara h 2.01 and Ara h 3 partial crystal structures (PDB code 3SMH, 3OB4 and 3C3V, respectively) [7] were built using Rosetta all-atom de-novo loop modelling. After clustering of 10,000 modelled structures (per protein) by structural similarity, the lowest energy models of the most populated cluster were chosen (Figures 2 and 5). Molecular graphics of Ara h 1, Arah 2, Arah 3 and Ara h 6 3D modelled structures were created using BIOVIA Discovery Studio Visualizer (Dassault Systems BIOVIA, Discovery Studio Modelling Environment, Release 2017, S. Diego; http://accelrys.com/products/discovery-studio/).

Supporting Tables

Table S1. Summary of published data on major peanut allergens digestibility by in vitro simulated gastric digestion.

Allergen	$\begin{aligned} & \text { Size } \\ & (\mathrm{kDa}) \end{aligned}$	Pepsin : allergen ratio (w/w) (in final reaction mixture)	Enzyme activity unit/mg allergen (in final digestion mixture)	pH	Peanut extract/ purified protein	$\begin{gathered} \text { Digestion } \\ \text { time } \\ \text { [min.] } \end{gathered}$	Protein stability [min.]	Peptide fragment (kDa)	Ref.
Ara h 1,Cupin (Vicilin type,7S globulin)	64	nd	170	2.5	PP	120	< 10	<4	[8]
		0.025	80	2.1	PP		1	<20	[9]
		0.05	162	2.5	PP	120	1	5.5	[10]
		12.8	nd	1.2	PP	120	5	nd	[11]
		3.04	10,000	1.2	PP	60	0.5	nd	[12]
		0.3	1,000	1.2	PP	60	0.5	nd	[12]
		0.03	100	1.2	PP	60	0.5	nd	[12]
		3.04	10,000	1.2	PE	60	0.5	nd	[12]
		0.63	2540	1.2	PE	60	1	nd	[13]
		0.0001	nd	2	PE	1200	30	<35	[14]
Ara h 2, Conglutin (2S albumin)	17	3	10,000	1.2	PP	60	0-2	10	[15]
		3	10,000	2	PP	60	0-30	10	[15]
		19	nd	1.2	PP	60	/	1	[16]
		12.8	nd	1.2	PP	120	0.5	nd	[11]
		3.04	10,000	1.2	PP	60	16	10	[12]
		0.3	1,000	1.2	PP	60	/	1	[12]
		0.03	100	1.2	PP	60	1	1	[12]
		3.04	10,000	1.2	PE	60	16	1	[12]
		0.63	2540	1.2	PE	60	15	nd	[13]
Ara h 3 , Cupin (Legumintype, 11S globulin, Glycinin)	60	3.04	10,000	1.2	PP	60	0.25	nd	[12]
		0.3	1,000	1.2	PP	60	0.25	nd	[12]
		0.03	100	1.2	PP	60	0.25	nd	[12]
		0.002	nd	2	PP	120	<2	<14	[17]
		3.04	10,000	1.2	PE	60	0.25	nd	[12]
		0.63	2540	1.2	PE	60	1	nd	[13]
Ara h 6 Conglutin (2S albumin)	15	3.04	10,000	1.2	PP	60	4	10	[12]
		0.3	1,000	1.2	PP	60	16	10	[12]
		0.03	100	1.2	PP	60	/	1	[12]
		3.04	10,000	1.2	PE	60	60	10	[12]
		0.63	2540	1.2	PE	60	15	nd	[13]

PP, peanut protein; PE, peanut extract; nd, not described;

Table S2. Stock solutions preparation for simulated digestive fluids.

Constituent	Concentration in SSF stock solution	Final concentration in oral phase reaction mixture	Concentration in SGF stock solution	Final concentration in gastric phase reaction mixture
KCl	15.1 mM	6.04 mM	6.9 mM	6.67 mM
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	3.7 mM	1.48 mM	0.9 mM	1.19 mM
NaHCO_{3}	13.6 mM	5.44 mM	25 mM	15.22 mM
$\mathrm{NaCl}^{\mathrm{MgCl}_{2}}$	-	-	47.2 mM	23.6 mM
$\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$	0.15 mM	0.06 mM	0.1 mM	0.08 mM
$\left(\mathrm{NH}_{4}\right) \mathrm{CO}_{3}$	0.06 mM	0.024 mM	0.5 mM	0.263 mM
HCl	1.1 mM	0.44 mM	240 mM	122.45 mM
pH	7.05	6.68 ± 0.12	3.00	2.91 ± 0.18

Table S3. IgE levels of peanut sensitized patients determined by ImmunoCAP

Patient's ID	Whole peanut extract	rAra h 1	rAra h 2	rAra h 3
	$\mathrm{kU}_{\mathrm{A}} / \mathrm{L}$			
1	415	96	192	52
2	11	<0.10	5	<0.10
3	65	12.40	36	6.40
4	48	14	20	2.60
5	34	2.60	24	0.66
6	152	2.40	78	<0.20
7	218	92	68	34
8	225	66	63	3.90
9	23	0.19	0.24	0.58
10	11	3.20	0.14	<0.10

Table S4 is provided separately as pdf file. It contains identification results of proteins and their fragments from spots and bands of standard peanut extract (SPE), control peanut (CPS) and digested peanut samples (DPS) from Figs. 1, 3 and 2 S achieved by tandem bottom up proteomics on Orbitrap LTQ hybrid and PEAKS Suite 8.5 softwares

Table S5. Sequences of intact SDRPs from Ara h 3 (18) and Ara h 1 (27), found after in vitro oral-gastric digestion of whole kernels peanut, matching with Ara h 3 and Ara h 1 epitopes reported in IEDB. The SDRPs fraction was analyzed by mass spectrometry as intact. Epitopes found in identified peptides are bolded and reported with their ID.

Peptide No.	Peptide sequence	Allergen accession no	Epitope ID	Epitope sequence IEDB	Reference
1	LKNNNPFKF	Ara h 3 (A1DZF0, Q6IWG5, Q0GM57)	106026	QARQLKNNNPFKFFV	[18]
1	LKNNNPFKF		106042	QLKNNNPFKFFVPPS	[18]
2	RQLKNNNPFKF	$\begin{gathered} \text { Ara h } 3 \\ \text { (A1DZF0, } \\ \text { Q6IWG5, } \\ \text { Q0GM57) } \end{gathered}$	106026	QARQLKNNNPFKFFV	[18]
3	SYGLPRE	$\begin{gathered} \text { Ara h } 3 \\ \text { (A1DZF0) } \\ \hline \end{gathered}$	105678	ANSYGLPREQARQLK	[18]
4	IAVPTGVAF	$\begin{gathered} \text { Ara h } 3 \\ \text { (A1DZF0, } \\ \text { Q6IWG5, } \\ \text { Q0GM57) } \end{gathered}$	99266	GDLIAVPTGVAFWLY	[19]
4	IAVPTGVAF		99325	IAVPTGVAFWLYNDH	[19]
5	IAVPTGVA	Ara h 3 (A1DZF0, Q6IWG5, Q0GM57)	53687	RFDEGDLIAVPTGVA	[6]
5	IAVPTGVA		99266	GDLIAVPTGVAFWLY	[19]
5	IAVPTGVA		99325	IAVPTGVAFWLYNDH	[19]
6	RILSPDRK	$\begin{gathered} \text { Ara h } 3 \\ \text { (A1DZF0) } \end{gathered}$	71559	VTVRGGLRILSPDRK	[20]; [6]
6	RILSPDRK		99738	TVRGGLRILSPDRKR	[18]; [19]
6	RILSPDRK		70725	VRGGLRILSPDRKRR	[6]
6	RILSPDRK		99277	GGLRILSPDRKRRAD	[19]
6	RILSPDRK		105826	GGLRILSPDRKRRQQ	[18]
6	RILSPDRK		106076	RILSPDRKRRQQYER	[18]
7	KKNIGRNRSPDIYNPQAG	$\begin{gathered} \text { Ara h } 3 \\ \text { (A1DZF0) } \end{gathered}$	31642	KKNIGRNRSPDIYNP	[18]; [19]; [6]
7	KKNIGRNRSPDIYNPQAG		99331	IGRNRSPDIYNPQAG	[18]; [19]; [6]
8	RSPDIYNPQAGSL	$\begin{gathered} \text { Ara h } 3 \\ \text { (A1DZF0) } \end{gathered}$	99513	NRSPDIYNPQAGSLK	[18]; [19]
9	SPDIYNPQAGSL	$\begin{gathered} \text { Ara h } 3 \\ \text { (A1DZF0) } \end{gathered}$	99513	NRSPDIYNPQAGSLK	[18]; [19]
10	LRGRAHVQVVD	$\begin{gathered} \text { Ara h } 3 \\ \text { (A1DZF0) } \end{gathered}$	99363	IYRLRGRAHVQVVDS	[19]
10	LRGRAHVQVVD		99447	LRGRAHVQVVDSNGN	[19]
11	LRGRAHVQVVDSNG	Ara h 3 (A1n7م)	99447	LRGRAHVQVVDSNGN	[19]
12	ARQLKNNNPFKF	Ara $h 3$ (Arwict	106026	QARQLKNNNPFKFFV	[18]
13	NGRAHVQVVDSNGNRVY	Ara h 3	99597	RAHVQVVDSNGNRVY	[19]
14	NGRAHVQVVDSNGNRVY	Ara $h 3$ cocturn 5	99597	RAHVQVVDSNGNRVY	[19]
15	RAHVQVVDSNG	Ara h 3 caunzen	99597	RAHVQVVDSNGNRVY	[19]
15	RAHVQVVDSNG	Ara h 3	99447	LRGRAHVQVVDSNGN	[19]
16	LQEGHVL	Ara h 3 (A1DZF0, Q6IWG5,	99141	DEELQEGHVLVVPQN	[19]
16	LQEGHVL		99440	LQEGHVLVVPQNFAV	[19]
17	GHVLVVPQNF	$\begin{gathered} \text { Ara h 3 } \\ \text { (A1DZF0, } \\ \text { Q6IWG5, } \end{gathered}$	99280	GHVLVVPQNFAVAGK	[19]
17	GHVLVVPQNF		99440	LQEGHVLVVPQNFAV	[19]
18	HVLVVPQNF	Ara h 3 (A1DZF0, Q6IWG5,	99280	GHVLVVPQNFAVAGK	[19]
18	HVLVVPQNF		99440	LQEGHVLVVPQNFAV	[19]
19	VLPKHADADNIL	Ara h 1	100389	PNTLVLPKHADADNILVIQQ	[21]

19	VLPKHADADNIL	(P43238,	190791	IEAKPNTLVLPKHADADNIL	[22]
20	VLPKHADADNI	$\begin{gathered} \text { Ara h 1 } \\ \text { (P43238, } \\ \text { N1NG13, } \end{gathered}$	100389	PNTLVLPKHADADNILVIQQ	[21]
20	VLPKHADADNI		190791	IEAKPNTLVLPKHADADNIL	[22]
21	VLPKHADADN	$\begin{gathered} \text { Ara h 1 } \\ \text { (P43238, } \\ \text { N1NG13, } \\ \text { Q6PSU3, } \\ \text { D } 13227 \\ \hline \end{gathered}$	99393	KPNTLVLPKHADADN	[19]
21	VLPKHADADN		100389	PNTLVLPKHADADNILVIQQ	[21]
21	VLPKHADADN		190791	IEAKPNTLVLPKHADADNIL	[22]
22	VLPKHADAD	$\begin{gathered} \text { Ara h 1 } \\ \text { (P43238, } \\ \text { N1NG13, } \\ \text { Q6PSU3, } \\ \hline 132727 \\ \hline \end{gathered}$	99393	KPNTLVLPKHADADN	[19]
22	VLPKHADAD		100389	PNTLVLPKHADADNILVIQQ	[21]
22	VLPKHADAD		190791	IEAKPNTLVLPKHADADNIL	[22]
23	PKHADADNIL	$\begin{gathered} \text { Arah 1 } \\ \text { (P43238, } \\ \text { N1NG13, } \\ \text { Q6PSU3, } \\ \text { P43237, } \\ \text { B3IXL2) } \end{gathered}$	100389	PNTLVLPKHADADNILVIQQ	[21]
23	PKHADADNIL		190791	IEAKPNTLVLPKHADADNIL	[22]
23	PKHADADNIL		190849	LPKHADADNILVIQQGQATV	[22]
23	PKHADADNIL		523624	PKHADADNILVIQQGQATVTVANG	[23]
24	PKHADADNILVI	$\begin{gathered} \text { Ara h 1 } \\ \text { (P43238, } \\ \text { N1NG13, } \\ \text { Q6PSU3, } \\ \text { D } 137277 \end{gathered}$	190849	LPKHADADNILVIQQGQATV	[22]
24	PKHADADNILVI		523624	PKHADADNILVIQQGQATVTVANG	[23]
24	PKHADADNILVI		100389	PNTLVLPKHADADNILVIQQ	[21]
25	SFNLDEGHA	Ara 1 (P43238, N1NG13, Q6PSU3, D13227	99616	RKSFNLDEGHALRIP	[19]; [24]
25	SFNLDEGHA		190952	RKSFNLDEGHALRIPSGFIS	[22]
25	SFNLDEGHA		191006	TVTVANGNNRKSFNLDEGHA	[22]
26	LRIPSGF	$\begin{gathered} \text { Ara h 1 } \\ \text { (P43238, } \\ \text { N1NG13, } \\ \text { Q6PSU3, } \\ \text { P43237, } \\ \text { B3IXL2) } \end{gathered}$	99142	DEGHALRIPSGFISY	[19]
26	LRIPSGF		99312	HALRIPSGFISYILN	[19]
26	LRIPSGF		100063	GHALRIPSGFISYILNRHDN	[21]
26	LRIPSGF		190781	HALRIPSGFISYILNRHDNQ	[22]
26	LRIPSGF		190952	RKSFNLDEGHALRIPSGFIS	[22]
27	LRIPSGFI	Ara h 1 (P43238, N1NG13, Q6PSU3, P43237, B3IXL2)	99142	DEGHALRIPSGFISY	[19]
27	LRIPSGFI		99312	HALRIPSGFISYILN	[19]
27	LRIPSGFI		100063	GHALRIPSGFISYILNRHDN	[21]
27	LRIPSGFI		190781	HALRIPSGFISYILNRHDNQ	[22]
27	LRIPSGFI		190952	RKSFNLDEGHALRIPSGFIS	[22]
28	ILNRHDNQNL	$\begin{gathered} \text { Ara h 1 } \\ \text { (P43238, } \\ \text { N1NG13, } \end{gathered}$	100169	ISYILNRHDNQNLRVAKISM	[22]; [21]
28	ILNRHDNQNL		99355	ISYILNRHDNQNLRV	[19]; [24]
29	RVAKISM	$\begin{gathered} \text { Ara h } 1 \\ \text { (P43238, } \\ \text { N1NG13, } \\ \text { Q6PSU3, } \\ \text { P43237, } \\ \text { B3IXL2) } \end{gathered}$	100169	ISYILNRHDNQNLRVAKISM	[22]; [21]
29	RVAKISM		99511	NQNLRVAKISMPVN	[19];[24]; [25]
29	RVAKISM		100433	QNLRVAKISMPVNTPGQFED	[21]
29	RVAKISM		190882	NQNLRVAKISMPVNTPGQFE	[22]
30	AKISMPVNTPGQF	$\begin{gathered} \text { Arah 1 } \\ \text { (P43238, } \\ \text { N1NG13, } \\ \text { Q6PSU3, } \\ \text { P43237, } \\ \text { B3IXL2) } \\ \hline \end{gathered}$	100433	QNLRVAKISMPVNTPGQFED	[21]
30	AKISMPVNTPGQF		190882	NQNLRVAKISMPVNTPGQFE	[22]
30	AKISMPVNTPGQF		434773	$\begin{gathered} \text { VAKISMPVNTPGQFEDFFPASSR + } \\ \text { NMMン2) } \end{gathered}$	[26]
30	AKISMPVNTPGQF			VAKISMPVNTPGQFEDFFPASSR	[26]
31	VVVNKGTGNLE	$\begin{gathered} \text { Ara h 1 } \\ \text { (P43238, } \\ \text { N1NG13, } \\ \text { Q6PSU3, } \\ \text { P43237, } \\ \text { B3IXL2) } \\ \hline \end{gathered}$	98841	KAMVIVVVNKGTGNLELVAV	$\begin{gathered} {[27] ;[21] ;} \\ \text { nel } \end{gathered}$
31	VVVNKGTGNLE		148699	NSKAMVIVVVNKGTGNLELV	[29]
31	VVVNKGTGNLE		190708	AMVIVVVNKGTGNLELVAV	[22]
31	VVVNKGTGNLE		523259	NSKAMVIVVVNKGTGNLELVAVRK	[23]
32	VKVSKEHVEE	Ara h 1	98910	NEGVIVKVSKEHVEE	$\begin{gathered} {[19] ;[30] ;} \\ \\ \hline \end{gathered}$

32	VKVSKEHVEE	(P43238,N1NG13)	99757	VIVKVSKEHVEELTK	[19]
32	VKVSKEHVEE		100323	NEGVIVKVSKEHVEELTKHA	$[21] ;[22] ;$
32	VKVSKEHVEE		106968	VKVSKEHVEELTKHAKSVSK	[31]
33	SEEEGDITNPINL	$\begin{gathered} \text { Ara h 1 } \\ \text { (Q6PSU3, } \\ \text { P43237, } \\ \hline \end{gathered}$	99657	SEEEGDITNPINLRE	[19]
33	SEEEGDITNPINL		190971	SEEEGDITNPINLREGEPDL	[22]
34	LAGDKDNVIDQI	Ara h 1 (P43238, N1NG13, Q6PSU3, D42027	100137	IFLAGDKDNVIDQIEKQAKD	[22]; [21]
34	LAGDKDNVIDQI		434746	IFLAGDKDNVIDQIEK + MCM(K7)	[26]
34	LAGDKDNVIDQI		434747	IFLAGDKDNVIDQIEK	[26]
35	LAGDKDNVIDQ	Ara h 1 (P43238, N1NG13, Q6PSU3, D12027	100137	IFLAGDKDNVIDQIEKQAKD	[22]; [21]
35	LAGDKDNVIDQ		434746	IFLAGDKDNVIDQIEK + MCM(K7)	[26]
35	LAGDKDNVIDQ		434747	IFLAGDKDNVIDQIEK	[26]
36	IVVVNKGTGNLEL	Ara h 1(P43238,N1NG13,Q6PSU3,P43237,B3IXL2)	98841	KAMVIVVVNKGTGNLELVAV	$\begin{gathered} {[27] ;[21] ;} \\ \text { nel } \end{gathered}$
36	IVVVNKGTGNLEL		148699	NSKAMVIVVVNKGTGNLELV	[29]
36	IVVVNKGTGNLEL		190708	AMVIVVVNKGTGNLELVAV	[22]
36	IVVVNKGTGNLEL		523259	NSKAMVIVVVNKGTGNLELVAVRK	[23]
37	IVVVNKGTGNL	$\begin{gathered} \text { Ara h 1 } \\ \text { (P43238, } \\ \text { N1NG13, } \\ \text { Q6PSU3, } \\ \text { P43237, } \\ \text { B3IXL2) } \end{gathered}$	98841	KAMVIVVVNKGTGNLELVAV	$\begin{gathered} {[27] ;[21] ;} \\ \text { nel } \end{gathered}$
37	IVVVNKGTGNL		148699	NSKAMVIVVVNKGTGNLELV	[29]
37	IVVVNKGTGNL		190708	AMVIVVVNKGTGNLELVAV	[22]
37	IVVVNKGTGNL		523259	NSKAMVIVVVNKGTGNLELVAVRK	[23]
37	IVVVNKGTGNL		99364	KAMVIVVVNKGTGNL	[24]; [19]
38	IVKVSKE	$\begin{gathered} \text { Ara h 1 } \\ \text { (P43238, } \\ \text { N1NG13, } \\ \text { Q6PSU3, } \\ \text { P43237, } \\ \text { B3IXL2) } \end{gathered}$	98910	NEGVIVKVSKEHVEE	$\begin{gathered} {[19] ;[30] ;} \\ 217 \end{gathered}$
38	IVKVSKE		100323	NEGVIVKVSKEHVEELTKHA	$\begin{gathered} {[21] ;[22] ;} \\ 1211 \end{gathered}$
38	IVKVSKE		99757	VIVKVSKEHVEELTK	[19]
38	IVKVSKE		190967	RWSTRSSENNEGVIVKVSKE	[22]
38	IVKVSKE		191030	WSTRSSENNEGVIVKVSKE	[22]
39	IMPAAHPVAINA	Ara $h 1$ (P43238, N1NG13, Q6PSU3, D13237	148649	KEGDVFIMPAAHPVAINASS	[22]; [29]
39	IMPAAHPVAINA		99167	DVFIMPAAHPVAINA	[19]
39	IMPAAHPVAINA		190764	GDVFIMPAAHPVAINASS	[22]
40	IMPAAHPVAIN	Ara 1 (P43238, N1NG13, Q6PSU3, D13227	148649	KEGDVFIMPAAHPVAINASS	[22]; [29]
40	IMPAAHPVAIN		99167	DVFIMPAAHPVAINA	[19]
40	IMPAAHPVAIN		190764	GDVFIMPAAHPVAINASS	[22]
41	IMPAAHPVA	Ara h 1 (P43238, N1NG13, Q6PSU3, P43237, B3IXL2)	148649	KEGDVFIMPAAHPVAINASS	[22]; [29]
41	IMPAAHPVA		99167	DVFIMPAAHPVAINA	[19]
41	IMPAAHPVA		190764	GDVFIMPAAHPVAINASS	[22]
41	IMPAAHPVA		98843	KEGDVFIMPAAHPVA	[19]; [30]
41	IMPAAHPVA		540385	EGDVFIMPAAHPVAI	[24]
42	EVKPDKKNPQL	Ara h 1 (P43238, N1NG13, Q6PSU3, P43237, B3IXL2)	99242	FEVKPDKKNPQLQDL	[19]
42	EVKPDKKNPQL		99283	GKLFEVKPDKKNPQL	[19]
42	EVKPDKKNPQL		148695	NNFGKLFEVKPDKKNPQLQD	[29]
42	EVKPDKKNPQL		190745	EVKPDKKNPQLQ	[32]; [22]
42	EVKPDKKNPQL		190750	FEVKPDKKNPQLQDLDMMLT	[22]
42	EVKPDKKNPQL		190877	NNFGKLFEVKPDKKNPQLQ	[22]
42	EVKPDKKNPQL		523002	NNFGRLFEVKPDKKNPQLQDLDMM	[23]
42	EVKPDKKNPQL		540393	EVKPDKKNPQLQDLD	[24]

43	EVKPDKKNPQ	Arah 1 (P43238, N1NG13, Q6PSU3, P43237, B3IXL2)	99242	FEVKPDKKNPQLQDL	[19]
43	EVKPDKKNPQ		99283	GKLFEVKPDKKNPQL	[19]
43	EVKPDKKNPQ		148695	NNFGKLFEVKPDKKNPQLQD	[29]
43	EVKPDKKNPQ		190745	EVKPDKKNPQLQ	[32]; [22]
43	EVKPDKKNPQ		190750	FEVKPDKKNPQLQDLDMMLT	[22]
43	EVKPDKKNPQ		190877	NNFGKLFEVKPDKKNPQLQ	[22]
43	EVKPDKKNPQ		523002	NNFGRLFEVKPDKKNPQLQDLDMM	[23]
43	EVKPDKKNPQ		540393	EVKPDKKNPQLQDLD	[24]
43	EVKPDKKNPQ		190729	DLSNNFGKLFEVKPDKKNPQ	[22]
43	EVKPDKKNPQ		190876	NNFGKLFEVKPDKKNPQ	[22]
44	EEGDITNPINL	Ara $h 1$	99657	SEEEGDITNPINLRE	[19]
44	EEGDITNPINL	N1NG13)	190971	SEEEGDITNPINLREGEPDL	[22]
45	DITNPINL	Ara h 1 (P43238, N1NG13, Q6PSU3, P43237, B3IXL2)	98731	DITNPINLRE	[30]
45	DITNPINL		98732	DITNPINLREGEPDL	[30]
45	DITNPINL		99196	EGDITNPINLREGEP	[19]
45	DITNPINL		99657	SEEEGDITNPINLRE	[19]
45	DITNPINL		190971	SEEEGDITNPINLREGEPDL	[22]

Table S6. Sequences of SDRPs from Ara h 3 (30), Ara h 1(28) and Ara h 2 (2), found after in vitro oral-gastric digestion of grained peanut, matching with Ara h 3 and Ara h 1 epitopes reported in IEDB. The SDRPs fraction was subjected to reduction, alkylation and trypsin digestion before mass spectrometry analysis. Epitopes found in identified peptides are bolded and reported with their ID.

Peptide No.	Peptide sequence	Allergen source	$\begin{aligned} & \text { Epitope } \\ & \text { ID } \\ & \text { IEDB } \end{aligned}$	Epitope sequence IEDB	Reference
1	AHVQVVDSNG	Ara h 3 (Q647H4, Q8LKN1, Q6T2T4, A1DZF0, Q6IWG5, Q0GM57, E5G077, Q9SQH7)	99447	LRGRAHVQVVDSNGN	[19]
1	AHVQVVDSNG		99597	RAHVQVVDSNGNRVY	[19]
2	ALRRPFYSNAPQE	Ara h 3 (Q647H4, Q8LKN1, Q6T2T4, Q9SQH7, A1DZF0)	99484	NALRRPFYSNAPQEI	[18]; [19]
3	IETWNPNNQE	Ara h 3 (Q647H4, Q8LKN1, Q6T2T4, A1DZF0, Q6IWG5, Q0GM57, E5G077, Q9SQH7)	25997	IETWNPNNQEFECAG	[6]
4	IQQGRGYFG	Ara h 3 (Q647H4, Q8LKN1, A1DZF0, Q9SQH7)	16280	FIQQGRGYFGLIFPG	[18]; [19]; [6]
4	IQQGRGYFG		99561	QEIFIQQGRGYFGLI	[18]; [19]
5	LKNNNPFKF	Ara h 3 (Q647H4, Q8LKN1, Q6T2T4, A1DZF0, Q6IWG5, Q0GM57, E5G077, Q9SQH7)	106026	QARQLKNNNPFKFFV	[18]
5	LKNNNPFKF		106042	QLKNNNPFKFFVPPS	[18]
6	LQEGHVLVVPQN		99440	LQEGHVLVVPQNFAV	[19]
6	LQEGHVLVVPQN		99141	DEELQEGHVLVVPQN	[19]
7	LQEGHVLVVPQNF	Ara 3 (Q647H4, Q8LKN1, Q6T2T4, A1DZF0, Q6IWG5, Q0GM57, E5G077, Q9SQH7)	99440	LQEGHVLVVPQNFAV	[19]
8	LRILSPDR	Ara h 3 (Q647H4, Q8LKN1, Q6T2T4, A1DZF0	71559	VTVRGGLRILSPDRK	[20]; [6]
8	LRILSPDR		99738	TVRGGLRILSPDRKR	[18]; [19]
8	LRILSPDR		70725	VRGGLRILSPDRKRR	[6]
8	LRILSPDR		99277	GGLRILSPDRKRRAD	[19]
8	LRILSPDR		105826	GGLRILSPDRKRRQQ	[18]
9	NGRAHVQVVDSNGNR		99597	RAHVQVVDSNGNRVY	[19]
10	NIGRNRSPDIYNPQAG	Ara h 3 (Q647H4, Q8LKN1,	99331	IGRNRSPDIYNPQAG	[18]; [19]; [6]
11	NNNPFKF	Arah 3 (Q647H4, Q8LKN1, Q6T2T4, A1DZF0, Q6IWG5, Q0GM57, E5G077, Q9SQH7)	105988	NNNPFKFFVPPSEQS	[18]
11	NNNPFKF		106026	QARQLKNNNPFKFFV	[18]
11	NNNPFKF		106042	QLKNNNPFKFFVPPS	[18]
12	NRSPDIYNPQAG	Ara h 3 (Q647H4, Q8LKN1, Q6T2T4, A1DZF0)	99331	IGRNRSPDIYNPQAG	[18]; [19]; [6]
12	NRSPDIYNPQAG		99513	NRSPDIYNPQAGSLK	[18]; [19]
13	NRSPDIYNPQAGS	Ara h 3 (Q647H4, Q8LKN1,	99513	NRSPDIYNPQAGSLK	[18]; [19]
14	NRSPDIYNPQAGSL	Ara 3 (Q8LKN1, Q6T2T4,	99513	NRSPDIYNPQAGSLK	[18]; [19]
15	NSYGLPR	Ara 3 (Q647H4, Q8LKN1,	105678	ANSYGLPREQARQLK	[18]
16	PDIYNPQAGSL	Ara h 3 (Q647H4, Q8LKN1,	99513	NRSPDIYNPQAGSLK	[18]; [19]
17	QEGHVLVVPQNF	Ara h 3 (Q647H4, Q8LKN1,	99440	LQEGHVLVVPQNFAV	[19]
18	QLKNNNPFKF	Ara h 3 (Q6IWG5, Q0GM57, E5G077, Q9SQH7, Q647H4, aervai artata ingron	106026	QARQLKNNNPFKFFV	[18]
18	QLKNNNPFKF		106042	QLKNNNPFKFFVPPS	[18]
19	RAHVQVVDSNGNRVY	Ara 3 (A1DZF0, Q6IWG5,	99597	RAHVQVVDSNGNRVY	[19]
20	RPFYSNAPQE	Ara 3 (Q647H4, Q8LKN1,	99484	NALRRPFYSNAPQEI	[18]; [19]
21	RPFYSNAPQEI	Ara h 3 (Q647H4, Q8LKN1,	99484	NALRRPFYSNAPQEI	[18]; [19]
22	RSPDIYNPQAGSL	Arah 3 (Q647H4, Q8LKN1,	99513	NRSPDIYNPQAGSLK	[18]; [19]
23	SLPYSPYSPQ	Ara h 3 (Q647H4, Q8LKN1,	106093	RSLPYSPYSPQTQPK	[18]

23	SLPYSPYSPQ	Q6T2T4)	106122	SRRRSLPYSPYSPQT	[18]
24	SLPYSPYSPQTQPK	Arah 3 (Q8LKN1, Q6T2T4)	106093	RSLPYSPYSPQTQPK	[18]
25	SPDIYNPQAG	Ara h 3 (Q647H4, Q8LKN1, Q6T2T4, A1DZF0)	99331	IGRNRSPDIYNPQAG	[18]; [19]; [6]
25	SPDIYNPQAG		99513	NRSPDIYNPQAGSLK	[18]; [19]
26	SPDIYNPQAGSL	Ara h 3 (Q647H4, Q8LKN1)	99513	NRSPDIYNPQAGSLK	[18]; [19]
27	SYGLPR	Ara 3 (Q647H4, Q8LKN1,	105678	ANSYGLPREQARQLK	[18]
28	YEEPAQQGR	Ara h 3 (Q9SQH7, Q8LKN1, Q6T2T4, A1DZF0, Q9SQH7)	105700	CPSTYEEPAQQGRRH	[18]
28	YEEPAQQGR		106150	TYEEPAQQGRRHQSQ	[18]
29	YEEPAQQGRR	Ara h 3 (Q647H4, Q8LKN1, Q6T2T4, A1DZF0)	105700	CPSTYEEPAQQGRRH	[18]
29	YEEPAQQGRR		106150	TYEEPAQQGRRHQSQ	[18]
30	YGLPR	Ara h 3 (Q647H4, Q8LKN1, Q6T2T4, A1DZF0, Q6IWG5, Q0GM57, E5G077, Q9SQH7)	105678	ANSYGLPREQARQLK	[18]
30	YGLPR		106196	YGLPREQARQLKNNN	[18]
31	CLQSCQQEPDDLKQK	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	98978	RCLQSCQQEPDDLKQKACES	[21]; [28]
31	CLQSCQQEPDDLKQK		190885	PCAQRCLQSCQQEPDDLKQK	[22]
32	VVVNKGTGNLE	Ara h 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	99053	VVNKGTGNLELVAVR	[19]; [30]
32	VVVNKGTGNLE		148699	NSKAMVIVVVNKGTGNLELV	[29]
32	VVVNKGTGNLE		190708	AMVIVVVNKGTGNLELVAV	[22]
32	VVVNKGTGNLE		523259	NSKAMVIVVVNKGTGNLELVA	[23]
33	VVVNKGTGNL	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	98841	KAMVIVVVNKGTGNLELVAV	[27]; [21]; [28]
33	VVVNKGTGNL		99364	KAMVIVVVNKGTGNL	[24]; [19]
33	VVVNKGTGNL		148699	NSKAMVIVVVNKGTGNLELV	[29]
33	VVVNKGTGNL		190708	AMVIVVVNKGTGNLELVAV	[22]
33	VVVNKGTGNL		523259	NSKAMVIVVVNKGTGNLELVA	[23]
34	VVNKGTGNL	Ara 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	98841	KAMVIVVVNKGTGNLELVAV	[27]; [21];
34	VVNKGTGNL		99364	KAMVIVVVNKGTGNL	[24]; [19]
34	VVNKGTGNL		99053	VVNKGTGNLELVAVR	[19]; [30]
34	VVNKGTGNL		148699	NSKAMVIVVVNKGTGNLELV	[29]
34	VVNKGTGNL		148985	VVNKGTGNLELVAVRKEQQQ	[29]
34	VVNKGTGNL		190708	AMVIVVVNKGTGNLELVAV	[27]
34	VVNKGTGNL		523259	NSKAMVIVVVNKGTGNLELVA	[23]
35	SFNLDEGHA	Ara h 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	99616	RKSFNLDEGHALRIP	[24]; [19]
35	SFNLDEGHA		190952	RKSFNLDEGHALRIPSGFIS	[22]
35	SFNLDEGHA		191006	TVTVANGNNRKSFNLDEGHA	[22]
36	SEEEGDITNPINL	Ara h 1 (P43238, N1NG13)	99657	SEEEGDITNPINLRE	[19]
36	SEEEGDITNPINL		190971	SEEEGDITNPINLREGEPDL	[22]
37	REGEPDLSNNFGKL	Arah 1 (P43238, N1NG13)	98979	REGEPDLSNNFGKLF	[30]
37	REGEPDLSNNFGKL		190893	PINLREGEPDLSNNFGKLFE	[22]
38	PKHADADNIL	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	100389	PNTLVLPKHADADNILVIQQ	[21]
38	PKHADADNIL		190791	IEAKPNTLVLPKHADADNIL	[22]
38	PKHADADNIL		190849	LPKHADADNILVIQQGQATV	[22]
38	PKHADADNIL		523624	PKHADADNILVIQQGQATVTV	[23]
39	NNPFYFPSR	Ara h 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	99031	TSRNNPFYFPSRRFS	[19]; [30]
39	NNPFYFPSR		99031	TSRNNPFYFPSRRFS	[19]; [30]
39	NNPFYFPSR		99607	REETSRNNPFYFPSR	[19]
39	NNPFYFPSR		100478	RNNPFYFPSRRFSTRYGNQN	[21]
39	NNPFYFPSR		148966	TSRNNPFYFPSRRFSTRYGN	[29]
39	NNPFYFPSR		190878	NNPFYFPSRRFSTRYGNQNG	[22]

39	NNPFYFPSR		190973	SHVREETSRNNPFYFPSRRF	[22]
39	NNPFYFPSR		540582	RNNPFYFPSRRFSTR	[24]
40	LAGDKDNVIDQ	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	100137	IFLAGDKDNVIDQIEKQAKD	[22]; [21]
40	LAGDKDNVIDQ		434746	IFLAGDKDNVIDQIEK +	[26]
40	LAGDKDNVIDQ		434747	IFLAGDKDNVIDQIEK	[26]
41	LAFPGSGEQVEKL	Ara h 1 (P43238, N1NG13, Q6PSU3, P43237)	98859	LAFPGSGEQVEKLIK	[30]
41	LAFPGSGEQVEKL		98859	LAFPGSGEQVEKLIK	[30]
41	LAFPGSGEQVEKL		190804	KDLAFPGSGEQVEKLIKNQK	[22]
42	KGSEEEGDITNPIN	Arah 1 (P43238, N1NG13)	98850	KKGSEEEGDITNPIN	[19]; [30]
43	IVVVNKGTGNLE	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	98841	KAMVIVVVNKGTGNLELVAV	[27]; [21];
43	IVVVNKGTGNLE		523259	NSKAMVIVVVNKGTGNLELVA	[23]
43	IVVVNKGTGNLE		190708	AMVIVVVNKGTGNLELVAV	[22]
43	IVVVNKGTGNLE		148699	NSKAMVIVVVNKGTGNLELV	[29]
44	ISMPVNTPGQF	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	100433	QNLRVAKISMPVNTPGQFED	[21]
44	ISMPVNTPGQF		190882	NQNLRVAKISMPVNTPGQFE	[22]
44	ISMPVNTPGQF		434773	VAKISMPVNTPGQFEDFFPASS	[26]
44	ISMPVNTPGQF		434774	VAKISMPVNTPGQFEDFFPASS	[26]
45	IMPAAHPVAINAS	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	190764	GDVFIMPAAHPVAINASS	[22]
45	IMPAAHPVAINAS		148649	KEGDVFIMPAAHPVAINASS	[22]; [29]
46	IMPAAHPVAINA	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	190764	GDVFIMPAAHPVAINASS	[22]
46	IMPAAHPVAINA		148649	KEGDVFIMPAAHPVAINASS	[22]; [29]
46	IMPAAHPVAINA		99167	DVFIMPAAHPVAINA	[19]
47	IFLAGDKDNVIDQ	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	100137	IFLAGDKDNVIDQIEKQAKD	[22]; [21]
47	IFLAGDKDNVIDQ		434746	IFLAGDKDNVIDQIEK +	[26]
47	IFLAGDKDNVIDQ		434747	IFLAGDKDNVIDQIEK	[26]
48	FQNLQNHR	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	100445	QRSRQFQNLQNHRIVQIEAK	[29]; [21]
48	FQNLQNHR		99646	RSRQFQNLQNHRIVQ	[19]
48	FQNLQNHR		98971	QRSRQFQNLQNHRIV	[30]; [24]
48	FQNLQNHR		99239	FDQRSRQFQNLQNHR	[19]
48	FQNLQNHR		190748	FDQRSRQFQNLQNHRIVQIE	[22]
48	FQNLQNHR		190757	FQNLQNHRI	[22]
48	FQNLQNHR		190758	FQNLQNHRIVQIEAKPNTLV	[22]
48	FQNLQNHR		40406	FQNLQNHRIVQIEAK	[24]
49	FIMPAAHPVAINA	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	148649	KEGDVFIMPAAHPVAINASS	[22]; [29]
49	FIMPAAHPVAINA		99167	DVFIMPAAHPVAINA	[19]
49	FIMPAAHPVAINA		190764	GDVFIMPAAHPVAINASS	[22]
50	EDFFPASSRDQSSYLQG	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	99243	FFPASSRDQSSYLQG	[19]
50	EDFFPASSRDQSSYLQG		190749	FEDFFPASSRDQSSYLQGFS	[22]
50	EDFFPASSRDQSSYLQG		524091	QFEDFFPASSRDQSSYLQGFSR	[23]
51	EDFFPASSRDQSSY	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	190749	FEDFFPASSRDQSSYLQGFS	[22]
51	EDFFPASSRDQSSY		524091	QFEDFFPASSRDQSSYLQGFSR	[23]
51	EDFFPASSRDQSSY		99241	FEDFFPASSRDQSSY	[19]
52	EDFFPASSRDQSS	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	190749	FEDFFPASSRDQSSYLQGFS	[22]
52	EDFFPASSRDQSS		524091	QFEDFFPASSRDQSSYLQGFSR	[23]
52	EDFFPASSRDQSS		99241	FEDFFPASSRDQSSY	[19]
52	EDFFPASSRDQSS		98955	QFEDFFPASSRDQSS	[30]
53	EDFFPASSR	Arah 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	99241	FEDFFPASSRDQSSY	[19]
53	EDFFPASSR		98955	QFEDFFPASSRDQSS	[30]
53	EDFFPASSR		190749	FEDFFPASSRDQSSYLQGFS	[22]
53	EDFFPASSR		524091	QFEDFFPASSRDQSSYLQGFSR	[23]

53	EDFFPASSR		434773	VAKISMPVNTPGQFEDFFPASS	[26]
53	EDFFPASSR		434774	VAKISMPVNTPGQFEDFFPASS	[26]
53	EDFFPASSR		99530	PGQFEDFFPASSRDQ	[19]
53	EDFFPASSR		100400	PVNTPGQFEDFFPASSRDQS	[21]
53	EDFFPASSR		19983	SMPVNTPGQFEDFFPASSRD	[22]
53	EDFFPASSR		421060	GQFEDFFPASSRDQS	[24]; [25]
54	DLAFPGSGEQVEKL	Ara h 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	99368	KDLAFPGSGEQVEKL	[25]; [19]
54	DLAFPGSGEQVEKL		190804	KDLAFPGSGEQVEKLIKNQK	[22]
55	DLAFPGSGEQVEK	Ara h 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	99368	KDLAFPGSGEQVEKL	[25]; [19]
55	DLAFPGSGEQVEK		190804	KDLAFPGSGEQVEKLIKNQK	[22]
56	CVYDPR	Ara h 1 (P43238, N1NG13)	99385	KLEYDPRCVYDPRGH	[19]
56	CVYDPR		99782	YDPRCVYDPRGHTGT	[19]
56	CVYDPR		99919	CVYDPRGHTGTTNQRSPPGE	[21]
56	CVYDPR		100455	RCTKLEYDPRCVYDPRGHTG	[21]
56	CVYDPR		190820	KLEYDPRCVYDPRGHTGTTN	[22]
57	AENNHRIF	Ara h 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	100037	FGINAENNHRIFLAGDKDNV	[21]
57	AENNHRIF		190771	GINAENNHRIFLAGDKDNVI	[22]
57	AENNHRIF		190988	SSELHLLGFGINAENNHRIF	[22]
57	AENNHRIF		420973	FGINAENNHRIFLAG	[24]; [25]
57	AENNHRIF		521205	LHLLGFGINAENNHRIFLAGDK	[23]
58	CLQSCQQEPDDLKQKA	Ara h 1 (P43238, N1NG13, Q6PSU3, P43237,B3IXL2)	98953	QEPDDLKQKA	[30]
58	CLQSCQQEPDDLKQKA		99129	CQQEPDDLKQKACES	[19]
58	CLQSCQQEPDDLKQKA		99443	LQSCQQEPDDLKQKA	[19]
59	CMCEALQQIMENQ	Ara h 2 (Q6PSU2, Q6PSU2-2, Q6PSU2-3, Q6PSU2-4)	53291	RCMCEALQQIMENQSDRLQG	[33]; [22]; [34]
59	CMCEALQQIMENQ		15608	FENNQRCMCEALQQIMENQ	[35]
59	CMCEALQQIMENQ		53290	RCMCEALQQIMENQSDRLQ	[35]
59	CMCEALQQIMENQ		178803	FENNQRCMCEALQQIMENQS	[33]
60	NLPQQCGLRAPQR	Arah 2 (Q6PSU2, Q6PSU2-2, Q6PSU2-3, Q6PSU2-4)	33124	KRELRNLPQQCGLRAPQRCD	[22]; [34]
60	NLPQQCGLRAPQR		39150	LRNLPQQCGLRAPQRCDLD	[35]
60	NLPQQCGLRAPQR		99448	LRNLPQQCGLRAPQR	[19, 36]
60	NLPQQCGLRAPQR		105306	LPQQCGLRAPQR	[37]
60	NLPQQCGLRAPQR		179200	LRNLPQQCGLRAPQRCDLDV	[33]
60	NLPQQCGLRAPQR		179375	QFKRELRNLPQQCGLRAPQR	[33]
60	NLPQQCGLRAPQR		514924	ELRNLPQQCGLRAPQRCDLEV	[23]
60	NLPQQCGLRAPQR		515929	FKRELRNLPQQCGLRAPQRCD	[23]

Supporting Figures

Fig. S1

Fig. S1. Gel filtration of SDRPs obtained after in vitro oral-gastric phase of digestion of whole kernels peanut. After digestion liquid phase of digestion mixture was precipitated by ethanol and non-precipitated solution was applied to Sephadex G-25 column (20 ml of matrix; column size $0.8 \times 40 \mathrm{~cm}$).

Fig. S2

Figure S2. SDS PAGE profiles of digested and control peanut samples. A) non-reducing conditions; B) reducing conditions. Lane 1- control sample (without amylase and pepsin), lane 2 - digested sample, lane 3 - pepsin control at 0 , lane 4 - pepsin control at 120`, Mmolecular weight markers. $23 \mu \mathrm{~g}$ of peanut proteins and $6 \mu \mathrm{~g}$ of pepsin were applied per lane. (C) 1D SDS PAGE profiles of peanut control sample (CPS) and digested peanut sample (DPS) analyzed by nLC-MS/MS spectrometry; identification results shown in Table S4.

Digestibility of peanut proteins from the whole grain was analyzed by non-reducing and reducing SDS-PAGE after simulated in vitro oral and gastric digestion (FigS2. A and B). Proteins from separated liquid phase of digestion mixture were precipitated by TCA and analyzed by SDS PAGE. We have analyzed TCA precipitated protein fraction in order to get insight into pepsin resistant protein fraction. TCA was able to precipitate about 30% of protein extracted from peanut during digestion e.g about 10% of whole peanut grain proteins.

Under non-reducing conditions (Fig S2.A), at the top of separating gel, high molecular mass aggregates of Ara h 1 could be observed in control sample, while they are much less intense in digested sample. It was reported that Ara h 1 when transferred from acidic (pH 2) to basic (pH 8) environment forms disulfide cross-linked aggregates with mass of about 250 kDa , and pepsin digestion destroys ability of Ara h 1 to form these aggregates [38]. In undigested
sample there is intensive band in region $55-65 \mathrm{kDa}$, containing Ara h 1 and disulfide linked acidic and basic Ara h 3 subunits [39], while in digested sample intensive series of discrete bands in the range $45-65 \mathrm{kDa}$, originating from proteolysis of Ara h 1 and Ara h 3, could be observed instead. Also, bands with Mr of approximately 30,15 and 12 kDa are more intensive in digested sample. Under reducing conditions (Fig S2. B), it is obvious that almost all Ara h 1 was proteolyzed mainly to its 50 kDa form, and probably to forms with mass about 12 and 16 kDa . Proteolysis of Ara h 3 acidic forms (region 35-45 kDa) is also visible under reducing conditions, in contrast to basic forms which looks almost intact. These results ambiguously implies that both Ara h 1 and Ara h 3 were partly proteolyzed.

Fig. S3

Figure S3. CD spectra of control and digested peanut.

Fig. S4

Fig. S4 ImmunoCAP absolute values of IgE binding for whole peanut extract, rArah 1, rAra h 2, and rAra h 3 inhibited by short digestion resistant peptides (SDRPs) fraction of peptides released during peanut gastric digestion. N - noninhibited; I -inhibited. X axis’ numbers denote patients in Table S3.

Fig. S5

Arah 1

a) KSSPYQKKTENPCAQRCLQSCQQEPDDLKQKACESRCTKLEYDPRCVYDPRGHTGTTNQRSP PGERTRGRQPGDYDDDRRQPRREEGGRWGPAGPREREREEDWRQPREDWRRPSHQQPRKIRP EGREGEQEWGTPGSHVREETSRNNPFYFPSRRFSTRYGNQNGRIRVLQRFDQRSRQFQNLQNH RIVQIEAKPNTLVLPKHADADNILVIQQGQATVTVANGNNRKSFNLDEGHALRIPSGFISYILNR HDNQNLRVAKISMPVNTPGQFEDFFPASSRDQSSYLQGFSRNTLEAAFNAEFNEIRRVLLEENA GGEQEERGQRRWSTRSSENNEGVIVKVSKEHVEELTKHAKSVSKKGSEEEGDITNPINLREGEP DLSNNFGKLFEVKPDKKNPQLQDLDMMLTCVEIKEGALMLPHFNSKAMVIVVVNKGTGNLE LVAVRKEQQQRGRREEEEDEDEEEEGSNREVRRYTARLKEGDVFIMPAAHPVAINASSELHLL GFGINAENNHRIFLAGDKDNVIDQIEKQAKDLAFPGSGEQVEKLIKNQKESHFVSARPQSQSQS PSSPEKESPEKEDQEEENQGGKGPLLSILKAFN
b) KSSPYQKKTENPCAQRCLQSCQQEPDDLKQKACESRCTKLEYDPRCVYDPRGHTGTTNQRSP PGERTRGRQPGDYDDDRRQPRREEGGRWGPAGPREREREEDWRQPREDWRRPSHQQPRKIRP EGREGEQEWGTPGSHVREETSRNNPFYFPSRRFSTRYGNQNGRIRVLQRFDQRSRQFQNLQNH RIVQIEAKPNTLVLPKHADADNILVIQQGQATVTVANGNNRKSFNLDEGHALRIPSGFISYILNR HDNQNLRVAKISMPVNTPGQFEDFFPASSRDQSSYLQGFSRNTLEAAFNAEFNEIRRVLLEENA GGEQEERGQRRWSTRSSENNEGVIVKVSKEHVEELTKHAKSVSKKGSEEEGDITNPINLREGEP DLSNNFGKLFEVKPDKKNPQLQDLDMMLTCVEIKEGALMLPHFNSKAMVIVVVNKGTGNLE LVAVRKEQQQRGRREEEEDEDEEEEGSNREVRRYTARLKEGDVFIMPAAHPVAINASSELHLL GFGINAENNHRIFLAGDKDNVIDQIEKQAKDLAFPGSGEQVEKLIKNQKESHFVSARPQSQSQS PSSPEKESPEKEDQEEENQGGKGPLLSILKAFN

Arah 3

c) VTFRQGGEENECQFQRLNAQRPDNRIESEGGYIETWNPNNQEFQCAGVALSRTVLRRNALRRP FYSNAPLEIYVQQGSGYFGLIFPGCPSTYEEPAQEGRRYQSQKPSRRFQVGQDDPSQQQQDSH QKVHRFDEGDLIAVPTGVAFWMYNDEDTDVVTVTLSDTSSIHNQLDQFPRRFYLAGNQEQEF LRYQQQQGSRPHYRQISPRVRGDEQENEGSNIFSGFAQEFLQHAFQVDRQTVENLRGENEREE QGAIVTVKGGLRILSPDEEDESSRSPPSRREEFDEDRSRPQQRGKYDENRRGYKNGIEETICSAS VKKNLGRSSNPDIYNPQAGSLRSVNELDLPILGWLGLSAQHGTIYRNAMFVPHYTLNAHTIVV ALNGRAHVQVVDSNGNRVYDEELQEGHVLVVPQNFAVAAKAQSENYEYLAFKTSRPSIANL AGENSIIDNLPEEVVANSYRLPREQARQLKNNNPFKFFVPPFDHQSMREVA
d) VTFRQGGEENECQFQRLNAQRPDNRIESEGGYIETWNPNNQEFQCAGVALSRTVLRRNALRRP FYSNAPLEIYVQQGSGYFGLIFPGCPSTYEEPAQEGRRYQSQKPSRRFQVGQDDPSQQQQDSH QKVHRFDEGDLIAVPTGVAFWMYNDEDTDVVTVTLSDTSSIHNQLDQFPRRFYLAGNQEQEF LRYQQQQGSRPHYRQISPRVRGDEQENEGSNIFSGFAQEFLQHAFQVDRQTVENLRGENEREE QGAIVTVKGGLRILSPDEEDESSRSPPSRREEFDEDRSRPQQRGKYDENRRGYKNGIEETICSAS VKKNLGRSSNPDIYNPQAGSLRSVNELDLPILGWLGLSAQHGTIYRNAMFVPHYTLNAHTIVV ALNGRAHVQVVDSNGNRVYDEELQEGHVLVVPQNFAVAAKAQSENYEYLAFKTSRPSIANL AGENSIIDNLPEEVVANSYRLPREQARQLKNNNPFKFFVPPFDHQSMREVA

Arah 2

e) RQQWELQGDRRCQSQLERANLRPCEQHLMQKIQRDEDSYGRDPYSPSQDPYSPSQDPDRRDP YSPSPYDRRGAGSSQHQERCCNELNEFENNQRCMCEALQQIMENQSDRLQGRQQEQQFKREL RNLPQQCGLRAPQRCDLEVESGGRDRY

Arah 6

f) MRRERGRQGDSSSCERQVDRVNLKPCEQHIMQRIMGEQEQYDSYDIRSTRSSDQQQRCDELN EMENTQRCMCEALQQIMENQCDRLQDRQMVQQFKRELMNLPQQCNFRAPQRCDLDVSGGR C

Figure S5. The regions with peptides of Arah $1(\mathbf{a}, \mathbf{b})$, Ara h 3 (c, d) and Ara h 2 (e) and Ara h 6 (f) found in short digestion resistant peptide (SDRP) fraction of peanut digested by pepsin; (\mathbf{a}, \mathbf{c}) intact peptides, (b, d, e, f) peptides found after reduction, alkylation and trypsin digestion of low molecular mass fraction of peanut digested by pepsin. ${ }^{\text {a }}$ Continuous epitopes are underlined, ${ }^{\mathrm{b}}$ discontinuous epitopes are highlighted in green, and identified short digestion resistant peptides (SDRPs) of gastric digesta are in red letters. ${ }^{\text {a }}$ Continuous epitopes found by Otsu et al. [40] for Ara h 2 and Ara h 6, Burks et al. [41] for Ara h 1, and Rouge et al. [42] for Ara h 3. ${ }^{\text {b }}$ Motifs/consensus found in the mimotopes found by Chen et al. [43] for Ara $h 2$ and Ara h 6, Bogh et al. [44] for Ara h 1.

Fig. S6

A.

B.

C.

D.

Fig. S6 Hydrophobicity curves of Ara h 1 (A) Ara h 2 (B), Ara h 3 (C) and Ara h 6 (D) with underlined regions of peptides found in SDRPs fraction of digested peanut. E) Average hydrophobicity scores of Ara h 1, Ara h 2, Ara h 3 and Ara h 6 regions of peptides found in SDRPs fraction and whole protein sequence. Hydropathy curves were made by ExPASy ProtScale (web.expasy.org/protscale/), according to Black et al. [45] amino acid scale and using UniProtKB/Swiss-Prot accession number P43238 for Ara h 1 and Q6IWG5 for Arah 3.

Fig. S7

Fig. S7. Solvent accessible surface of Ara h 1 from three different angles with labelled gradual hydrophobicity level (from deep blue for the least hydrophobic to brown for the most hydrophobic area). The regions with identified peptides of Ara h 1 found in the short digestion resistant peptides (SDRPs) of peanut digested by pepsin are in red.

Fig. S8

Fig. S8. Solvent accessible surface of Ara h 3 from three different angles with labelled gradual hydrophobicity level (from deep blue for the least hydrophobic to brown for the most hydrophobic area). The regions with identified peptides of Ara h 3 found in the short digestion resistant peptides (SDRPs) of peanut digested by pepsin are in red.

Fig. S9

Fig. S9. Solvent accessible surface of Ara h 2 and Ara h 6 from two different angles with labelled gradual hydrophobicity level (from deep blue for the least hydrophobic to brown for the most hydrophobic area). The regions with identified peptides of Ara h 2 and Ara h 6 found in the short digestion resistant peptides (SDRPs) of peanut digested by pepsin are in red.

Supporting references

1. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carriere F, Boutrou R, Corredig M, Dupont D, Dufour C, Egger L, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie A, Marze S, McClements DJ, Menard O, Recio I, Santos CN, Singh RP, Vegarud GE, Wickham MSJ, Weitschies W, Brodkorb A. A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct 2014;5: 1113-24.
2. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227: 680-5.
3. Apostolovic D, Stanic-Vucinic D, de Jongh HH, de Jong GA, Mihailovic J, Radosavljevic J, Radibratovic M, Nordlee JA, Baumert JL, Milcic M, Taylor SL, Garrido Clua N, Cirkovic Velickovic T, Koppelman SJ. Conformational stability of digestion-resistant peptides of peanut conglutins reveals the molecular basis of their allergenicity. Sci Rep 2016;6: 29249.
4. Johnson PE, Sayers RL, Gethings LA, Balasundaram A, Marsh JT, Langridge JI, Mills EN. Quantitative Proteomic Profiling of Peanut Allergens in Food Ingredients Used for Oral Food Challenges. Anal Chem 2016;88: 5689-95.
5. Apostolovic D, Luykx D, Warmenhoven H, Verbart D, Stanic-Vucinic D, de Jong GA, Velickovic TC, Koppelman SJ. Reduction and alkylation of peanut allergen isoforms Ara h 2 and Ara h 6; characterization of intermediate- and end products. Biochim Biophys Acta 2013;1834: 2832-42.
6. Radosavljevic J, Dobrijevic D, Jadranin M, Blanusa M, Vukmirica J, Cirkovic Velickovic T. Insights into proteolytic processing of the major peanut allergen Ara h 2 by endogenous peanut proteases. J Sci Food Agric 2010;90: 1702-8.
7. Mandell DJ, Coutsias EA, Kortemme T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods 2009;6: 551-2.
8. Bøgh KL, Barkholt V, Rigby NM, Mills ENC, Madsen CB. Digested Ara h 1 Loses Sensitizing Capacity When Separated into Fractions. J Agric Food Chem 2012;60: 2934-42.
9. Kopper RA, Odum NJ, Sen M, Helm RM, Steve Stanley J, Wesley Burks A. Peanut protein allergens: Gastric digestion is carried out exclusively by pepsin. J Allergy Clin Immunol 2004;114: 614-18.
10. Eiwegger T, Rigby N, Mondoulet L, Bernard H, Krauth MT, Boehm A, Dehlink E, Valent P, Wal JM, Mills ENC, Szépfalusi Z. Gastro-duodenal digestion products of the major peanut allergen Ara h 1 retain an allergenic potential. Clin Exp Allergy 2006;36: 1281-88.
11. Fu TJ, Abbott UR, Hatzos C. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid-a comparative study. J Agric Food Chem 2002;50: 7154-60.
12. Koppelman SJ, Hefle SL, Taylor SL, de Jong GAH. Digestion of peanut allergens Ara h 1, Ara h 2, Ara h 3, and Ara h 6: A comparative in vitro study and partial characterization of digestion-resistant peptides. Mol Nutr Food Res 2010;54: 1711-21.
13. Tantoush Z, Apostolovic D, Kravic B, Prodic I, Mihajlovic L, Stanic-Vucinic D, Cirkovic Velickovic T. Green tea catechins of food supplements facilitate pepsin digestion of major food allergens, but hampers their digestion if oxidized by phenol oxidase. J Funct Foods 2012;4: 650-60.
14. Maleki S, Schmitt D, Galeano M, Hurlburt B. Comparison of the Digestibility of the Major Peanut Allergens in Thermally Processed Peanuts and in Pure Form. Foods 2014;3: 290-303.
15. Thomas K, Aalbers M, Bannon GA, Bartels M, Dearman RJ, Esdaile DJ, Fu TJ, Glatt CM, Hadfield N, Hatzos C, Hefle SL, Heylings JR, Goodman RE, Henry B, Herouet C, Holsapple M, Ladics GS, Landry TD, MacIntosh SC, Rice EA, Privalle LS, Steiner HY, Teshima R, Van Ree R, Woolhiser M, Zawodny J. A multi-laboratory evaluation of a common in vitro pepsin digestion assay protocol used in assessing the safety of novel proteins. Regul Toxicol Pharmacol 2004;39: 87-98.
16. Astwood JD, Leach JN, Fuchs RL. Stability of food allergens to digestion in vitro. Nat Biotechnol 1996;14: 1269-73.
17. van Boxtel EL, van den Broek LA, Koppelman SJ, Gruppen H. Legumin allergens from peanuts and soybeans: effects of denaturation and aggregation on allergenicity. Mol Nutr Food Res 2008;52: 674-82.
18. Rouge P, Culerrier R, Sabatier V, Granier C, Rance F, Barre A. Mapping and conformational analysis of IgE-binding epitopic regions on the molecular surface of the major Ara h 3 legumin allergen of peanut (Arachis hypogaea). Mol Immunol 2009;46: 1067-75.
19. Flinterman AE, Knol EF, Lencer DA, Bardina L, den Hartog Jager CF, Lin J, Pasmans SG, Bruijnzeel-Koomen CA, Sampson HA, van Hoffen E, Shreffler WG.

Peanut epitopes for IgE and IgG4 in peanut-sensitized children in relation to severity of peanut allergy. J Allergy Clin Immunol 2008;121: 737-43 e10.
20. Beyer K, Ellman-Grunther L, Järvinen K-M, Wood RA, Hourihane J, Sampson HA. Measurement of peptide-specific IgE as an additional tool in identifying patients with clinical reactivity to peanuts. J Allergy Clin Immunol 2003;112: 202-07.
21. Naganawa Y, Shimmoto M, Maleki SJ, Takase M, Shinmoto H. Epitope analysis of peanut allergen Ara h1 with oligoclonal IgM antibody from human B-lymphoblastoid cells. Cytotechnology 2008;57: 177-80.
22. Prickett SR, Voskamp AL, Phan T, Dacumos-Hill A, Mannering SI, Rolland JM, O'Hehir RE. Ara h 1 CD4+ T cell epitope-based peptides: candidates for a peanut allergy therapeutic. Clin Exp Allergy 2013;43: 684-97.
23. Hoh RA, Joshi SA, Liu Y, Wang C, Roskin KM, Lee JY, Pham T, Looney TJ, Jackson KJL, Dixit VP, King J, Lyu SC, Jenks J, Hamilton RG, Nadeau KC, Boyd SD. Single B-cell deconvolution of peanut-specific antibody responses in allergic patients. J Allergy Clin Immunol 2016;137: 157-67.
24. Ramesh M, Yuenyongviwat A, Konstantinou GN, Lieberman J, Pascal M, Masilamani M, Sampson HA. Peanut T-cell epitope discovery: Ara h 1. J Allergy Clin Imтипol 2016;137: 1764-71.e4.
25. Bogh KL, Barkholt V, Rigby NM, Mills ENC, Madsen CB. Digested Ara h 1 Loses Sensitizing Capacity When Separated into Fractions. J Agric Food Chem 2012;60: 2934-42.
26. Mattison CP, Dinter J, Berberich MJ, Chung SY, Reed SS, Le Gall S, Grimm CC. In vitro evaluation of digestive and endolysosomal enzymes to cleave CML-modified Ara h 1 peptides. Food Sci Nutr 2015;3: 273-83.
27. Voskamp AL, Prickett SR, Mackay F, Rolland JM, O'Hehir RE. MHC class II expression in human basophils: induction and lack of functional significance. PLoS One 2013;8: e81777.
28. Shinmoto H, Naganawa Y, Shimmoto M, Maleki SJ. Generation of mouse-human hybridomas secreting antibodies against peanut allergen Ara h1. Cytotechnology 2005;46: 19-23.
29. DeLong JH, Simpson KH, Wambre E, James EA, Robinson D, Kwok WW. Ara h 1reactive T cells in individuals with peanut allergy. J Allergy Clin Immunol 2011;127: 1211-8 e3.
30. Zhuang YH, Dreskin SC. Redefining the major peanut allergens. Immunol Res 2013;55: 125-34.
31. Shreffler WG, Beyer K, Chu T-HT, Burks AW, Sampson HA. Microarray immunoassay: Association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes. J Allergy Clin Immunol 2004;113: 776-82.
32. Christiansen A, Kringelum JV, Hansen CS, Bogh KL, Sullivan E, Patel J, Rigby NM, Eiwegger T, Szepfalusi Z, de Masi F, Nielsen M, Lund O, Dufva M. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum. Sci Rep 2015;5: 12913.
33. Pascal M, Konstantinou GN, Masilamani M, Lieberman J, Sampson HA. In silico prediction of Ara h 2 T cell epitopes in peanut-allergic children. Clin Exp Allergy 2013;43: 116-27.
34. Glaspole IN, de Leon MP, Rolland JM, O'Hehir RE. Characterization of the T-cell epitopes of a major peanut allergen, Ara h 2. Allergy 2005;60: 35-40.
35. King N, Helm R, Stanley JS, Vieths S, Luttkopf D, Hatahet L, Sampson H, Pons L, Burks W, Bannon GA. Allergenic characteristics of a modified peanut allergen. Mol Nutr Food Res 2005;49: 963-71.
36. Albrecht M, Kuhne Y, Ballmer-Weber BK, Becker WM, Holzhauser T, Lauer I, Reuter A, Randow S, Falk S, Wangorsch A, Lidholm J, Reese G, Vieths S. Relevance of IgE binding to short peptides for the allergenic activity of food allergens. J Allergy Clin Immunol 2009;124: 328-36, 36 e1-6.
37. Ivanciuc O, Gendel SM, Power TD, Schein CH, Braun W. AllerML: markup language for allergens. Regul Toxicol Pharmacol 2011;60: 151-60.
38. Khan IJ, Di R, Patel P, Nanda V. Evaluating pH-induced gastrointestinal aggregation of Arachis hypogaea 1 fragments as potential components of peanut allergy. J Agric Food Chem 2013;61: 8430-5.
39. Piersma SR, Gaspari M, Hefle SL, Koppelman SJ. Proteolytic processing of the peanut allergen Ara h 3. Mol Nutr Food Res 2005;49: 744-55.
40. Otsu K, Guo R, Dreskin SC. Epitope analysis of Ara h 2 and Ara h 6: characteristic patterns of IgE-binding fingerprints among individuals with similar clinical histories. Clin Exp Allergy 2015; 45(2): 471-84.
41. Burks A W, Shin D, Cockrell G, Stanley JS, Helm R M, Bannon GA. Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity. Eur J Biochem 1997; 245(2): 334-9.
42. Rouge P, Culerrier R, Sabatiera V, Granier C, Rance F, Barre A. Mapping and conformational analysis of IgE-binding epitopic regions on the molecular surface of the major Ara h 3 legumin allergen of peanut (Arachis hypogaea). Mol Immunol 2009; 46(6): 1067-75.
43. Chen X, Negi SS, Liao S, Gao V, Braun W, Dreskin SC. Conformational IgE epitopes of peanut allergens Ara h 2 and Ara h 6. Clin Exp Allergy 2016; 46(8):1120-8.
44. Bogh K L, Nielsen H, Madsen C B, Mills ENC, Rigby N, Eiwegger T, Szepfalusi Z, Roggen EL. IgE epitopes of intact and digested Ara h 1: A comparative study in humans and rats. Mol Immunol 2012; 51(3-4): 337-46.
45. Black SD, Mould DR. Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. Anal Biochem 1991;193: 72-82.

[^0]: Abbreviations

 1D - one dimensional
 2D - two dimensional
 CD - circular dichroism
 CPS - control peanut sample
 cCBB - colloidal Coomassie Brilliant Blue
 CHAPS - 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
 DPS - digested peanut sample
 DTT - dithiothreitol
 ELISA - enzyme-linked immunosorbent assay
 FDR - false discovery rate
 IAA - iodoacetamide
 IPG - immobilised pH gradient
 nLC-MS/MS - nano-liquid chromatography coupled to tandem mass spectrometry
 PBS - phosphate buffered saline
 SDRPs - short digestion resistant peptides ($<10 \mathrm{kDa}$)
 Tris - tris(Hydroxymethyl)aminomethane

