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Influence of Physical and Geometrical 
System Parameters Uncertainties on 
the Nonlinear Oscillations of 
Cylindrical Shells 
This work investigates the influence of physical and geometrical system parameters 
uncertainties and excitation noise on the nonlinear vibrations and stability of simply-
supported cylindrical shells. These parameters are composed of both deterministic and 
random terms. Donnell’s non-linear shallow shell theory is used to study the non-linear 
vibrations of the shell. To discretize the partial differential equations of motion, first, a 
general expression for the transversal displacement is obtained by a perturbation 
procedure which identifies all modes that couple with the linear modes through the 
quadratic and cubic nonlinearities. Then, a particular solution is selected which ensures 
the convergence of the response up to very large deflections. Finally, the in-plane 
displacements are obtained as a function of the transversal displacement by solving the in-
plane equations analytically and imposing the necessary boundary, continuity and 
symmetry conditions. Substituting the obtained modal expansions into the equation of 
motion and applying the Galerkin’s method, a discrete system in time domain is obtained. 
Several numerical strategies are used to study the nonlinear behavior of the shell 
considering the uncertainties in the physical and geometrical system parameters. Special 
attention is given to the influence of the uncertainties on the parametric instability and 
escape boundaries. 
Keywords: dynamic instability, uncertainties, nonlinear analysis, cylindrical shells 
 

Introduction1 

Cylindrical shells are one of the most common structural 

elements with applications in nearly all engineering fields. They 

are particularly suited to withstand axial loads and lateral pressure. 

Under these loading conditions thin-walled cylindrical shells 

usually display a complex nonlinear response due to modal 

coupling and interaction and high imperfection sensitivity. The 

study of the nonlinear vibrations of cylindrical shells goes back to 

the middle of the last century with the works by Chu (1961), 

Nowinski (1963), Evensen (1963, 1967) and Olson (1965), among 

others. In these works either the Ritz or Galerkin method are used 

to discretize the shell. For this, a modal expansion for the 

displacement field is necessary. The development of consistent 

modal solutions capable of describing the main modal interactions 

observed in cylindrical shells has received much attention in 

literature. A detailed review of this subject was published in 2003 

by Amabili and Païdoussis (2003). 

 

 
Figure 1. Comparison of the theoretical critical load of a cylindrical shell 
under axial load with the scatter of experimental results. 
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Also, a considerable effort in structural engineering has been 

directed towards understanding the behavior of structures liable to 

buckling (Bazant and Cedolin, 1991). This step is essential for the 

development of safe design criteria (Ziemian, 2010). While a good 

correlation between the experimental results and the theoretical 

critical loads can be observed for structural elements exhibiting 

stable post-buckling behavior, such as plates and columns, a 

persistent discrepancy between theoretical and experimental 

buckling loads is observed for structural systems exhibiting unstable 

post-buckling behavior, being the experimental results lower than 

the theoretical ones. Figure 1 compares the normalized theoretical 

critical load of a perfect cylindrical shell under axial load with the 

scatter of experimental results found in the literature (Batista and 

Gonçalves, 1994). Here (R/h) is the radius-to-thickness ratio, which 

is a measure of the shell slenderness. The experimental results are 

much lower than the theoretical critical load, being the theoretical 

value a distant upper bound. This is an archetypal example of an 

imperfection sensitive structure in structural stability. 

A general explanation for this upsetting behavior was given by 

Koiter in his pioneering work on the general theory of buckling and 

post-buckling behavior of elastic structures (Koiter, 1945; 

Kounandis, 2006). Koiter showed that imperfections in the 

geometry or in the load may decrease substantially the load carrying 

capacity of these structures under slow variation of the applied load. 

However these imperfections are not known a priori and may even 

change during the service life of the structure. In addition, load 

imperfections may cause a further decrease in the critical load. This 

scenario becomes even worse if the unavoidable uncertainties in 

system parameters are also taken into account. Since the expressions 

for the critical load are developed based on a static equilibrium 

analysis, they actually calculate an upper bound for the load 

carrying capacity of the real structure, as they do not take into 

account the disturbances imposed upon the imperfect structure 

during its service life (Santee, 1999). The influence of these 

disturbances on the integrity of the structure can be evaluated by 

analyzing the evolution of the basins of attraction of the stable 

equilibrium configurations as a function of the system parameters. 

This issue was first addressed by Thompson and co-workers 

(Thompson, 1989; Soliman and Thompson, 1989, 1992). They 

introduced the concepts of safe basin and erosion profiles. It was 
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further analyzed by several authors and nowadays it is agreed that 

the safety of a nonlinear mechanical system or structure depends not 

only on the stability of their solutions, but also on the continuous 

and uncorrupted basin surrounding each solution, the total erosion 

of a given basin corresponding to the system failure. The integrity of 

a basin of attraction depends on the topology of the basin boundary, 

which can be smooth or fractal, and on the way that the basins of the 

various co-existing solutions interfere with each other. This topic is 

particularly important in systems exhibiting multiple potential well, 

where the basins of various in-well and cross-well solutions are 

intertwined. In a recent work Rega and Lenci (2005) summarized 

the current knowledge in the area and introduced new concepts 

which can be efficiently used for the integrity analysis of nonlinear 

systems. Recently, using these concepts, Gonçalves et al. (2011) 

studied the global dynamics and topological integrity of the basins 

of attraction of a parametrically excited cylindrical shell through a 

two-degree-of-freedom reduced order model. However the 

investigation of the influence of uncertainties and random noise on 

the evolution and stratification of the basins of attraction must also 

be carried out to arrive at a safe load level for design. 

To take indirectly into account these deleterious effects, several 

lower bounds of static buckling loads have been proposed for 

design. They are usually based on the scatter of experimental 

buckling loads and energy considerations (Batista and Gonçalves, 

1994). Estimate of the dynamic buckling load of structures with 

unstable post-buckling behavior – the load corresponding to escape 

from the safe pre-buckling well – considering the effects of 

uncertainties and imperfections is a much more difficult task. 

Structures under dynamic loads may exhibit both local and global 

bifurcations that affect in different ways the load carrying capacity 

and degree of safety of the structure. Global bifurcations are 

particularly important since they control, as shown by Soliman and 

Thompson (1989), the evolution of the basins of attraction of the 

solutions in phase space. In addition, compared with the static case, 

the number of load control parameters is higher. Finally, 

experimental results of dynamic buckling loads of slender structures 

are rather scarce in literature (Virgin, 2000; Amabili, 2008). 

Therefore, little is known on the effects of uncertainties on the load 

carrying capacity of structures liable to unstable static buckling in a 

dynamic environment. In a recent work Gonçalves and Santee 

(2008) analyzed the influence of uncertainties on the load carrying 

capacity of a simplified structural model exhibiting unstable post-

buckling behavior. Using several tools of non-linear dynamics, they 

showed that the uncertainties have an influence similar and of the 

same order as geometric imperfections on the scatter of buckling 

loads and proposed a safe lower bound based on Melnikov’s 

criterion. Thus, the aim of the present work is, using a similar 

methodology, to study the influence of uncertainties on the dynamic 

stability of a cylindrical shell under axial loads.  

The influence of combined random material and geometric 

properties on the free vibration frequencies and buckling loads of 

cylindrical shells has been investigated by, among others, Yadav 

and Verma (2001); Singh, Yadav and Iyengar (2002); Stefanou and 

Papadrakakis (2004); Papadopaulos and Papadrakakis (2005); 

Kriegesmann et al. (2010) and Stefanou (2011). On the other hand, 

there is a lack of information on the influence of these uncertainties 

on the post-buckling behavior and particularly on the nonlinear 

oscillations of these structures. However, for other systems, a 

number of publications, in recent years, have investigated the 

influence of random noise on their bifurcations, basins of attraction 

and the competition between different attractors (Lai and Winslow, 

1994; Kraut, Feudel, and Grebogi, 1999; Kraut and Feudel, 2002). 

As an extension of these previous works, and following the 

methodology described in Gonçalves, Silva and Del Prado (2008) 

for the derivation of consistent reduced order models for the 

nonlinear vibrations of cylindrical shells, the present work 

investigates the influence of small uncertainties in the physical and 

geometrical parameters of the shell and the unavoidable noise 

present in the axial excitation on the dynamic buckling loads and 

bifurcation diagrams. For this, a detailed parametric analysis is 

carried out to clarify the influence of uncertainties in load and 

system parameters. 

Nomenclature 

D = flexural stiffness of the shell, N.m 

E = Young’s modulus, Pa 

G(P1, ω, t) = random disturbance in axial load, N/m 

h = thickness, m 

L = length, m 

m, n = number of longitudinal half-waves and 

circumferential waves, respectively 

Mx, Mθ, Mxθ = moments resultants in, respectively, axial, 

circumferential and in-plane direction, N.m/m 

Nx, Nθ, Nxθ = force resultants in, respectively, axial, 

circumferential and in-plane direction, N/m 

P0 = axial static pre-load, N/m 

P1 = amplitude of the deterministic harmonic axial 

load, N/m 

Pcr = classical axial buckling load, N/m 

Q = parameter which expresses the quality of the 

fabrication process 

R = radius, m 

t = time, s 

u, v, w = axial, circumferential and transversal 

displacements of shell’s middle surface, m 

x = axial coordinate, m 

W = non-dimensional parameter for transversal 

displacements 

z = transversal coordinate, m 

Greek Symbols 

α = system parameter (E, υ, ρ, L, R or h) 

α0 = mean value of the chosen parameter (design value) 

δ = standard deviation parameter 

ε = non-dimensional parameter for axial coordinate 

Γ0 = non-dimensional parameter for axial static pre-load 

Γ1 = non-dimensional parameter for amplitude of the 

deterministic harmonic axial load 

η1, η2 = linear viscous and viscoelastic material 

damping coefficient 

υ = Poisson’s coefficient 

θ = circumferential coordinate, rad 

ρ = mass density, kg/m³ 

xσ , θσ  = stresses at an arbitrary point of shell in, 

respectively, axial and circumferential direction 

2
GGσ   = variance of the random force amplitude 

θτ x   = tangential resultant stresses at an arbitrary 

point of shell 

τ = non-dimensional parameter for time 

ω = deterministic excitation frequency, rad/s 

ω0 = lowest vibration frequency of the shell for 

nominal values of physical and geometrical 

parameters, rad/s 

ωl = frequency bandwidth of the excitation 

frequency, rad/s 

Ω = non-dimensional parameter for deterministic 

excitation frequency 
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Problem Formulation 

Shell equation 

Consider a cylindrical shell of radius R, thickness h and length 

L, made of a linear elastic material with Young’s modulus E, 

Poisson coefficient υ and mass density ρ. For an isotropic shell the 

stresses at an arbitrary point are given in terms of the middle surface 

strains and changes of curvature, according to Donnell’s shallow 

shell theory, by: 
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The shell is subjected to a harmonic axial load of the form: 
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(2)  

 

where P0 is the axial static pre-load, P1 is the amplitude of the 

deterministic harmonic load, ω is the deterministic excitation 

frequency, t is time and G(P1, ω, t) is the random disturbance that 

depends on the deterministic parameters P1 and ω. 

The nonlinear equations of motion, considering only the 

transversal inertia and damping forces, are given in terms of the 

force and moments resultants as: 
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where η1 and η2 are, respectively, the linear viscous damping and 

the viscoelastic material damping coefficients, D = Eh
3/12(1 – υ 2) 

is the flexural stiffness of the shell, ω0 is the lowest vibration 

frequency of the shell for nominal values of physical and 

geometrical parameters and the force and moments’ resultants are 

obtained by the integration of the stress components along the shell 

thickness as follows: 
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For a simply-supported shell, the following boundary conditions 

must be satisfied: 

 

( ) ( ) 0,,0 == θθ Lvv
                                                                   

(7)  

( ) ( ) 0,,0 == θθ Lww                                                            (8)  

( ) ( ) 0,,0 == θθ LMM xx                                                           (9)  

( ) ( ) 0,,0 == θθ LNN xx                                                         (10)  

 

The boundary condition, Eq. (10), is a nonlinear boundary 

condition when written in terms of the displacements, that is: 
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The displacement field, in this work, is also required to satisfy 

the following conditions: 

 

( ) 0,2 =θLu     and    ( ) ( )π2,0, xvxv =
                                

(12)  

 

The symmetry of the axial displacement field is a consequence 

of the adopted modal solution for the transversal displacement 

field and the symmetry of the boundary conditions (Eqs. (7)-(10)). 

In the foregoing, the following non-dimensional parameters have 

been introduced: 
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Here Pcr is the classical axial buckling load of the shell. 

General solution of the shell displacement field by a 

perturbation procedure 

The numerical model is developed by expanding the transversal 

displacement component w in series in the circumferential and axial 

variables. From previous investigations on modal solutions for the 

nonlinear analysis of cylindrical shells under axial loads (Gonçalves 

and Batista, 1988; Gonçalves and Del Prado, 2002, 2005), it is 

observed that, in order to obtain a consistent modeling with a 

limited number of modes, the sum of shape functions for the 

displacements must express the nonlinear coupling between the 

modes and describe consistently the unstable post-buckling response 

of the shell as well as the correct frequency-amplitude relation. 

Based on a perturbation procedure, the lateral deflection w can 

be described as: 
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By imposing the boundary conditions, Eq. (8) and Eq. (9), and 

by retaining in Eq. (14) the number of modes necessary to achieve 

convergence up to very large deflections, one obtains for the 

transversal displacement (Gonçalves, Silva and Del Prado, 2008; 

Silva, Gonçalves and Del Prado, 2011): 
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The in-plane displacements u and v are obtained by substituting 

Eq. (15) into the in-plane equilibrium equations, Eq. (3) and Eq. (4), 

and by solving the system of linear partial differential equations in u 

and v and imposing the relevant boundary, symmetry and continuity 

conditions. Based on this procedure one obtains the necessary 

number of in-plane modes and writes their modal amplitudes in 

terms of the modal amplitudes ζ ij(t) in Eq. (15) (Gonçalves, Silva 

and Del Prado, 2008; Silva, Gonçalves and Del Prado, 2011). 

Finally, by substituting the adopted expansion for the transversal 

displacement w together with the obtained expressions for u and v 

into the equation of motion in the transversal direction, Eq. (5), and 

by applying the standard Galerkin method, a consistent discretized 

system of ordinary differential equations of motion is derived. 

Simulation of the uncertainties in the physical and 

geometric parameters 

The physical parameters (E, υ and ρ) and the geometrical 

parameters (L, R and h) of the shell usually have some reference 

values which are defined at the stage of design. However, depending 

on the allowable tolerances in the fabrication process, small variations 

of these parameters may occur. Usually these small variations have a 

negligible influence on the load capacity of the structure. But in 

structural systems liable to buckling, due mainly to the inherent 

nonlinearity of the buckling process, small changes may lead to 

significant changes in the load capacity and safety of the structure. 

For each physical and geometrical parameter, α, the following 

uniform probability density function, f, is assumed (Gonçalves and 

Santee, 2008): 
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where α is the system parameter (E, υ, ρ, L, R or h), α0 is the mean 

value of the chosen parameter (design value), and Q is a parameter 

which expresses the quality of the fabrication process as a 

percentage of the mean value, α0. 

Simulation of the random force 

For the numerical calculations of the present work, the non-

deterministic term of the axial load in Eq. (2), G(P1, ω, t), is 

considered as a stationary and ergodic continuous stochastic process 

in time (Gonçalves and Santee, 2008). Another hypothesis is that the 

stochastic process G(P1, ω, t) has a zero expected value, that is: 
 

( )[ ] 0,,1 =tPGE ω                                                                    (17)  

 

The description of a stochastic process is usually made in the 

frequency domain. Here, it is assumed that the random term 

G(P1, ω, t) has a spectral density function given by: 
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where 
2
GGσ  is the variance of the random force amplitude and ωl is 

the frequency bandwidth of the excitation frequency. 

Additionally, it is considered that the standard deviation of the 

random force amplitude is proportional to the deterministic force 

amplitude, P1, thus: 
 

1PGG δσ =
                                                                              

(19)  

 

where δ is the standard deviation parameter of proportionality. So, 

the random force is a stochastic process that depends on the 

frequency, ω, and amplitude, P1, of the deterministic term. The 

numerical algorithms used in the present work can be found in 

Gonçalves and Santee (2008). 

Numerical Results 

Consider a cylindrical shell of radius R = 0.2 m, length L = 0.4 m 

and thickness h = 0.002 m. The shell material has the following 

properties: E = 210 GPa, υ = 0.3 and ρ = 7850 kg/m³. For this shell 

geometry the lowest buckling load as well as the lowest natural 

frequency are obtained for m = 1 and n = 5 (Gonçalves and Del Prado, 

2005). The viscous and material damping coefficients, η1 and η2, are, 

respectively, 0.0008 and 0.0001. These values will be used throughout 

the present numerical analysis. These values are based on the 

experimental results by Amabili and co-workers (Amabili, 2008). 

Numerical results with physical and geometrical uncertainties 

The continuous black curves in Figs. 2 and 3 are the parametric 

and permanent escape boundaries in the force control space, 

considering a deterministic harmonic axial load in Eq. (2) 

(G(P1, ω, t) = 0). The dashed horizontal line represents the critical 

static axial load, Γcr = Γ0 + Γ1. The dashed vertical lines identify the 

lowest natural frequency of the shell and twice this value, which 

corresponds to the main parametric resonance region. The region 

below the parametric instability boundary corresponds to sets of 

load parameters (frequency/forcing amplitude) that lead to stable 

trivial solutions, that is, under small perturbations the perturbed 

response tends to zero as time increases. The region above the 

escape boundary corresponds to force parameters that lead to escape 

from the pre-buckling well. After escape, the shell may exhibit 

small amplitude oscillations around a post-buckling equilibrium 

position or large cross-well motions. Between these two regions, 

there is a region with a complex dynamics where, depending on the 

initial conditions, the shell may display harmonic or sub-harmonic 

motions within the pre-buckling well or escape from the pre-

buckling well. In this region, the dynamic response and, 

consequently, the dynamic buckling load are rather sensitive to 

physical and geometrical uncertainties. 

Figures 2 and 3 show the influence of the uncertainty in the 

Young modulus E and in shell thickness h on the parametric 

instability and escape boundaries in the force control space. In these 

figures, the curves in gray are derived from the analysis of ten 

samples randomly generated within the range of the quality 

parameter (Q) in Eq. (16).  
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(a) Q = 5 (b) Q = 10 (c) Q = 15 

   
(d) Q = 5 (e) Q = 10 (f) Q = 15 

Figure 2. Parametric and escape instability boundaries in the force control space, considering an uncertainty in the Young modulus, E. (ΓΓΓΓ0 = 0.40, 

G(P1, ωωωω, t) = 0). 

 

   
(a) Q = 5 (b) Q = 10 (c) Q = 15 

   
(d) Q = 5 (e) Q = 10 (f) Q = 15 

Figure 3. Parametric and escape instability boundaries in the force control space, considering an uncertainty in the shell thickness, h. (ΓΓΓΓ0 = 0.40, 

G(P1, ωωωω, t) = 0). 
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The curves in gray in Figs. 2a-c and 3a-c represent, respectively, 

the mean parametric instability boundary and escape boundary, 

obtained using the arithmetic mean value of the ten critical loads. 

The curves in gray in Figs. 2d-f and 3d-f illustrate, respectively, the 

parametric and escape instability boundaries considering the average 

value plus or minus the standard deviation of ten samples. 

The stability boundaries shown in Figs. 2a-c and 3a-c obtained by 

the mean value of the critical loads are slightly different from those 

obtained for the reference system. This difference increases with the 

value of Q. In all cases the upper and lower bounds of the ten samples, 

as shown in Figs. 2f and 3f, lead to a high variability of the critical 

loads, especially on the right hand side of the main parametric 

instability region where the parametric instability is characterized by a 

super-critical bifurcation leading to a period two solution. The critical 

load is particularly sensitive to the small variations in the shell 

thickness, as expected for a thin-walled structure. 

Figure 4 illustrates the possible types of the shell response in the 

vicinity of each stability boundary shown in Fig. 2 through time 

responses, projections of the phase space and Poincaré sections (dots 

along the phase space projections). If the cylinder is subjected to a 

periodic axial load, it will undergo the familiar longitudinal forced 

vibration, exhibiting a uniform transversal motion, due to the effect of 

Poisson’s ration, also known as breathing mode. However at certain 

critical values, the longitudinal motion becomes unstable and the 

cylinder executes transverse bending vibrations. In Fig. 4a, for a 

forcing amplitude lower than the critical value (Γ1 = 0.60) and Ω = 

1.20, after a small initial disturbance, the amplitude of the response 

decreases rapidly converging to the trivial solution. If the control 

parameter Γ1 is increased slightly beyond the critical value, (Γ1 = 

0.65), the shell exhibits initially an exponential growth of the 

amplitude, as predicted by the linear theory, converging to a limit 

cycle within the pre-buckling well. In this case the trivial solution 

becomes unstable and the system converges to a period-two stable 

solution (a period-k response means a steady state response with a 

period k times that of the forcing). Figure 4b illustrates the shell 

response in the vicinity of the escape boundary. For Γ1 = 0.60 and Ω = 

1.60 the response converges to a limit cycle of period two within the 

pre-buckling well. For Γ1 = 0.65 the motion can no longer remain 

within the pre-buckling well and converges to a remote attractor, 

exhibiting large amplitude cross-well motions. These possible 

outcomes are rather sensitive to initial conditions and system 

parameters. So, small variations on these data may lead to different 

system responses, which may affect the safety of the structure. 

 

 

 

 

 

 
(a) Ω = 1.20 

  
(b) Ω = 1.60 

Figure 4. Time responses, phase-portraits and Poincaré maps. (ΓΓΓΓ0 = 0.40, G(P1, ωωωω, t) = 0). Sample 3 (E = 224,87 GPa) – Q = 10. 

 

 

Figures 5-8 show characteristic bifurcation diagrams of the left 

and right hand sides of the main parametric instability region. 

Figures 5 and 7 correspond to sub-critical bifurcations 

representative of the left hand side of the instability region while 

Figs. 6 and 8 correspond to super-critical bifurcation representative 

of the right hand side of the instability region. These bifurcation 

diagrams are obtained by the brute force method which maps a 

sequence of stable responses as the bifurcation parameter increases. 

They are obtained by fixing the forcing frequency and increasing 

slowly the forcing amplitude. 

The black curves are the coordinate ζ11(τ) of the Poincaré map 

of the reference solution obtained with the design values. The gray 

curves represent the lower and upper bounds of the coordinate ζ11(τ) 

of the Poincaré map considering the ten different samples. Figures 5 

and 6 show the influence of the uncertainties in the value of the 

Young modulus while Figs. 7 and 8 illustrate the influence of small 

variations in the shell thickness. 

These figures show that small variations in these parameters may 

lead to significant variations in the critical loads and also in each time 

response, leading to new bifurcations, as illustrated in Fig. 9, where 

the bifurcation diagrams obtained for two different values of the 

Young modulus are presented. Not only variations in the maximum 

values of the displacements and velocities occur, but also different 

branches of solutions appear. 
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(a) Q = 5 (b) Q = 10 (c) Q = 15 

Figure 5. Bifurcation diagram considering an uncertainty in the Young modulus. ΓΓΓΓ0 = 0.40, ΩΩΩΩ = 1.50, G(P1, ωωωω, t) = 0. 
 

   
(a) Q = 5 (b) Q = 10 (c) Q = 15 

Figure 6. Bifurcation diagram considering an uncertainty in the Young modulus. ΓΓΓΓ0 = 0.40, ΩΩΩΩ = 1.80, G(P1, ωωωω, t) = 0. 
 

   
(a) Q = 5 (b) Q = 10 (c) Q = 15 

Figure 7. Bifurcation diagram considering an uncertainty in the shell thickness. ΓΓΓΓ0 = 0.40, ΩΩΩΩ = 1.50, G(P1, ωωωω, t) = 0. 
 

   
(a) Q = 5 (b) Q = 10 (c) Q = 15 

Figure 8. Bifurcation diagram considering an uncertainty in the shell thickness. ΓΓΓΓ0 = 0.40, ΩΩΩΩ = 1.80, G(P1, ωωωω, t) = 0. 
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(a) sample 3 (E = 224,87 GPa) – Q = 10 

 
(b) sample 5 (E = 237,05 GPa) – Q = 10 

Figure 9. Two samples of the bifurcation diagram considering an 

uncertainty in Young modulus. ΓΓΓΓ0 = 0.40, ΩΩΩΩ = 1.80, G(P1, ωωωω, t) = 0. 

 
 

 

Figure 10. Phase-portrait and Poincaré map for ΓΓΓΓ0 = 0.40, ΓΓΓΓ1 = 1.00, ΩΩΩΩ = 

1.80, G(P1, ωωωω, t) = 0. Uncertainty in Young modulus. 

 

Figure 10 shows two different shell responses when an 

uncertainty in Young modulus is considered. While in one case a 

period two response is observed, in the other the steady state 

response exhibit a period four times greater than that of the forcing. 

While the former results from one period doubling bifurcation, the 

latter is the result of two period doubling bifurcations. This shows 

that small variations in one parameter may lead to different 

bifurcation scenarios. 

Numerical results with random forces 

Figure 11 shows the influence of the random portion of the load, 

G(P1, ω, t), described by Eq. (2), on the parametric instability and 

escape boundaries of the axially loaded cylindrical shell for one 

bandwidth, ωl, 0.50 and two values of the standard deviation 

parameter, δ, 0.05 and 0.10. For this value of ωl and δ ten samples 

are generated and the two critical loads are evaluated, considering 

the average values of the shell geometry and physical parameters. In 

Fig. 11, curves in black are the results for a deterministic harmonic 

force, as shown in Figs. 2 and 3. The dashed gray curves represent 

the average of the escape load. The presence of noise leads to a 

dispersion of the results in the right side of the instability region. 

The continuous gray curves represent the value of the mean load 

added or subtracted from the value of the standard deviation of ten 

samples. As the standard deviation parameter, δ, increases, the 

dispersion of the dynamic buckling loads increase. Also all escape 

loads of the perturbed system are lower than the permanent escape 

load of the shell under a deterministic load. So, the shell is sensitive 

to noise in the excitation and this decreases the safety of the shell in 

a dynamic environment. 

 

 
(a) δ = 0.05 

 
(b) δ = 0.10 

Figure 11. Instability boundaries in force control space. (ΓΓΓΓ0 = 0.40, 

ωωωωl = 0.50). 

 

Figure 12 shows two time responses considering the same set 

of force parameters (Γ0 = 0.40, Γ1 = 0.675, Ω = 1.60, ωl = 0.25, 

δ = 0.10), but two different random perturbations. As shown in 

Fig. 12, the escape in these circumstances is indeterminate; the 

long term response may escape or remain within the pre-buckling 

well, depending on the external noise, or even escape for a while 

and return to the pre-buckling well. While the system under 
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deterministic load displays a sub-harmonic response of period two, 

the perturbed system exhibit a quasi-periodic motion. 

Figure 13 illustrates the characteristic bifurcation diagrams of 

the main parametric instability region considering Γ0 = 0.40, 

ωl = 0.25, δ = 0.10. Figure 13a shows a sub-critical bifurcation 

representative of the shell behavior on the left hand side of the main 

instability region, while Fig. 13b illustrates the behavior of the shell 

on the right hand side of the main instability region. The black dots 

represent the coordinate ζ11(τ) of the Poincaré map of the shell 

under deterministic harmonic load, while the two gray curves 

represent the bounds of the coordinates of the Poincaré map 

obtained after ten samples of the perturbed load (gray dots). The 

results show that the random small perturbation of the harmonic 

forcing does not change the overall behavior and bifurcations of the 

system, causing only small perturbations of the Poincaré map 

around the fixed points of the deterministic system due to the 

perturbations of the orbit as illustrated in Fig. 13. The dispersion of 

points around the fixed points increases as δ increases. 

 

      
Figure 12. Time response and phase portrait of the cylindrical shell under random noise. (ΓΓΓΓ0 = 0.40, ΓΓΓΓ1 = 0.675, ΩΩΩΩ = 1.60, ωωωωl = 0.25, δδδδ = 0.10). 

 
(a) Ω = 1.50 

 
(b) Ω = 1.60 

Figure 13. Bifurcation diagrams of the cylindrical shell. (ΓΓΓΓ0 = 0.40, 

ωωωωl = 0.25, δδδδ = 0.10). 

Figure 14 illustrates the influence of random noise on the basin 

of attraction of the shell considering Γ0 = 0.40, Γ1 = 0.40, Ω = 1.60. 

It shows three cross-sections of the twelve-dimensional basin of 

attraction by the ζ11(τ) x dζ11(τ)/dτ plane. A total of 150 x 150 cells 

are considered in the analysis. The black region corresponds to the 

initial conditions that converge to the period two attractor within the 

pre-buckling well, while the gray region corresponds to initial 

conditions that lead to a period two large-amplitude solution outside 

the pre-buckling well. Figure 14a corresponds to the deterministic 

case and Fig. 14b and Fig. 14c are related to perturbed solutions 

obtained with δ = 0.05 and δ = 0.10, respectively, and ωl = 0.25. In 

the deterministic case each set of initial conditions leads to a 

specific attractor. In the non-deterministic case, for each set of initial 

conditions, the equations of motion are integrated using ten different 

samples of random perturbation. If in all cases all responses 

converge to the same attractor as in the deterministic case, the cell is 

either marked in black or gray, but if they converge to different 

attractors or if the attractor is different from the one identified in the 

deterministic case, this means that the response associated with a 

given set of initial conditions is sensitive to random noise and the 

cell is marked in white in Fig. 14b and Fig. 14c. As the standard 

deviation parameter δ increases the white region increases, 

decreasing the safe region associated with a given attractor. 

Figure 15 shows the probability density function of the initial 

conditions used for the construction of the basins of attraction of Fig. 

14. In these figures 22500 sets of initial conditions randomly 

distributed in the plane ζ11(τ) x dζ11(τ)/dτ are used and, for each set, 

the equations of motion are integrated during 400 periods of the 

harmonic deterministic force. The plane is discretized with 150 x 150 

cells and the number of times that each cell is visited is computed, 

obtaining in this way a numerical probability density (Kraut, Feudel, 

and Grebogi, 1999). In the deterministic case, Fig. 15a, sharp peaks 

are observed in the coordinates corresponding to the fixed points of 

the small amplitude and large amplitude period two attractors of the 

basin of attraction depicted in Fig. 15a. As the standard deviation 

parameter δ and consequently the noise increase, the Poincaré sections 

show an increasing dispersion of points as illustrated in Fig. 13, which 

is reflected in the associated probability densities shown in Fig. 15b 

and Fig. 15c. 
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(a) ωl = 0.0, δ = 0.00 (b) ωl = 0.25, δ = 0.05 (c) ωl = 0.25, δ = 0.10 

Figure 14. Cross sections of the basin of the attraction of the shell submitted to (a) a deterministic and (b, c) non-deterministic load. (ΓΓΓΓ0 = 0.40, ΓΓΓΓ1 = 0.40, 

ΩΩΩΩ = 1.60). 

  

(a) ωl = 0.0, δ = 0.00 (b) ωl = 0.25, δ = 0.05 

 

(c) ωl = 0.25, δ = 0.10 

Figure 15. Probability density functions for the set of initial conditions analyzed in Fig. 14. (ΓΓΓΓ0 = 0.40, ΓΓΓΓ1 = 0.40, ΩΩΩΩ = 1.60). 

 

Conclusions 

In this work Donnell’s shallow shell equations are used to 

study the nonlinear vibrations and instabilities of a simply-

supported cylindrical shell. A reduced order model is derived, 

which satisfies the relevant boundary, continuity and symmetry 

conditions of the problem and describes with precision the shell 

motions up to large deflections. The parametric analysis clarifies 

the influence of small uncertainties of physical parameters and 

geometry of the shell on the parametric instability and escape 

boundaries. Small variations of the physical and/or geometric 

parameters lead to a dispersion of the results around the average 

critical values, in particular variations in the geometric 

parameters. This leads to critical loads much lower than the 

theoretical critical load in some forcing frequency regions, 

resulting in a decrease in the load carrying capacity, which must 

be carefully considered at the stage of design. The influence of 

random noise on the axial load is also investigated. The random 

noise transforms the n-periodic harmonic responses of the shell 

into quasi-periodic responses, but does not change the type of 
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bifurcation connected with the observed instability phenomena, 

namely, parametric instability and escape from the pre-buckling 

well. However, in a slowly evolving system the random noise may 

decrease the escape load in certain excitation frequency ranges. 

Also, it adds a certain degree of uncertainty to the basin 

boundaries decreasing the safe region of the shell. The results 

show that in structures liable do instability, the effect of small 

uncertainties must be taken into account in the definition of 

reliable safety factors for design. 
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