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We demonstrate that the spatially modulated electric field that is associated with a photorefractive grating gen-
erates stress and strain components with symmetries that are different from those induced by a uniform
electric field. Therefore, because of piezoelectricity and the elasto-optic effect, the symmetries of the effective
dielectric and electro-optic constants to be used to describe the photorefractive effect differ from the sym-
metries of the usual dielectric and electro-optic tensors. We derive analytical expressions to be used to com-
pute these new constants from the measured clamped and unclamped dielectric and electro-optic coefficients.
Experimental evidence is presented.

1. INTRODUCTION

The physics of the photorefractive effect is now well
understood.1 A photorefractive grating results from
a photoinduced charge redistribution in the bulk of the
material. The associated photoinduced electric field in
turn generates an index change. To predict the kinetics
and the steady state of the photorefractive effect, it is
therefore necessary to determine the exact relations,
first, between the charge pattern and the electric field
and, second, between the electric field and the index grat-
ing. Because of the elasto-optic effect, the deformations
induced by the electric field (piezoelectricity2 ) must be
taken into account. For example, Stepanoy et al.' demon-
strated the influence of piezoelectricity (by means of the
elasto-optic effect) on the optical index changes in cubic
crystals. The dielectric tensor and electro-optic tensor
have already been measured for most photorefractive ma-
terials and for both clamped and unclamped samples.
However, these results, obtained by applying a uniform
electric field to the crystal, cannot be directly used for
spatially modulated electric fields such as those associated
with photorefractive gratings. Here we explain that the
deformations induced by spatially modulated electric
fields indeed necessarily differ from those induced by uni-
form fields. We demonstrate that the effective dielectric
and electro-optic coefficients that should be used in pho-
torefractive experiments are neither the clamped nor the
unclamped coefficients determined by the usual measure-
ments but that they can be computed from these values.

The notation that we need for the mathematical analysis
is given in Section 2. In Section 3 we recall the well-
known results concerning the refractive index and dielec-
tric changes induced by a uniform electric field. In
Section 4 we explain the mechanism of the breaking of
the crystal symmetry by a spatially modulated electric
field. Then we derive the expressions for the effective
dielectric and electro-optic coefficients, and we apply
these results to BaTiO3 and Bi12GeO20 crystals.

placement D. We may choose at least two different equiva-
lent sets of independent variables, In what follows we
use (, E) and (8, E). With the Einstein summation con-
vention we have

By = sijklk + dkpjEh,

Di = dijkajk + eoe970Ej,

(la)

(lb)

or

0ij = CUklkl - eki Ek,

D = eijk6jk + EoE.J
0Ej,

(2a)

(2b)

where

3ij, i, E, and Di are the components of the strain ten-
sor, stress tensor, electric field, and electric displacement;

sib, and cijzk are the components of the elastic tensor and
rigidity tensor;

eiJk and dijk are the components of the piezoelectric
tensors;

e0 is the free-space permittivity, and E6=0 and Ej0 are
the components of the relative static dielectric tensors for
totally clamped (strain-free) and totally unclamped (stress-
free) crystals.

Equations (1) and (2) are equivalent, and the relations
between their coefficients can be easily determined. 2

Quite often Eqs. (1) and (2) are expressed with abbrevi-
ated notation for simplicity. However, this abbreviated
notation is not convenient when changes of axes are
needed, and therefore we use it not to carry out the calcu-
lation but only to give the numerical values of coefficients.

The effect of the internal electric field E and of the
induced strain on the impermeability is given by the
change in the impermeability tensor, which has compo-
nents A-qi>:

A-ij = r` 0Ek + p egd k1,

2. BASIC NOTATION

An internal electric field E inside a piezoelectric crystal
modifies the stress a, the strain 8, and the electric dis-

(3)

with rk the components of the totally clamped electro-
optic tensor and p E=

0 the components of the elasto-optic
tensor.
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The nonvanishing values for the various coefficients
of a number of crystals are listed in Appendix A by using
abbreviated notations.2 The electro-optic coefficients
given in Appendix A are the totally unclamped coeffi-
cients.

In what follows, given the electric field, we calculate the
components Ai, and Di. We first determine the strain .

3. UNIFORM INTERNAL ELECTRIC FIELDS

In this section we assume that a given voltage is applied to
the sample, resulting in a uniform internal field. d is the
spacing between the two parallel electrodes, the modulus
of the internal field is V/d, and its direction is perpendicu-
lar to the electrodes. We also assume that the strain and
the stress are uniform, so that their values inside the ma-
terial are equal to their values on the boundaries. If the
sample is totally unclamped (e.g., o-ij = 0), the strain com-

ponents induced by the electric field are given by Eq. (la).
Inserting their values into Eq. (2b) and comparing the re-
sult to Eq. (lb), we get

Eu = e1 = + ekLdjkl/eO. (4)

U = f 8,dx + ,dy + 2z.dz,

the strain components Szx and 8,, equal to aU/ax, are
therefore also not equal to zero (as is true for many oth-
ers). The relations among &XZ, 3ZX, and oy are still
given by Eqs. (la) and (lb). This nonlocal effect is gen-
eral for all point groups and cannot be predicted from
Eqs. (1) and (2) alone.

To complete Eqs. (1) or (2), we can use the first principle
of dynamics.4 The forces that are due to stress vanish if
the sample is at equilibrium. For a unit volume the ex-
pressions of their components are'

(6)Fi = i = 
aXj

The boundary conditions impose the values of oij on the
crystal faces. Equation (6) is valid as soon as the photore-
fractive buildup time constant Tg is much larger than the
characteristic time constant of the mechanical vibration.
If A is the grating fringe spacing and if v is the velocity of
sound, then this condition can be expressed by

Similarly, we derive the expression for the totally
unclamped electro-optic coefficients railjk by using Eq. (3):

r ja = r° + Piilmdklm. (5)

We note that the totally clamped coefficients given in
Eqs. (4) and (5) do not correspond to the so-called clamped

coefficients that are measured in some experiments where
only the deformation along the field axis is forbidden; in
the above expressions all six possible deformations are for-
bidden. We computed the differences between strain-free
and stress-free coefficients according to the values listed
in Appendix A.

We found that for BaTiO3

el70
- El` = 2600, C3 - E3=0 45,

for Bi12GeO2 0

4_O _ =0 = nel -EV = 3 rO r'=o = 0o34 pm/Vr41 r 4 1

and for GaAs

E'_0 Ea= =5xlo 2 r41 - -01 pm/V
'5=0 = 5 r r -0 i0n9P/V.

4. SPATIALLY MODULATED INTERNAL
ELECTRIC FIELDS

A. Determination of the Strain Components
The above analysis is no longer possible when the electric
field is nonuniform. Equations (1) and (2) are not suffi-
cient to determine the deformation at every location in-
side the material. They give only a relation between the
components of 6, a, E, and D. For example, in a cubic

material (23 or 43 m), a simple (and wrong) analysis of the

symmetries (see Appendix A) seems to indicate that if a
field grating is along the x crystallographic axis then only
SY., 8z,, craze and o°,, can be different from zero. Actually
shear deformations (induced by by, and 3,) are spatially
modulated along the same axis as the internal field. ThE
macroscopic deformation' along the z axis being

Tg >> A/v. (7)

The velocity of sound being equal to a few kilometers
per second and the fringe spacing being equal to a few
micrometers, Tg must be greater than a few nanoseconds.
Therefore condition (7) is fulfilled in most experiments.

We must remark that, even in the absence of external
forces, Eq. (6) does not imply that the stress components
o,; are equal to zero inside the sample. In the more gen-
eral case strain and stress depend on the three space coor-
dinates. We now restrict our analysis to quasi-infinite
crystals whose dimensions are much larger than the
fringe spacing A of the induced grating. This situation
corresponds to most photorefractive experiments, in
which the fringe spacing is a few micrometers and the
sample dimensions are a few millimeters. However, our
analysis does not apply to thin samples, where surface de-
formations are of importance.' For infinite samples the
symmetry implies that the deformation is possible only
along the grating wave vector,6 which is also the field axis.
We thus conduct the calculation for a set of axes in which
the first axis x' is parallel to the electric field. All the
components in this new set are denoted by a prime. The
space derivatives with respect to y' and z' vanish, and
Eq. (6) reduces to

= 0.
ax'

(8)

As a consequence, the modulated part of cr'= equals zero.
From Eq. (2) we immediately obtain the only nonzero
strain component S'x =:

8.x=e'.x E-

c 'X'x'xx

51xy.W = az'= y'y = 0 , (9)

where E denotes the modulus of the field E.
If a, denotes the direction cosines of the electric field E

in the crystallographic axes, then e'' is expressed as a
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Fig. 1. Effective dielectric constant for BaTiO3 versus the angle
0 between the b crystallographic axis and the direction k of the
internal electric field, k being in the (b, c) plane: solid curve, spa-
tially modulated field; dashed curve, uniform field and stress-
free sample; dotted curve, uniform field and strain-free sample.

From Eqs. (13) and (14) we immediately get

ePff = ai 6s ° + eikjak )aj. (15)

C. Effective Electro-optic Coefficient

In the crystallographic axes the coupling of two optical
waves incident upon a photorefractive grating is related to
the nonlinear dielectric tensor for optical frequencies:

AE9? = -ni'nAA1ij/e0), (16)

where the values n?2 = l/eii are the squares of the optical
refractive indices.

vs and wi being the components of the two optical wave
polarization vectors, the coupling strength is proportional

15

function of the piezoelectric and rigidity tensor compo-
nents given in those axes:

= HE, (10)

with

3

Y ajajakejk
i,jk=1
3

1, amaa anCo=1
1, M no=l

S

810
c

a0

10

C)

(11)

The strain components can also be expressed relative to
the crystallographic axes:

0 
-1n/2 .1 /4 0

Angle (rad)

(a)

50

ai = aiajHE. (12)

Equation (12) demonstrates that a photorefractive grat-
ing can generate strain components that cannot be in-
duced by a uniform electric field (and conversely a
uniform field can induce strain components that cannot
be created by a photorefractive grating). For instance,
for cubic crystals and according to Eq. (la), with the dijk
coefficients given in Appendix A, a spatially uniform elec-
tric field along the [111] crystallographic direction can in-
duce only shear deformations (ij with i • j). However, if
the field is spatially modulated then all the strain compo-
nents are equal and differ from zero [Eq. (12)].

We can thus conclude that the piezoelectric tensor sym-
metry is modified by the inhomogeneous field.

B. Determination of the Effective Dielectric Constant

We derive the relative dielectric tensor ipr, to be used when
the electric field is spatially modulated, by inserting
Eq. (12) for ij into Eq. (2b). We get

,Etpr = e + eikjak-* (13)

Equation (13) is not convenient for performing the calcula-
tion and can be misleading because er itself depends on
the electric field by means of its direction cosines. Pois-
son's law, which links the modulated electric charge grat-
ing to the electric-field displacement, is used to define an
effective photorefractive static dielectric constant efrf:

div(ePrE) = efrf div E.

CO

0
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40 -
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Fig. 2. Dependence of the various coefficients for Bi12GeO20 on
the angle 0 between the [001] axis and the direction k of the inter-
nal electric field, k being in the (110) plane. (a) Deformation H as
defined by Eq. (11). (b) Effective dielectric constant. (c) Ratio
reff/n

4 : solid curve, spatially modulated field; dashed line, uni-
form field and stress-free sample; dotted line, uniform field and
strain-free sample.
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Fig. 3. Experimental data of two-beam-coupling gain (dots) and
theoretical plot of the variation (solid curve) of the effective
electro-optic coefficient reff/n4 versus angle 0, with the same con-
figuration as in Fig. 2 in the case of a modulated field. The
sample is a Bi12GeO20 crystal, and we used the numerical values
given in Appendix A for that type of material.

to the effective electo-optic coefficient rfrf:

rPfrf = -i* oE Age (17)

which can be rewritten by using Eqs. (3) and (12):

rP = i*(r5=* + pkaH)ak Wjn,2nj2. (18)

Uk~~~~~~~~~~~~~~~C

The asterisk denotes complex conjugation.
Equations (15) and (18) show that the constants that are

valid for a description. of the photorefractive effect are
neither the clamped nor the unclamped ones. According
to Eq. (8), the crystal must indeed always be considered as
internally un amped along the field axis x', whatever the
applied external forces are. Conversely, the other stress
components may be different from zero. Note that the
breaking of the crystal symmetry by the spatially modu-
lated field permits a nonzero repfff coefficient [Eq. (18)] in a
configuration (a given field direction and given optical
beam polarizations) for which a uniform field [Eq. (5)]
would not induce any index change. For example, for a
crystal belonging to the point-group symmetry 3 m, a
modulated field grating along the [111] crystallographic di-
rection can induce an isotropic coupling between two opti-
cal waves polarized along one crystallographic axis. Such
an isotropic coupling in these materials is forbidden by the
usual symmetry of the electro-optic tensor (riij = 0).

D. Application to BaTio3

Experiments are usually performed in BaTiO3 samples
with the induced grating wave vector lying in the (bc)
crystallographic plane. In Fig. 1 we have plotted the
dielectric constant efrf, given by Eq. (15), versus the angle 0
between the grating wave vector and the crystallographic
b axis. For comparison we have also plotted the effective
dielectric constants for a uniform electric field and for
totally unduamped (dashed curve) and clamped (dotted
curve) crystals. These constants are defined as mePff by
Eq. (15) with e9,=° or e,°substituted for EPyr

Figure 1 shows that the value of the effective dielectric
constant that is to be used with a modulated field and in
this particular crystallographic orientation lies between
the clamped and uniamped values. Unfortunately, we
could not find any values for the elasto-optic coefficients

in the literature, and therefore we cannot present any
conclusion for the effective electro-optic coefficient.

E. Application to Bi 12 GeOU

We consider the special case of a grating with a wave vec-
tor lying in the (110) plane, and we study the variation of
both -Pfrf and rfr as a function of the angle 0 between the
[001] axis and the wave vector. In Fig. 2(a) the coeffi-
cient H (e.g., the deformation) is plotted versus 0. H
shows a maximum for 0 = + 550. Figure 2(b) shows the
effective dielectric constant for a spatially modulated elec-
tric field (solid curve) and for a uniform field for both
totally unclamped (dashed line) and clamped (dotted line)
samples. In Fig. 2(c) we have plotted the ratio rf/n 4

(solid curve) seen by two circularly polarized interfering
beams with an external incident angle equal to ±15°. For
comparison we have also plotted the effective coefficients
by using the totally unclamped and clamped electro-optic
tensors in place of the term in parentheses in Eq. (18).

For = 0°, rf is equal to the clamped value [no defor-
mation as seen in Fig. 2(b)]. However, for 0 ± +45 rff
presents two maxima that are larger than both the
clamped and unclamped values. For this orientation
(electric field along the [111] crystallographic direction) all
possible deformations are excited, and they produce the
strongest elasto-optic index change. These two maxima
were observed by Stepanov et al.' The maxima have
equal magnitude because we assume a symmetric elasto-
optic tensor: PijkI = pklij However, that assumption is

not necessarily valid for materials that belong to the
point-group symmetry 23, so that the two maxima could
be of unequal magnitudes.

To check these predictions experimentally, we con-
ducted a two-beam-coupling experiment with a Bi12GeO20

sample in the configuration described above. Two circu-
larly polarized beams from an Ar' laser (514 nm) wrote a
grating with a fringe spacing of 1 pgm. The experimental
values for the two-wave mixing gain, proportional to reff,
are reported in Fig. 3. The experimental data are in
good agreement with the theoretical behavior predicted
by Eq. (18).

5. CONCLUSIONS

Piezoelectricity has a large influence on the dielectric and
piezoelectric constants in photorefractive materials. In
the presence of a uniform electric field these constants
depend on externally applied forces. However, those to be
used for a spatially modulated field are independent of ex-
ternal forces. Therefore, if one is to describe the photore-
fractive effect in the presence of an externally applied
voltage, different values must be used simultaneously for
the dielectric and the electro-optic constants, the first val-
ues for the uniform part of the field and the others for its
modulated component. We have demonstrated that,
because of the breaking of the crystal symmetry by the
internal field, the symmetry of the effective electro-optic
coefficient is modified in the presence of a photorefrac-
tive charge grating. This effective coefficient can be
either larger or smaller than both the strain-free (totally
clamped) or stress-free (totally unclamped) electro-
optic coefficients. The coefficient can also be different
from zero in a configuration in which both the clamped
and unclamped coefficients vanish.

Pauliat et al.
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APPENDIX A

Here nonvanishing coefficients for some photorefractive
materials are expressed with abbreviated notations.2

The pairs of indices i,j and k, I (i, j, k, and I from 1 to 3)
are contracted to m and n, which take on values from 1 to
6 according to

11-1, 22 2, 33-*3, 23-4, 32-4,

23->6, 32 > 6.

In contrast to tensors s and d, for those components given
below no multiplying factor must be introduced between
the full and abbreviated notations, so that for any ij, k, or
I we always have

Cijl = Cmn, ij = 
6
m) eifk = eim,

"I= e2 = e3 = 48.

Piezoelectric tensor' 3 (C/M2 ):

e14= e = e 36 = 0.98.

Stress-free electro-optic tensor 5 (pm/V):

r4l = r52 = r6 3 = 3.6.

Elasto-optic tensor3 (pij • pj):

P11 = P22 = P33 = 0.12, P12 = P13 = P23,

P21 = P31 = P32,

with

P12 + P13 = 0.19, p44 = P = P66 = 0.01.

rijk = rk, Pijkl = Pmn-

BaTiO3, Point-Group Symmetry 4mm

Rigidity tensor 7 cij = Cii (1010 N/i 2):

C1= C2 2 = 24.5, C12 = 12.8, c13 = 12.3,

C33= 14.8, C4 4 = CM = 5.5, C66 = 12.0.

Stress-free dielectric constant7:

El = 62 = 4000, 63 = 130.

Piezoelectric tensor' (C/m2):

el = e2 4 = 35.6, e3 l = e 32 = -3.96, e 33 = 1.92.

Stress-free electro-optic tensor8'9 (pm/V):

r13 = r2 3 = 19.5, r 33 = 97, r42 = 1640.

GaAs, Point-Group Symmetry 43m

Rigidity tensorlU cij = cji (1 01U N/M
2
):

C1 = C2 2 = C33 = 11.90, C12 = C13 = C23 = 5.38,

C44 = Css = C66 = 5.95.

Stress-free dielectricU constant at T = 300 K:

6l = 62 = 63 = 12.85.

Piezoelectric tensorLU (C/m2):

ea4 = el5 = e36 = 0.154.

Stress-free electro-optic tensor" (pm/V):

r4l = r 2 = r 3 = 1.2.

Elasto-optic tensor 2 (p = pJi):

Pll = P22 = P33 = 0.165, P12 = P13 = P23 = 0.14,

P44 = Pu5 = P66 = 0.072.

BiI2GeO 2 0, Point-Group Symmetry 23

Rigidity tensor 3 cij = cji (1 0 1U N/M
2
):

Ca1 = C22 = Ca3 = 12.8, C12 = C13 C23 = 3.05,

C44 = Ca5 = C66 = 2.55.

Stress-free dielectric constant'4 :
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