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Abstract: When designing reinforced slender columns for the lowest story of buildings, all factors
that may affect the load-bearing capacity should be considered. One is the increase in the bending
moment value caused by the rotation of the supporting foundation. The geotechnical parameters of
subsoil stiffness and the method of calculating foundation displacements are the main influences.
This problem applies to both shallow foundations and pile foundations. The article presents this
issue in relation to pile foundations in multilayered subsoils and also the method and examples of
second-order calculations that take into account the influence of pile support and columns’ nominal
stiffness. The results showed that taking into account the stiffness of the pile foundation has an
impact on the increase in bending moments in the columns, and this cannot be ignored in the design.
The presented method allows for a precise, safe and optimal design of concrete columns supported
by foundations on multilayered subsoils.

Keywords: reinforced concrete column; effective length of columns; second order effects; soil stiffness;
pile foundation; settlement

1. Introduction

The absence of slenderness restrictions in Eurocode 2 [1] and the use of increasingly
better materials make it possible to design slimmer columns than in the past, but this
involves more careful analyses and, according to Section 5.8.7 of Eurocode 2 [1], “where
relevant, soil-structure interaction should be taken into account”. The importance of
the interaction between the soil and the structural system of various structures has been
demonstrated in many works, for example, in [2,3]. The influence of slenderness in the
calculation of reinforced concrete columns is the subject of many scientific publications [4–7].
The paper from [8] analyzed the safety level of the calculation, and [9,10] dealt with the
determination of the lower limit above which the influence of slenderness is significant.

Column deflections due to first- and second-order effects cause increments in the
eccentricities of longitudinal forces and, thus, increments in the bending moments in the
columns. Foundation rotations result in additional increments of the moments, which can
be significant in some structures. The stiffness of pile foundations is known to increase with
rotation. Therefore, the authors of this paper decided to analyze the effect of pile foundation
stiffness on the increment of moments in columns of reinforced concrete single-story frames.

The increments of moments associated with second-order effects can be calculated
through the use of the simplified method or the general method. The simplified method
is based on the concept of isolated elements, in which the reinforced concrete columns of
single-story halls are calculated according to the current valid provisions of Eurocode 2 [1].
The design length l0 should be taken as for cantilevers (i.e., l0 = 2lcol) because there are no
provisions in [1] that allow for a different length to be taken. On the other hand, based on
the presented analyses, among others, in [11], in a single-story hall building with columns
restrained in the footings and pinned to the roof structure, the buckling length factor for
each column is 2.0 only if the stiffness ratios of the columns EI to the longitudinal forces
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NEd occurring in them are the same. This condition cannot always be met in the design,
so taking µ = 2.0 for each column will not always be correct. The problem of calculating
design lengths is primarily concerned with the simplified method. Formulas to determine
the effective lengths of separated columns have been developed in papers [12,13].

In principle, the application of the general method does not require the design lengths
to be determined, as the shape of the deformed elements and the associated increase in the
moments are determined directly in the calculations. For this reason, it is recommended to
use the strict method for designs, which consists of a second-order analysis that takes into
account the nominal stiffnesses (the calculation methods are described in papers [11,14,15]).

2. Consideration of Subsoil Stiffness in the Design of Reinforced Concrete
Hall Columns

In order to determine the foundation rotation in the static calculations of the frame, a
fictitious column support model can be taken as the column support with a scheme as in
Figure 1b and with a length L and a stiffness EI chosen so that its flexural stiffness 3EI/L
satisfies the relation in the following formula:

3EI
L

= IFCz. (1)

where

IF—moment of inertia of the foundation base field;
Cz—coefficient of elasticity of the subsoil.
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Figure 1. (a) Foundation on resilient ground; (b) pile foundation; (c) how ground influence is modeled
in static calculations of foundations.

The coefficient Cz is not a soil material constant, as it depends not only on the physical
properties of the soil but also on the dimensions of the foundation. Using the works of
Gorbunov-Posadov [16] and Levinsky [17] on soil as a homogeneous elastic half-space with
characteristics defined by the modulus E0 and the Poisson’s ratio ν0, the coefficient Cz can
be calculated from the following formula:

Cz =
πE0b′l2

4IF
(
1− ν2

0
) , (2)

where 2l is the width of the foundation and b′ is its length (Figure 1).
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Given that

IF =
b′(2l)3

12
=

2
3

b′l3 (3)

the formula is as follows:
Cz =

3π

8l
E0(

1− ν2
0
) (4)

The angle of rotation ϕ at the support of the fictitious bar, which is induced by the
moment M, can be calculated from the following formula:

ϕ =
ML
3EI

(5)

In the case of pile foundations, the rotation angle ϕ does not depend on the stiffness of
the soil in a simple, direct manner. This is due to the specifics of using pile foundations
and the factors on which the mechanical response of the piles comprising the foundation
depends. Generally speaking, pile foundations are used in the presence of an unfavorable
subsoil when shallow foundations do not ensure that the required limit state conditions
are met for an economically justified structural solution. The calculation model in these
situations requires the adoption of a geotechnical profile where the subsoil is divided into
layers with appropriately selected parameters. The value of the rotation angle ϕ is obtained
by calculating the settlement of the individual piles in the foundation and taking into
account their arrangement. Then, using Equation (5), the following relationship is obtained:

M
ϕ

=
3EI

L
= IFCz (6)

which allows for the creation of a column support model by assuming a fictitious bar of
length L and stiffness EI. The main problem in this case will be the choice of an appropriate
method for calculating the settlement of single and in-group piles.

3. Method for Calculating Pile Foundation Settlement

A foundation pile loaded by an axial force transmits a load to the surrounding soil
medium due to shear resistance mobilized at the side of the pile and at the pile base
resistance (Figure 2). The magnitude of resistance mobilized at the side of the pile in
the individual layers and under the base of the pile can be related to the magnitude
of the displacement (strain). This relationship is described by load transfer functions
(σ − z; τ − z), as shown in Figure 2. To date, many proposals for load transfer functions
have been developed and described mathematically on the basis of empirical results and
theoretical solutions [18–24].
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Appl. Sci. 2023, 13, 2915 4 of 16

In numerical modeling, the load transfer functions represent the stiffness characteris-
tics of the elastic support, which reflect the mobilized resistance of the surrounding subsoil
(Figure 2). After discretization of the pile model, the values of the forces generated at the
individual nodes and node displacements are obtained as a result of a numerical procedure.

The calculations for successive load increments produce non-linear settlement (load)
curves that characterize the behavior of the pile over the full range of its loading (Figure 3).
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According to the above scheme, the calculation represents an approach for the design of
pile foundations that abandons the classic concept of pile bearing capacity expressed in terms
of force and gives more weight to the amount of settlement by obtaining the load–settlement
(Q–s) characteristics of the pile. This design concept is easier to apply than the classical
approach. An example of such an approach is a method based on theoretical load transfer
functions [20,21] by Bateman et al. [25]. The empirical load transfer functions are of limited
use, while the theoretical functions are more attractive because of the universality of the
solution, which is the approach used in the method presented in [26,27].

In foundations that are a group of piles, the interaction between the piles must addi-
tionally be taken into account. This is a significant issue in itself [28–31], but with the use of
the load transfer function method, it is reduced to a modification of the original function
for a single pile.

The settlement of adjacent piles is due to the settlement of a single pile loaded by an
axial force and the interaction between the piles. This results in higher settlements of piles
in a group (sij) compared to settlements of the same piles considered as single piles (si, sj),
as shown in Figure 4.

If the foundation rests on a group of n piles, the settlement of the i-th pile, taking into
account the interaction between the piles, is calculated according to the following formula:

sG,i = si + ∑n
j=1

(
sij − si

)
for j 6= i (7)

where

si—settlement of the single pile i under the load Qi;
sij—settlement of the pile pair i and j loaded with the forces Qi and Qj.
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It follows that the multiple pile settlement will be greater than that of a single pile
settlement if more piles interact with each other; see the example in Figure 5.
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To calculate the settlement of piles in a group, a method is proposed [26,27], which
is based on the idea of the hybrid method presented by Chow [32]. For single piles, the
method uses a solution to create non-linear foundation pile settlement curves. The method
was developed and improved on the basis of analyses of the results of studies on non-linear
soil behavior and test loads on piles under field conditions.

In the single pile analysis method, a non-linear elastic–plastic model was used to
reflect the non-linear behavior of the pile before reaching the ultimate bearing capacity in
the pile–soil contact zone. The non-linear behavior of the pile was represented by functions
describing the change in the value (degradation) of the shear modulus as a function of
mobilized soil resistance or strain.

In the method’s algorithm, the pile described by Young’s modulus of elasticity is
digitized through the use of the adopted load transfer function. For the pile shaft, the
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characterization of the supports is based on the following solution proposed by Randolph
and Wroth [20]:

ss =
τ0R0

Gs
ln
(

Rmax

R0

)
(8)

where

ss—displacement of the nodal point of the pile sidewall;
τ0—tangent stress on the side of the pile;
R0—radius of the pile shaft;
Rmax—range of influence of the pile;
Gs—shear modulus of the soil in the vicinity of the pile shaft.

The radius of influence of the pile Rmax can be calculated according to Van Impe and
De Clercq’s equation [33], which is as follows:

Rmax = 2(1− ν)Lp

(
3
2
− z

Lp

)
(9)

where

Lp—length of the pile in the subsoil;
z—depth below ground level;
ν—Poisson’s ratio.

The deflection of the support under the pile base (base settlement) sb under the force
Pb based on the theory of elasticity is described by the following equation:

sb =
Pb

RbGb

(1− νb)

4
(10)

where

Rb—pile base radius;
Gb—shear modulus of the soil under the base of the pile;
νb—Poisson’s ratio;
µd—impact factor of base depth, µd = 0.5.

In the above equations, the shear modulus G decreases according to the degradation
function adopted.

Initially, the method described here adopted a modified form of the hyperbolic modu-
lus degradation function G according to Kraft [21] as proposed by Chow [32]:

G = Gmax

(
1−

τ·R f

τf

)2

(11)

where

Gmax—initial shear modulus;
τ—current, mobilized soil resistance;
τf—limit soil resistance (at failure);
Rf—hyperbolic curve constant, Rf = 0.5 ÷ 0.9.

Subsequent modifications were used, among other functions:

• according to Van Impe and De Clercq [33]:

G =


Gmax gdy γ ≤ 10−5

−Gmax(0.3 · log γ + 0.5) gdy γ ∈
(
10−5, 10−2 )

0.1·Gmax gdy γ ≥ 10−5
(12)
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• according to Fahey and Carter [34]:

G = Gmax

(
1−

(
τ
τf

)w)2

1− (1− w)
(

τ
τf

)w (13)

where

Gmax—initial shear modulus;
w—equation parameter.

Figure 6 shows the selected functions on a graph for comparison.
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The application of the numerical procedure allows for the load–settlement curve for a
single pile to be determined. In addition, the results make it possible to divide and analyze
the total load into the part carried by the sidewall and the base for successive load degrees
on the pile head.

The computational model of the subsoil is characterized by geotechnical layers, which
are described by the initial shear modulus Gmax, limit shear resistance at the shaft τf and
limit resistance under the pile base qf. These parameters can be determined, for example,
by an indirect method based on the results of a CPT probe test [35,36]. The selection
of a suitable degradation model requires extensive analytical studies with the use of
geotechnical test results and settlement curves from pile test loads [37]. Test interpretation
issues for determining the initial shear modulus Gmax and its degradation are presented
in [38].

In the examples presented below, the degradation curves for the shaft Equation (13)
and for the base Equation (12) are used. The interaction between the piles is taken into
account through the use of the classical solution of elasticity theory.

4. Examples

Examples of calculations of bending moments in reinforced concrete frame columns are
shown below. The calculations were carried out using the rigorous method of second-order
analysis with nominal stiffnesses, as described in [15]. The calculations were conducted
for both fully restrained columns and columns fixed in a piled foundation. The columns
were assumed to have equal cross-sections of b = 0.40 m and h = 0.45 m and were made of
concrete C30/37 and steel RB500.

For comparison purposes, we assumed the same geotechnical conditions (Figure 7;
Table 1), which were the same for all the structural variants analyzed. The pile supports
under the columns were adopted in the form of reinforced concrete rectangular pile caps
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topping the heads of two piles with an axial spacing of sp = 1.2 m. The pile types were rein-
forced concrete piles, prefabricated, driven and with a square cross-section of 0.35 × 0.35 m.
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Table 1. Parameters adopted for the pile settlement calculations.

No. of Layer Soil
Unit Weight

(Effective Value)
[kN/m3]

τf
[kPa]

qf
[kPa] Gmax [MPa]

1 fill 16.0 5 - 24

2 organic soil 5.0 5 - 7

3 clayey silt 11.5 40 - 40

4 sandy clay 11.0 53 1800 54

The lengths of the piles varied (Lp = 10, 14 and 15 m), as they were selected according
to the assumptions of the limit state method in order to obtain a similar degree of bearing
capacity reserve in each case (ensuring fulfillment of the limit state condition for piles
loaded with compressive forces). Figure 8 shows the settlement curves of the assumed piles
obtained from the calculations.

The calculation of the stiffness of the column/foundation connection was based on the
calculation of pile settlements in the column support, taking into account the interaction
between the two according to the method outlined above.

The resulting rotation angle ϕ allows for the static calculation of the column to be
carried out, taking into account the second-order theory. Considering the stiffness of the
pile support leads to new values for the internal forces and nodal forces (reactions). The
described procedure requires iterative calculations according to the following scheme:



Appl. Sci. 2023, 13, 2915 9 of 16

(I) Static calculation of the hall’s structural system, assuming that the columns are re-
strained at their supports and obtaining nodal forces;

(II) Determination of the pile loads Qi, verification of the ultimate limit state of the pile,
calculation of the pile settlement and foundation rotation (Figure 9);

(III) Making a static calculation of the hall’s structural system according to the second-
order theory, taking into account the rotational stiffness of the pile supports and
obtaining new values for the nodal forces;

(IV) Determination of new loads on the pile Qi, verification of the ultimate limit state of
the pile, calculation of pile settlement and foundation rotation as in step (II).

Steps (II)–(IV) are performed until the results converge. The calculations performed
for the example presented here required two or three iterations.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 16 
 

 

Figure 8. Single pile settlement curves. 

The calculation of the stiffness of the column/foundation connection was based on 

the calculation of pile settlements in the column support, taking into account the interac-

tion between the two according to the method outlined above. 

The resulting rotation angle  allows for the static calculation of the column to be 

carried out, taking into account the second-order theory. Considering the stiffness of the 

pile support leads to new values for the internal forces and nodal forces (reactions). The 

described procedure requires iterative calculations according to the following scheme: 

(I) Static calculation of the hall's structural system, assuming that the columns are re-

strained at their supports and obtaining nodal forces; 

(II) Determination of the pile loads Qi, verification of the ultimate limit state of the pile, 

calculation of the pile settlement and foundation rotation (Figure 9); 

(III) Making a static calculation of the hall's structural system according to the second-

order theory, taking into account the rotational stiffness of the pile supports and ob-

taining new values for the nodal forces; 

(IV) Determination of new loads on the pile Qi, verification of the ultimate limit state of 

the pile, calculation of pile settlement and foundation rotation as in step (II). 

Steps (II)–(IV) are performed until the results converge. The calculations performed 

for the example presented here required two or three iterations. 

 

Figure 9. Diagram for calculating settlement and rotation of pile foundations. Q1, s1—load and set-

tlement of pile 1; Q2, s2—load and settlement of pile 2; sp—axial spacing of the piles. 

4.1. Example 1 

The design longitudinal forces in the columns of the three-aisle hall (Figure 10) are 

each P1 = 500 kN in the outermost columns and P2 = 1000 kN in the inner columns. The 

horizontal force due to wind pressure and suction is H = 45 kN. The rigid roof structure is 

0

2

4

6

8

10

12

14

16

18

20

22

0 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

s [mm]

Q [kN]

L = 10 m

L = 14 m

L = 15 m

Figure 8. Single pile settlement curves.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 16 
 

 

Figure 8. Single pile settlement curves. 

The calculation of the stiffness of the column/foundation connection was based on 

the calculation of pile settlements in the column support, taking into account the interac-

tion between the two according to the method outlined above. 

The resulting rotation angle  allows for the static calculation of the column to be 

carried out, taking into account the second-order theory. Considering the stiffness of the 

pile support leads to new values for the internal forces and nodal forces (reactions). The 

described procedure requires iterative calculations according to the following scheme: 

(I) Static calculation of the hall's structural system, assuming that the columns are re-

strained at their supports and obtaining nodal forces; 

(II) Determination of the pile loads Qi, verification of the ultimate limit state of the pile, 

calculation of the pile settlement and foundation rotation (Figure 9); 

(III) Making a static calculation of the hall's structural system according to the second-

order theory, taking into account the rotational stiffness of the pile supports and ob-

taining new values for the nodal forces; 

(IV) Determination of new loads on the pile Qi, verification of the ultimate limit state of 

the pile, calculation of pile settlement and foundation rotation as in step (II). 

Steps (II)–(IV) are performed until the results converge. The calculations performed 

for the example presented here required two or three iterations. 

 

Figure 9. Diagram for calculating settlement and rotation of pile foundations. Q1, s1—load and set-

tlement of pile 1; Q2, s2—load and settlement of pile 2; sp—axial spacing of the piles. 

4.1. Example 1 

The design longitudinal forces in the columns of the three-aisle hall (Figure 10) are 

each P1 = 500 kN in the outermost columns and P2 = 1000 kN in the inner columns. The 

horizontal force due to wind pressure and suction is H = 45 kN. The rigid roof structure is 

0

2

4

6

8

10

12

14

16

18

20

22

0 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

s [mm]

Q [kN]

L = 10 m

L = 14 m

L = 15 m

Figure 9. Diagram for calculating settlement and rotation of pile foundations. Q1, s1—load and
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4.1. Example 1

The design longitudinal forces in the columns of the three-aisle hall (Figure 10) are
each P1 = 500 kN in the outermost columns and P2 = 1000 kN in the inner columns. The
horizontal force due to wind pressure and suction is H = 45 kN. The rigid roof structure
is assumed to force equal horizontal displacements of the upper ends of all columns.
A reinforcement of 3φ25 mm (As = 14.73 cm2) was assumed in the end columns and
5φ25 mm (As = 24.55 cm2) in the inner columns on each side of the section; a = 4.8 cm.
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The detailed nominal stiffness calculations for Example 1 are shown in Appendix A.
The result of the calculation according to the first-order theory with nominal column

stiffnesses is shown in Figure 1b, and the result of the calculation according to the second-
order theory is shown in Figure 10c.

The nodal reaction values obtained assuming full restraint in the support are used to
calculate the forces and displacements of the pile support. The subsequent calculations are
carried out in an iterative manner. Table 2 summarizes the results of the calculations for
the first and last iterations, and the final values of moments in the supports are shown in
Figure 10d.

Table 2. Results of the pile settlement calculations in the column supports; Example 1.

Outer Columns
Lp = 10.0 m

V = P1 = 500 kN

Internal Columns
Lp = 14.0 m

V = P2 = 1000 kN

Iteration 1 Iteration 3 Iteration 1 Iteration 3

M [kNm] 212.3 241.1 355.6 391.8
Q1 [kN] 210 198 400 385
Q2 [kN] 387 399 696 711
s1 [mm] 1.49 1.43 2.44 2.36
s2 [mm] 2.89 3.09 4.67 5.26

angle ϕ [rad] 0.00117 0.00138 0.00186 0.00242
M/ϕ [MNm] 182 174 191 162

4.2. Example 2

The design longitudinal forces in the columns of the two-bay hall (Figure 11) are
each P1 = 400 kN in the outermost columns and P2 =1000 kN in the inner columns. The
horizontal force due to wind pressure and suction is H = 40 kN. The eccentricity of the
reaction from the diagonal load in the outermost columns is equal to 0.15 m. It was assumed
that the rigid roof structure forces equal the horizontal displacement of the upper ends of all
columns. A reinforcement of 4φ20 mm (As = 12.56 cm2) was assumed in the end columns
and 7φ20 mm (As = 21.98 cm2) in the inner columns on each side of the section; a = 4.0 cm.
The detailed nominal stiffness calculations for Example 2 are shown in Appendix B.

The result of the calculation according to the first-order theory with nominal column
stiffnesses is shown in Figure 11b, and the result of the calculation according to the second-
order theory in shown in Figure 11c. Table 3 summarizes the results of the pile support
calculations for the first and last iterations, and the final values of the moments in the
supports are shown in Figure 11d.

Table 3. Results of the pile settlement calculations in the column supports; Example 2.

Outer-Left Columns
Lp = 10.0 m

V = P1 = 400 kN

Internal Columns
Lp = 15.0 m

V = P2 = 1000 kN

Outer-Right Columns
Lp = 10.0 m

V = P1 = 400 kN

Iteration 1 Iteration 3 Iteration 1 Iteration 3 Iteration 1 Iteration 3

M [kNm] 212.3 241.1 399.1 416.5 355.6 391.8
Q1 [kN] 210 198 382 375 400 385
Q2 [kN] 387 399 714 722 696 711
s1 [mm] 1.49 1.43 2.28 2.25 2.44 2.36
s2 [mm] 2.89 3.09 4.24 4.29 4.67 5.26

angle ϕ [rad] 0.00117 0.00138 0.00163 0.00170 0.00186 0.00242
M/ϕ [MNm] 182 174 244 245 191 162
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Figure 11. (a) Diagram of the frame of Example 2, (b–d) bending moments in the columns [kNm]
according to the first-order theory and the second-order theory in the case of full restraint and pile
foundation, respectively.

5. Discussion

The examples show calculations for stratified soil with low stiffness. In general,
the influence of ground compliance on the bending moments is not large. In Example
1, the differences in the bending moments between full restraint and strict calculation,
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including pile foundation, exceed 10%. In Example 2, these differences are large for only
one outermost column. As a result of taking the elastic foundation into account, the bending
moment in this column has increased by approximately 20% compared to the calculation
with full restraint.

The work presented here is a continuation of earlier analyses of single-story frames
with piles founded in various conditions. The examples presented were limited to one-story
frames founded on piles for the adopted geotechnical conditions. Future research should fo-
cus on comparative analyses of other structural systems and other geotechnical conditions.

6. Conclusions

1. The paper presents a method for modeling the support of a column fixed in a pile-
founded footing. The originality of the method is to take into account the non-linear
behavior of piles through the use of the degradation function of the stiffness modulus
of the soil in the application to the calculation of bending moments in columns.

2. Example frame calculations were carried out with the rigorous method of the second-
order analysis with nominal stiffnesses, modeling the column support conditions as de-
scribed in the paper. Rotation of the foundation leads to increased ultimate moments
in the columns, which can be important in some cases of slender column foundations.

3. In the case of pile foundations, the effect of the increase in the moments is smaller
than for shallow foundations [15] and should not be omitted from the calculations.
In more complex cases, accurate calculations, as in the presented examples, should
be used for the dimensioning of the reinforcement in the columns rather than the
simplified methods used for separated columns, according to Eurocode [1].

4. The proposal allows for a more rational design of similar structures compared to
standard simplified methods. The example presented should be considered strictly in
relation to the conditions adopted in it. The adopted structural system, the loading,
type, number and spacing of the piles and the geotechnical conditions will all affect
the results obtained.

5. Piles should be designed for the ultimate forces obtained according to the second-order
theory, especially for the design of slender columns.

6. Piles should be designed for both ultimate limit state conditions and displacement
limitation conditions. Knowledge of the predicted mechanical characteristics (Q–s
settlement curves) of pile supports enables more rational static calculations of the
entire structural system of the structure.
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Appendix A

The imperfections according to Section 5.2 of Eurocode 2 [1] are as follows:

αh =
2√

l
=

2√
8.0

= 0.707, αm =
√

0.5(1 + 1/m) =
√

0.5(1 + 1/4) = 0.790.
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The pillar angle θi = θ0αhαm = 1
200 0.707·0.790 = 0.00279.

Horizontal forces caused by the imperfections:

• in the end columns H1 = θiP1 = 0.00279·500 = 1.395 kN;
• in the center columns H2 = θiP2 = 0.00279·1000 = 2.79 kN.

The nominal stiffnesses (Section 5.8.7.2 of Eurocode 2 [1]) depend on the amount of
reinforcement. When designing the columns, reinforcement must be assumed in order to
calculate the enlarged bending moments and, based on these moments, the reinforcement
needed. The result is, therefore, obtained with an iteration method once a reasonable level
of agreement between the assumed and calculated reinforcements has been achieved.

Design modulus of elasticity of concrete Ecd = 26,670 MPa, and moment of inertia
Ic = 3.038 × 10−3 m4.

The coefficient k1 according to Section 5.8.7.2 of Eurocode 2 [1] is as follows:

k1 =
√

fck/20 =
√

30/20 = 1.225

For l0 = 2lcol = 2 · 8 = 16.0 m, the radius of inertia i = h
2
√

3
= 0.45

2
√

3
= 0.1299 m.

The slenderness λ = l0/i = 16.0/0.1299 = 123.2.
The effective creep coefficient was assumed to be ϕef = 2.4.
The coefficient k2 for the end columns is as follows:

n =
NEd

(Ac fcd)
=

500
0.4·0.45·20.0·103 = 0.139

k2 = n· λ

170
= 0.139

123.2
170

= 0.1 ≤ 0.20

The moment of inertia of the reinforcement is as follows:

Is = 2As

(
h
2
− a
)2

= 2·14.73·10−4
(

0.45
2
− 0.048

)2
= 9.23·10−5 m4.

The coefficient Kc = k1 k2/(1 + ϕef) = 1.225 · 0.1/(1 + 2.4) = 0.036 and Ks = 1.
The nominal internal column stiffness is as follows:

EI = KcEcdIc + KsEsIs = 0.072 · 26,670 · 3.038 · 10−3 + 1.0 · 200 · 103 · 15.38 · 10−5 = 36.59 MNm2.

Appendix B

The imperfections according to Section 5.2 of Eurocode 2 [1] are as follows:

αh =
2√

l
=

2√
8.0

= 0.707, αm =
√

0.5(1 + 1/m) =
√

0.5(1 + 1/3) = 0.816.

The pillar angle θi = θ0αhαm = 1
200 0.707·0.816 = 0.00288.

Horizontal forces caused by imperfections:

• in the end columns H1 = θiP1 = 0.00288·400 = 1.152 kN;
• in the center columns H2 = θiP2 = 0.00288·1000 = 2.88 kN.

The calculations were performed as in Example 1.
The coefficient k1 according to Section 5.8.7.2 of Eurocode 2 [1] is as follows:

k1 =
√

fck/20 =
√

30/20 = 1.225

For l0 = 2lcol = 2 · 8 = 16.0 m, the radius of inertia i = h
2
√

3
= 0.45

2
√

3
= 0.1299 m.

The slenderness λ = l0/i = 16.0/0.1299 = 123.2.
The effective creep coefficient was assumed to be ϕef = 2.4.
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The coefficient k2 for the end columns is as follows:

n =
NEd

(Ac fcd)
=

400
0.4·0.45·20.0·103 = 0.111

k2 = n· λ

170
= 0.111

123.2
170

= 0.08 ≤ 0.20.

The moment of inertia of the reinforcement is as follows:

Is = 2As

(
h
2
− a
)2

= 2·12.56·10−4
(

0.45
2
− 0.040

)2
= 8.60·10−5 m4.

The coefficient Kc =k1 k2/(1 + ϕef) = 1.225 · 0.08/(1 + 2.4) = 0.029 and Ks = 1.
The nominal stiffness of the end columns is as follows:

EI = KcEcdIc + KsEsIs = 0.029 · 26,670 · 3.038 · 10−3 + 1.0 · 200 · 103 · 8.60 · 10−5 = 19.55 MNm2.

The coefficient k2 for the inner columns is as follows:

n =
NEd

(Ac fcd)
=

1000
0.4·0.45·20.0·103 = 0.278

k2 = n· λ

170
= 0.278

123.2
170

= 0.20

Kc = k1 k2/(1 + ϕef) = 1.225 · 0.08/(1 + 2.4) = 0.029 and Ks = 1.
The moment of inertia of the reinforcement is as follows:

Is = 2As

(
h
2
− a
)2

= 2·21.98·10−4
(

0.45
2
− 0.040

)2
= 15.04·10−5 m4.

The nominal stiffness of the internal column is as follows:

EI = KcEcdIc + KsEsIs = 0.072 · 26,670 · 3.038 · 10−3 + 1.0 · 200 · 103·15.04 · 10−5 = 35.91 MNm2.
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