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Introduction

Since the first publication on microwave-assisted organic syn-

thesis (MAOS),[1] this unconventional heating technology has

been extended to medicinal chemistry,[2] biochemistry,[3] mate-

rials science,[4] and analytical, environmental, and green

chemistry.[5] Microwave irradiation has proven to be an inter-

esting alternative for heating chemical reactions[6] and offers

considerable advantages over conventional heating methods,

including shorter reaction times, simple purification proce-

dures, and higher product purity as decomposition is mini-

mized.

The best known characteristic of microwave-assisted reac-

tions is the spectacular acceleration of most processes to give

reaction times that cannot be achieved with conventional

heating. However, more important effects include the possibili-

ty of accessing products and reactions that are not achievable

by conventional methods and the possibility of modifying or

even inverting the selectivity of reactions (induced and invert-

ed selectivity).[7]

Despite the great developments and applications of micro-

wave-assisted chemistry, there is an ongoing debate in the sci-

entific community about the origin of the effects caused by

microwave irradiation. It has been widely postulated that some

of the improvements observed in MAOS can be attributed to

the so-called ‘nonthermal’ effect.[8] Nowadays, it is accepted

that in most cases, the observed enhancements in microwave-

heated reactions are, in fact, the result of purely thermal/kinet-

ic effects.[9]

The existence of so-called ‘specific thermal microwave ef-

fects’, which cannot be duplicated by conventional heating

and result from the uniqueness of the microwave dielectric

heating phenomenon, is widely documented.[7, 8b] Nowadays, it

is generally accepted that the action of microwave irradiation

affects chemical reactions by thermal effects: overheating,[10]

hot-spot formation,[11] selective heating of catalysts, solvents,

and reagents (molecular radiators),[12] and the elimination of

wall effects by inverted temperature gradients.[13]

‘Nonthermal microwave effects’ are highly controversial and

have caused great debates among experts in MAOS.[8, 9b, 14]

Such effects are rare and very difficult to prove because the

conversion of electromagnetic energy into kinetic energy is

slower than the conversion of kinetic energy into thermal

energy. On the other hand, it is very difficult to separate exper-

imentally thermal heating from other possible effects of elec-

tromagnetic radiation. In any case, MAOS has proven to be an

incredibly effective methodology in chemistry that provides re-

sults and conditions that are hardly reproducible under con-

ventional heating.

[a] Dr. A. M. Rodr�guez, Dr. P. Prieto, Prof. A. de la Hoz, Prof. Ý. D�az-Ortiz,
R. Mart�n
Departamento de Qu�mica Org�nica, Universidad de Castilla–La Mancha
Facultad de Ciencias y Tecnolog�as Qu�micas, 13071 Ciudad Real (Spain)
E-mail : Mariapilar.Prieto@uclm.es

[b] Prof. J. I. Garc�a
Departamento de Qu�mica Org�nica, Instituto de S�ntesis Qu�mica y Cat�li-
sis Homog¦nea, CSIC-Universidad de Zaragoza
C/. Pedro Cerbuna, 12, 50009 Zaragoza (Spain)

Supporting information for this article is available on the WWW under
http://dx.doi.org/10.1002/open.201402123.

Ó 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly
cited and is not used for commercial purposes.

The aim of this work was to determine the parameters that

have decisive roles in microwave-assisted reactions and to de-

velop a model, using computational chemistry, to predict a pri-

ori the type of reactions that can be improved under micro-

waves. For this purpose, a computational study was carried

out on a variety of reactions, which have been reported to be

improved under microwave irradiation. This comprises six

types of reactions. The outcomes obtained in this study indi-

cate that the most influential parameters are activation energy,

enthalpy, and the polarity of all the species that participate. In

addition to this, in most cases, slower reacting systems observe

a much greater improvement under microwave irradiation. Fur-

thermore, for these reactions, the presence of a polar compo-

nent in the reaction (solvent, reagent, susceptor, etc.) is neces-

sary for strong coupling with the electromagnetic radiation.

We also quantified that an activation energy of 20–30 kcal

mol¢1 and a polarity (m) between 7–20 D of the species in-

volved in the process is required to obtain significant improve-

ments under microwave irradiation.
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The physical principles behind this method and the factors

that influence the successful use of microwave technology in

chemical applications are not particularly familiar to chemists,

possibly because electric field theory is generally taught in en-

gineering or physics rather than in chemistry. Further study is

therefore required on the physical factors that can influence

MAOS. Several aspects, like temperature, stirring, or reaction

vessel characteristics, have been studied to some extent.[15]

Other aspects, like the influence of the polarity of the species,

activation energy, and enthalpy, have barely been studied at

all. We present here a broad study on the influence of these

factors in MAOS by using computational chemistry. It is note-

worthy that, considering the different characteristics of the

two methods of heating, it is extremely difficult to design pro-

cedures that strictly have the same reaction conditions under

microwave irradiation and conventional heating. In this regard,

computational studies allow us to determine the thermo-

dynamic, kinetic, and physical parameters and also the reaction

mechanisms separately.

Our research group has significant experience in MAOS. In

this respect, we have an interest in the computational study of

microwave-assisted reactions in order to understand and pre-

dict the effects of microwave irradiation in organic synthesis.[16]

The goal of our research is to determine the influence of the

activation energy, enthalpy and polarity of some selected reac-

tions in an attempt to gain a deeper understanding of MAOS

and to develop a general model that will allow the use of

simple calculations to predict whether a reaction could be

improved under microwave irradiation.

Some specific microwave effects have been explained by

using the Arrhenius law [Eq. (1)][17] and by considering modifi-

cations in each of term in the equation. Several reports sug-

gest that the electric component of microwaves leads to orien-

tation effects on dipolar molecules or intermediates and hence

changes the pre-exponential factor (A) or the activation energy

(Ea) term in the Arrhenius equation. This effect is particularly

important under solvent-free conditions or in a nonpolar medi-

um.[8a]

k ¼ A expð¢Ea=RTÞ ð1Þ

Polarity is another important factor to be considered in

MAOS. The polarities of all components present in the reaction

medium play an important role in the heating rate with micro-

waves. The ability of highly polar substrates to absorb micro-

wave energy completely is generally accepted. This property

has been exploited to heat reactions under microwave irradia-

tion when carried out in poorly absorbing solvents by using

ionic additives such as ionic liquids[18] or tetrabutylammonium

bromide, or by adding highly microwave-absorbing silicon car-

bide plugs or graphite.[19]

Additionally, if a polar reaction mechanism occurs, where

the relative polarity increases from the reactant to the transi-

tion structure, it is claimed that acceleration due to an increase

in microwave absorbance of the intermediate could occur. This

effect is particularly important in product-like transition states

according to Hammond’s postulate.[8a]

Although the importance of these parameters in MAOS is

known, to the best of our knowledge, they have not yet been

quantified. With this aim in mind, we have used computational

calculations as predictive tools to determine quantitatively

when a reaction can be improved under microwave conditions,

determining the predicted activation energies, reaction rates,

and species polarity and using these as indicators of efficiency

under microwave conditions.

Our preliminary conclusions, which are reported in previous

publications,[16f] are summarized in Table 1. The results ob-

tained show that the activation energy of the reaction is

a good indicator to determine when a reaction can be im-

proved under microwave conditions. The following conclusions

can be drawn:

- Reactions with activation energies below 20 kcalmol¢1 occur

easily by conventional heating and improvements are not

expected under microwave conditions.

- Reactions with activation energies from 20 to 30 kcalmol¢1

can be improved under microwave irradiation without the

use of harsh reaction conditions (e.g. , high pressure, pyroly-

sis).

- Reactions with activation energies above 30 kcalmol¢1

cannot be performed either under conventional heating or

microwave irradiation. However, the use microwave suscep-

tors such as ionic liquids or highly polar solvents (microwave

flash heating) can improve these processes.

In this paper, we report computational calculations on a vari-

ety of previously described reactions in order to refine our

model and to study the influence of enthalpy and polarity in

the reaction improvement observed when using MAOS. For

this purpose, we have divided each type of reaction (A, B and

C) in two different ones taking into account the enthalpy.

Results and Discussion

The selected reactions represent different kinds of processes,

including cycloadditions, organometallic reactions, and substi-

tution reactions, with different characteristics, such as polarity,

activation free energy, enthalpy, and the presence of polar

components like susceptors, polar solvents, etc. ; these reac-

tions can be classified into Types I–VI. Comparisons between

the results obtained under conventional heating and micro-

wave irradiation are listed along with the principal parameters

studied, namely the polarity of the initial state, variations in

the transition state, activation energy and enthalpy.

Table 1. Preliminary conclusions on the influence of activation energy
(Ea) in MAOS.

Reaction Ea [kcalmol¢1] Conclusions

Type A <20 Not improved
Type B 20–30 Improved
Type C >30 Improved with susceptors
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The objective was to confirm and refine our preliminary

model and to provide a method to determine with simple cal-

culations when a reaction can be improved under microwave

irradiation. Note that, in order to clarify the obtained results,

we have summarized previous computational studies of our

group (Types I, III and VI) with new studies (Types II, IV, V and

some examples of Type III).

Type I reactions

Type I reactions are exothermic reactions (DH<0 kcalmol¢1)

with low activation energies (Ea<20 kcalmol¢1). Loupy and co-

workers[20] performed the cycloaddition reaction of azidome-

thylphosphonate and functionalized enamines under

solvent-free conditions and under microwave irradia-

tion (Scheme 1). Experimentally, triazole 5 was ob-

tained in good yields (70–86%) under conventional

heating in solvent-free conditions at 100 8C but very

long reaction times were required (6 h). Under these

conditions, the reaction is 100% regioselective. For

shorter times (20 min), there was no reaction under

conventional heating, whereas the reaction proceed-

ed with a 55% yield under microwave irradiation

under comparable conditions but with lower regiose-

lectivity (5/6 ratio, 85:15).

In order to understand the influence of microwave irradia-

tion on the selectivity, we performed computational calcula-

tions at the B3LYP/6-31G* level (Table 2). The results of these

calculations showed that cycloadduct 5 is the kinetic regioiso-

mer; the activation energy for this isomer lies between 13.6

and 18.2 kcalmol¢1. In contrast, the activation energy for cyclo-

adduct 6 is higher (21.6–30.6 kcalmol¢1), although this regio-

isomer is thermodynamically more stable (Scheme 2).

The polarities of the reagents and their variation along the

reaction coordinate were determined in an attempt to deter-

mine the influence of this parameter. The outcomes indicate

that the reactants have moderate polarity (m=4.7–7 D) and

a negligible variation in the transition structures (m=1.1–

6.2 D). Taking in to account that the reaction was performed in

solvent-free conditions, the interaction of microwaves with the

polar reactants should be optimal. This situation leads to rapid

heating and, consequently, a reduction in the selectivity

Scheme 1. Cycloaddition reaction of azidomethylphosphonate and function-
alized enamines. Reaction conditions : a) conventional conditions: 90 8C, 6 h,
86% (5/6 ratio =100:0) ; microwave irradiation: 90 8C (120 W), 5–20 min,
55% (5/6 ratio =85:15). Result : modification of the selectivity.

Table 2. Computational calculated parameters for a Type I 1,3-dipolar reaction
(Scheme 1).

Solvent m [D]
(most polar species)

Dm[a] [D] Ea
[kcalmol¢1]

DH[b]

[kcalmol¢1]

Solvent-free 4.7 (Reactant 2a)
7.0 (Reactant 2b)

¢1.1 to 3.5 13.6 to 30.6 ¢16.5 to ¢22

[a] Dm=m TS¢m reactants ; [b] DH=DHproducts¢DHreactants.

Scheme 2. Calculated reaction path of cycloaddition reaction of azidomethylphosphonate and functionalized enamines.
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through a clear thermal effect. In this regard, these

species could be acting as ‘molecular radiators’.

These species are reported to be formed when

a polar reactant is irradiated in a nonpolar medium. It

was suggested that ‘molecular radiators’ can directly

couple with microwaves, thus creating microscopic

hot spots that improve the absorption of microwave

radiation and might improve the reaction through

a thermal effect.[21]

In summary, modification of the regioselectivity

under microwave irradiation can be explained

through a thermal effect. The high activation energy

required for cycloadduct 6 (21.6–30.6 kcalmol¢1) can

be easily achieved by efficient heating under micro-

waves but not under conventional heating. In conclu-

sion, the formation of isomer 5 is not improved but

the formation of isomer 6 is favored under micro-

waves.

Type II reactions

This group includes endothermic reactions (DH>

0 kcalmol¢1) with low activation energies (Ea<20 kcal

mol¢1). The chemical transformation used to test our

model was the 1,3-dipolar reaction indicated in

Scheme 3.

When this reaction was performed in a domestic microwave

oven,[22] under solvent-free conditions, a moderate increase in

the yield was observed compared with conventional heating

(68% vs 48%).[22] Computational calculations predicted a con-

certed mechanism that takes place through a near synchro-

nous transition structure. In this case, the calculated polarity

(m) of the reactants is 4.4 D, and a slight increase in the polarity

(Dm= +2.1 D) takes place from the reactants to the transition

structure (Scheme 2).[23] It is noteworthy that, although the ac-

tivation energy is low (14.8 kcalmol¢1), this is an endothermic

process (DH=14.5 kcalmol¢1) (Table 3).

In the original study,[22] this reaction was carried out in

a household microwave oven and was performed using an alu-

mina–magnetite bath (Al2O3/Fe3O4, 5:1). These conditions pres-

ent two main problems: firstly, microwave radiation is ab-

sorbed by the polar alumina–magnetite bath and the reaction

is therefore heated rapidly but by conventional mechanisms

(convection and conduction from the surface of the sample),

and efficient stirring/agitation of the reaction mixture is not as-

sured. This fact might lead to temperature gradients as a conse-

quence of poor stirring.

In an effort to overcome this problem, we performed the re-

action in a single-mode microwave oven without the mineral

bath and using a nonpolar solvent (toluene) in an attempt to

increase the homogeneity of the medium and to ensure ab-

sorption of microwave irradiation by the reagents. In this case,

the rate was 1.7 times faster under microwave irradiation than

with conventional heating. Based on these results, it was es-

tablished that Type II reactions with lower Ea and positive DH

values can be slightly improved under microwave irradiation.

The presence of a polar bath or moderate polar reactants

allows the efficient absorption of microwave energy and pro-

duces an acceleration effect through a clear thermal effect.

Type III reactions

This group contains a series of reactions that were previously

studied theoretically in our research group.[16f,h] Type III reac-

tions are exothermic (DH<0 kcalmol¢1) and have high activa-

tion energies (Ea=20–30 kcalmol¢1). The first reaction studied

was the intramolecular hetero-Diels–Alder cycloaddition of al-

kenyl-tethered 2(1H)-pyrazinones 10a–b (Scheme 4). The reac-

tion mixture was irradiated in a single-mode microwave cavity

using a preselected maximum temperature of 190 8C (300 W

maximum power) in a sealed vessel, with dichloroethane as

the solvent and 0.035 mmol of 1-butyl-3-methylimidazolium

hexafluorophosphate ([BMIM][PF6]). The reaction took place

within 10 min and gave good yields (67–77%). Under these

conditions, the complete conversion of 10 took place in about

8–10 min, which represents a considerable decrease in the re-

action time as compared with the 1–2 days required under

conventional reflux conditions in chlorobenzene (131 8C).[24]

The potential surface of this reaction was explored at the

B3LYP(PCM)/6-31G*+DZPVE level using dichloroethane as the

solvent (Table 4).[16f] The outcomes indicated that the process

has high activation energies (25.7–28.3 kcalmol¢1 when n=2

and 37.2–39.7 kcalmol¢1 when n=3), low Gibbs energy and is

moderately exothermic. Moreover, the polarity of the reactants

is moderate (m=5.1–5.2 D) and only increases slightly from the

reactants to the transition structure. With these characteristics,

this reaction should not occur under microwave irradiation.

The question then arises, why does this reaction proceed in

such short reaction times? The addition of small amounts of

Scheme 3. Reaction between 4-nitrobenzonitrile (7) and 2,4,6-trimethylbenzonitrile oxide
(8). Reagents and conditions : a) alumina magnetite bath; conventional conditions: 135 8C,
8 min, 48%; microwave irradiation: 135 8C (450 W), 8 min, 68%. Result : acceleration
rate=1.7.

Table 3. Computational calculated parameters for a Type II 1,3-dipolar reaction
(Scheme 3).

Solvent m [D]
(most polar species)

Dm[a] [D] Ea
[kcalmol¢1]

DH[b]

[kcalmol¢1]

Solvent-free
Al2O3/Fe3O4 bath

4.4 (Reactant 8) 2.1 14.8 14.5

[a] Dm=m TS¢m reactants ; [b] DH=DHproducts¢DHreactants.
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a strongly microwave-absorbing ionic liquid ([BMIM]

[PF6]) (m=18.2 D) as a doping agent changes the die-

lectric properties of the reaction mixture (Scheme 3).

Ionic liquids interact very efficiently with microwaves

through the ionic conduction mechanism. So, rapid

heating (<1 min) to 190 8C is possible; a heating rate

that cannot be achieved under classical heating.

The second example involves a nucleophilic aro-

matic substitution of a fluoro substituent by a piperi-

dine ring in a deactivated benzene scaffold

(Scheme 5).[25] We carried out this transformation in

the polar solvent dimethyl sulfoxide (DMSO) with

both classical and microwave heating. According to

the experimental kinetic data obtained under micro-

wave irradiation (k*) and by classical heating (k), the

k*/k ratio for the reaction between and piperidine at

462 K is 3.2.[25c]

The computational study was performed at the

B3LYP(PCM)/6-31G*+DZPVE level using DMSO as sol-

vent (Table 5). The reaction paths are collected in

Scheme 6. In all processes, very polar intermediates

are involved (Table 5). The activation energy in all three cases

(X=F, Cl, Br) is not very high and, as expected, is lower when

the substituent (X) is a fluoro group. It is interesting to note

that in this reaction a large increase in the polarity occurs due

to the high polarity of both the transition state and the inter-

mediate. On the basis of these outcomes, it can be concluded

that in this process, the theory proposed by Loupy is valid:

“Specific microwave effects can be expected for the

polar mechanism, when the polarity is increased

during the reaction on going from the reactants to the

transition structures”.[8a] The stabilization of the transi-

tion state is more effective than that of ground state,

which results in an enhancement in the reactivity

through a decrease in the activation energy. The con-

clusion in this case is that in this process the acceler-

ation effect is a consequence of the strong absorp-

tion of microwave irradiation by the intermediates

present in the reaction mixture.

The third example concerns a ring-closing meta-

thesis (RCM) reaction. Kiddle and co-workers[26] reported the

RCM of diallyl derivatives using ruthenium-based catalysts

(Scheme 7). The reaction can be rapidly conducted in either an

ionic liquid, such as 1-butyl-3-methylimidazolium tetrafluoro-

borate ([BMIM][BF4]), or in a microwave-transparent solvent

(MTS) such as dichloromethane. In both cases, the reaction

was successfully improved under microwave irradiation. The

best results were obtained using ionic liquids, although a dra-

matic decrease in reaction time was not observed when using

dichloromethane as the solvent. It is important to note that

the reaction temperature did not exceed 33 8C.

The authors suggested that microwave energy produced

nonthermal effects that might involve direct coupling to one

or both reactants in these transformations. However, they

could not ascertain which component was coupled with the

microwave energy or if other factors related to the medium

were influencing the microwave heating. Careful comparisons

by Kappe and co-workers[27] indicated that the observed rate

enhancements were not the result of a nonthermal microwave

effect. They confirmed experimentally that the diene showed

significant microwave absorption and that the absorption of

the Grubbs catalyst was negligible. The heating profile of the

reaction mixture was very close to that of the diene. However,

it was argued that the comparatively rapid metathesis transfor-

mations could be rationalized solely by taking into account

thermal effects (Arrhenius equation).

A density functional theory (DFT) computational mechanistic

study of this reaction with diallylether (15a) or N,N-diallyl-para-

toluenesulfonamide (15b), catalyzed by second-generation

Grubbs-type ruthenium carbene complexes, was carried out by

our group.[16h] This study was performed at the B3LYP/6-311+

G(2d,p)//B3LYP/SDD theory level (Table 6). Once again, as in

the cases outlined above, high activation energy in the preca-

talytic step was found. In another sense, polarity values of all

Scheme 4. Intramolecular hetero Diels–Alder cycloaddition of alkenyl-tethered 2(1H)-pyr-
azinones (10). Reagents and conditions : a) 1,2-dichloroethane, [BMIM][PF6] ; conventional
conditions: 132 8C, 1–2 d, 54%; microwave irradiation: 170 8C (300 W), 10 min, 67–77%.
Box: structure of [BMIM][PF6] . Result : acceleration.

Table 4. Computational calculated parameters for a Type III reaction: intramolecular
hetero-Diels–Alder cycloaddition (Scheme 4).

Solvent m [D]
(most polar species)

Dm[a] [D] Ea
[kcalmol¢1]

DH[b]

[kcalmol¢1]

Dichloroethane
ionic liquid ([BMIM][PF6])

18.2 ([BMIM][PF6]) 0.3 to 1.4 25.7 to 39.7 ¢7.5 to ¢8.9

[a] Dm=m TS¢m reactants ; [b] DH=DHproducts¢DHreactants.

Scheme 5. Nucleophilic aromatic substitution of p-halonitrobenzenes (12).
Reagents and conditions : a) DMSO; conventional conditions: 190 8C, 2 min;
microwave irradiation: 190 8C (300 W), 2 min. Result : acceleration rate=3.2.

Table 5. Computational calculated parameters for Type III reaction: nucleophilic aro-
matic substitution (Scheme 5).

Solvent X m [D]
(most polar species)

Dm[a] [D] Ea
[kcalmol¢1]

DH[b]

[kcalmol¢1]

DMSO
F 17.5 (Intermediate) 13.1 16.7 ¢10.7
Cl 14.0 (TS) 10.3 20.8 ¢23.5
Br 15.6 (TS) 11.6 18.2 ¢24.1

[a] Dm=m TS¢m reactants ; [b] DH=DHproducts¢DHreactants.
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the species were determinant. These outcomes are completely

in agreement with Kappe’s postulates. N,N-Diallyl-para-toluen-

sulfonamide (15b) is much more polar (m=7.1 D) than dially-

lether (15a) (m=1.7 D). However, this trend is not observed for

diene 15b alone, but is consistent for all species present in the

reaction path in which the tosyl group is involved.

Once again, the improvement produced in this reaction is

a consequence of the enhanced polarity of the reaction mix-

ture produced by one reagent, which acts as molecular radia-

tor. However, dielectric properties are group properties and

cannot be modelled by an interaction between a single dipole

and an electric field.[28] Considering that the reagents are in

a homogeneous reaction mixture, the presence of a polar re-

agent might increase the polarity of the medium and hence

the absorption of microwave radiation. As a consequence,

rather than a selective heating by one component (molecular

radiator), the enhancement produced in this reaction is a con-

sequence of the enhancement of the dielectric properties of

the reaction mixture; again, a clear thermal effect.

In summary, Type III reactions include exothermic reactions

with relatively high activation energies. The higher reaction

rate and the improvements achieved under microwave irradia-

tion are caused by an effective interaction between the materi-

al and the electromagnetic field due to the presence of a polar

component that increases the polarity of the medium, i.e. , the

presence of molecular radiators, doping agents or intermedi-

ates.

Type IV reactions

Type IV reactions include endothermic reactions (DH>0 kcal

mol¢1) with high activation energies (Ea=20–30 kcalmol¢1). We

have included in this section a [2p+2p] cycloaddition and

a 1,3-dipolar cycloaddition reaction.

The first reaction was the intramolecular [2p+2p] cycloaddi-

tion of alkynyl allenes (17) to afford bicyclomethylenecyclobu-

tenes (18). The reaction occurs in 15 min at 250 8C under mi-

crowave heating and gives high yields (74%) of com-

pounds 18.[29] The high temperature necessary for the reaction

to occur was achieved by doping the toluene with an ionic

liquid (1-ethyl-3-methylimidazolium hexafluorophosphate,

[EMIM][PF6]) (Scheme 8). The computed activation energy (Ea=

29.7 kcalmol¢1) and enthalpy (DH=28.8 kcalmol¢1) show that

this reaction requires very harsh conditions (Table 7). Once

again, the presence of an ionic liquid that couples efficiently

with microwaves makes it possible to exceed the harsh condi-

tions under which the reaction is carried out.

The second reaction is a 1,3-dipolar cycloaddition between

pyridinium dicyanomethylidene and phenylacetylene under

microwave irradiation (Scheme 9). De la Hoz and co-workers[30]

studied several parameters (molar ratio, incident power, tem-

perature and irradiation time) on the yield and selectivity. The

extent of the cycloaddition depends on the temperature nec-

essary for the reaction to proceed while preventing decompo-

sition of pyridinium N-dicyanomethylide. In this way, the best

results were obtained on using an ylide/dipolarophile molar

ratio of 1:1.5 under solvent-free conditions or using bentonite

as a mineral support and catalyst. Only traces of cycloadducts

were detected on using conventional heating and yields could

not be improved even on extending the reaction time to sev-

eral days.

The computational study performed at the B3LYP/6-31+G*

level indicated that this process is highly endothermic (DH=

20.3–22.4 kcalmol¢1), although the activation energy

is only moderate (Ea=20.5–22.6 kcalmol¢1) (Table 8).

The polarity values obtained indicate that pyridinium

dicyanomethylidene 19 is a polar species (m=8.4 D)

(Scheme 9). It should be noted that this reagent is

used in excess. This fact, together with the presence

of bentonite and the use of solvent-free conditions,

allows an efficient absorption of microwave energy

by the substrates.

Scheme 6. Energy profile for the reaction between 4-halonitrobenzene (12)
and piperidine (13).

Scheme 7. General scheme for ring-closing metathesis of diallyl derivatives.
Reagents and conditions : a) Ru catalyst, BMIM; conventional conditions:
33 8C, 2 min, 4% (16a), 45% (16b) ; microwave irradiation: 33 8C (110 W),
2 min, 85% (16a), 91% (16b). Result : acceleration.

Table 6. Computational calculated parameters for a Type III reaction: ring-closing
metathesis (Scheme 7).

Solvent m [D]
(most polar species)

Dm[a] [D] Ea
[kcalmol¢1]

DH[b]

[kcalmol¢1]

CH2Cl2 12 to 13 (Intermediates) 4 to 5 19 to 25 –

[a] Dm=m TS¢m reactants ; [b] DH=DHproducts¢DHreactants.
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Once again, in Type IV reactions, the presence of a polar re-

action medium or polar reagents allows the reaction to be im-

proved under a polarizing field such as microwaves.

Type V reactions

The Type V reaction group includes exothermic reactions

(DH<0 kcalmol¢1) with activation energies (Ea) above 30 kcal

mol¢1. The selected reaction is a Diels–Alder cycloaddition be-

tween azoniaanthracene (24) and 1,1-bis-2-thienyle-

thene (23), which leads to 6,11-ethanobenzo-[b]qui-

nolizinium bromide (25). This process was performed

in a domestic microwave oven in trifluoroethanol

(TFE) or 10% acetic acid in TFE as the solvent and

was highly accelerated under microwave irradiation

(3 min) to give the product in good yields (78%)

(Scheme 10). Under conventional heating, the reac-

tion takes place in two hours.[31]

The computational study performed at the B3LYP/

6-31+G* level indicated that this process is exother-

mic, but its activation energy is as high as 41.8 kcal

mol¢1 (Table 9). These harsh conditions can be over-

come due to the high polarity of azoniaanthracene

(m=19.9 D), which is similar to that of an ionic liquid.

Once again, the presence of a very polar reagent

leads to an increase in the absorption of microwaves;

a clear thermal effect.

Type VI reactions

Finally, Type VI reactions are endothermic processes

(DH>0 kcalmol¢1) with high activation energy (Ea>

30 kcalmol¢1). Reaction between 4-nitroimidazole

(27) and cyclohexadiene (26) does not occur under

microwave irradiation,[32] although nitroimidazole (27)

is polar (m=8.6 D) (Scheme 11). In contrast, the reac-

tion between 4-nitropyrazole and cyclohexadiene

gives a high yield (80%), although the polarity and

nucleophilicity of nitropyrazole are lower (m=5.5 D),

and this represents a significant improvement in rela-

tion to conventional heating (5%).

Computational calculations at the B3LYP(PCM)/6-31

G* level showed different aspects in the mechanism

for both reactions. In both cases, the mechanisms in-

volve protonation of cyclohexadiene and subsequent

nucleophilic attack. The difference is that while the

addition of pyrazole (Mechanism 1, Scheme 12) in-

volves synchronous protonation and addition of pyr-

azole, the addition of imidazole is asynchronous

(Mechanism 2, Scheme 12).

The calculated values for the activation barriers are

29.5 kcalmol¢1 for mechanism 1 and 35.3 kcalmol¢1

for mechanism 2 (Table 10). As expected for the pro-

posed mechanism, there is an increase in the polarity

from the starting material to the TS (TS1: m=15.0 D;

TS2 : m=10.4 D; TS3 : m=15.2 D; and TS4 : m=

10.3 D). However, regardless of the polarity of the TS,

only the reaction of 4-nitropyrazole 29 actually takes place.

These results are very representative, and they are consistent

with a thermal effect and with our calculations, showing that

under microwave heating reactions with high activation ener-

gies (Ea=29.5 kcalmol¢1; Type IV reactions) can be successfully

performed. However, when the activation energies are above

30 kcalmol¢1, that is, Type VI reactions, the processes do not

occur.

Scheme 8. Microwave irradiation of alkynyl allenes leads to an intramolecular [2p+2p]
cycloaddition reaction to provide bicyclomethylenecyclobutenes. Reagents and condi-
tions : a) [EMIM][PF6] (3m), toluene; conventional conditions: no reaction; microwave irra-
diation: 250 8C, 15 min, 74%. Result : reaction takes place only under microwave irradia-
tion.

Table 7. Computational calculated parameters for a Type IV reaction: intramolecular
[2p+2p] cycloaddition (Scheme 8).

Solvent m [D]
(most polar species)

Dm[a] [D] Ea
[kcalmol¢1]

DH[b]

[kcalmol¢1]

Toluene
ionic liquid ([EMIM][PF6])

18.2 ([EMIM][PF6]) 0.6 29.7 28.8

[a] Dm=m TS¢m reactants ; [b] DH=DHproducts¢DHreactants.

Scheme 9. 1,3-Dipolar cycloaddition of pyridinium dicyanomethylidene and phenylacety-
lene. Reagents and conditions : a) conventional conditions: 150 8C, 180 min, trace amounts
of product ; microwave irradiation: 180 8C (120 W), 180 min, 50%. Result : reaction takes
place only under microwave irradiation.

Table 8. Computational calculated parameters for a Type IV reaction: 1,3-dipolar cy-
cloaddition (Scheme 9).

Solvent m [D]
(most polar species)

Dm[a] [D] Ea
[kcalmol¢1]

DH[b]

[kcalmol¢1]

Solvent-free
bentonite bath

8.4 (Reactant 19) ¢3 20.5 to 22.6 20.3 to 22.4

[a] Dm=m TS¢m reactants ; [b] DH=DHproducts¢DHreactants.
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Computational methods

All of the geometry optimizations and energy calculations in-

cluded here were performed using the GAUSSIAN 03[33] and

09[34] program suites. In order to perform the calculations at

a homogenous computational level that provides quantitative

accuracy at a reasonable computational cost, all calculations

described were performed by DFT[35] using a Becke’s hybrid

three-parameter functional (B3LYP)[36] and the 6-31+G* basis

set.[37] This level of theory has proven to yield accurate activa-

tion parameters and geometries.[38] Only for the metathesis re-

action, in order to take ruthenium into account, were studies

performed at the B3LYP/6-311+G(2d,p)//B3LYP/SDD[39] theory

level. All stationary points were characterized by harmonic

analysis. All relative energies reported here include the zero-

point vibrational energy (ZPVE) corrections.

To take into account the possible solvent effect of polar

media for some reactions, calculations were carried out with

the polarized-continuum model (PCM)[40] using the appropriate

solvent.

Conclusion

Computational calculations have been carried out on selected

reactions in order to determine energy and physical parame-

ters required to understand and predict the origin of improve-

ments and selectivities observed in organic reactions per-

formed under microwave irradiation. For this pur-

pose, the influence of enthalpy (DH) and polarity (m)

in the reactions was studied. In order to obtain rele-

vant information, a complete study of all reaction

paths was performed. The main conclusions of this

study are summarized in Table 11.

Exothermic reactions with low activation energies

(Type I) proceed well under conventional heating,

and improvements should not be expected under

microwave irradiation. However, the corresponding

endothermic reactions (Type II) can be improved

slightly under microwave irradiation under the conditions de-

scribed above.

Endothermic and exothermic reactions with moderate or

high activation energies (Types III and IV) can be improved

under microwave irradiation in polar media (reagents, solvent,

catalyst).

Reactions with very high activation energies can be per-

formed under microwave irradiation when two requirements

are fulfilled: the reaction is exothermic (Type V) and

a polar medium is present. Endothermic reactions

(Type VI) do not take place under either conventional

heating or microwave irradiation.

In agreement with our previous studies, the out-

comes obtained here provide evidence that slower

reacting systems tend to show better effects under

microwave irradiation. So, radiation is selectively ab-

sorbed by polar systems, a characteristic that leads to

selective heating profiles. The presence of a polar sol-

vent, reagent or support in the reaction media leads

to strong coupling with the radiation. This fact is par-

ticularly important in heterogeneous systems where it could

also generate microscopic hot spots or selective heating.

The presence of small amounts of a strongly microwave-

absorbing ‘doping agent’ or ‘susceptor’, such as an ionic liquid,

leads to very efficient interactions with microwaves through

the ionic conduction mechanism. It is noteworthy that we also

quantified that an activation energy of 20–30 kcalmol¢1 and

a polarity of the species involved in the process between 7

and 20 D is required to obtain improvements under microwave

irradiation.

Scheme 10. Diels–Alder cycloaddition between azoniaanthracene and bis-
substituted olefin leading to 6,11-ethanobenzo-[b]quinolizinium. Reagents
and conditions : a) H2O/HOAc (10%), trifluoroethanol (TFE); conventional con-
ditions: 100 8C, 120 min, 76%; microwave irradiation: 100 8C (500 W), 3 min,
78%. Result : acceleration.

Table 9. Computational calculated parameters for a Type V reaction: Diels–Alder cy-
cloaddition (Scheme 10).

Solvent m [D]
(most polar species)

Dm[a] [D] Ea
[kcalmol¢1]

DH[b]

[kcalmol¢1]

H2O or trifluoroethanol 19.9 (Reactant 24) ¢7.1 41.8 ¢4.5

[a] Dm=m TS¢m reactants ; [b] DH=DHproducts¢DHreactants.

Scheme 11. Reaction of 4-nitroimidazole (27) and 4-nitropyrazole (29) with
cyclohexadiene (26).

Table 10. Some computational calculated parameters for a Type VI reaction
(Schemes 11 and 12).

Solvent m [D]
(most polar species)

Dm[a] [D] Ea
[kcalmol¢1]

DH[b]

[kcalmol¢1]

Benzene 15.0 (TS1)
15.2 (TS3)

5.5 29.5 (mechanism 1)
35.3 (mechanism 2)

5.6

[a] Dm=m TS¢m reactants ; [b] DH=DHproducts¢DHreactants.
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The results discussed in this paper highlight some features

that can be used to predict, with simple calculations of activa-

tion energy, enthalpy and polarity, when a reaction can be im-

proved under microwave irradiation. These characteristics

could prove to be very useful for synthetic chemists.
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