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INTRODUCTION

Elastic porous media saturated by a fluid or a gas
are an example of materials with microstructure. The
necessity of investigation of wave processes in such
media is due to applied problems of soil mechanics,
geophysics, and vibroseismic exploration; the con�
struction and oil and gas industries; and the occur�
rence of new granular–powder and sponge materials
used, for example, for thermal and vibroinsulation of
aerospace elements. At present, the commonly
accepted tool for theoretical study of propagation of
linear waves in porous fluid�saturated media is the
Biot–Frenkel equations [1, 2] generalizing the equa�
tions of the classical theory of elasticity to the case of
two�phase media. The motion of each of the phases
(elastic skeleton and pore fluid) is described by the set
of equations containing additional terms that take into
account phase interaction. It is known that taking in to
account the mutual influence of oscillations of parti�
cles of the elastic skeleton and pore fluid results in the
change of the velocity of longitudinal ( ) and trans�
verse ( ) body waves and the occurrence of the addi�
tional longitudinal wave ( ) (a so�called slow longitu�
dinal wave or Biot wave). It is difficult to excite and
register the slow wave ; this is the reason why this
wave was experimentally discovered 20 years after its
theoretical prediction [3, 4]. On the whole, Biot’s the�
ory yields results that agree well with experimental
measurements for velocities of body waves and their
frequency dependences.

Microstructure is manifested in wave effects con�
nected with the presence of boundaries. First, the laws
(coefficients) of refraction and reflection of body
waves incident on the interface of two�phase media
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change [5], and, second, not only characteristics of
surface and channel waves propagating along straight
boundaries change, but their number does not change:
in the presence of porosity, additional traveling waves
occur [6, 7]. Detailed analysis of the properties of
waves occurring in the poroelastic half�space with a
free boundary and at the interface of the poroelastic
and fluid half�spaces can be found in [8–10]. This
analysis is forestalled by the presentation of Biot’s the�
ory and detailed survey of studies in this field. In par�
ticular, it is pointed out that experimentally deter�
mined characteristics of interface waves [11] agree well
with those obtained in the framework of Biot’s theory
[6] and the permeability coefficient  essentially
influences these characteristics [12].

These theoretical studies as a rule are performed
using the methods of modal analysis; in the framework
of these methods the problem for the considered
porous waveguide with homogeneous boundary con�
ditions is reduced to the homogeneous algebraic sys�
tem with respect to unknown coefficients of the gen�
eral solution. The determinant of the matrix  of this
system yields the dispersion equation for the sought
traveling waves,

(1)

and the displacement of the medium particle at pas�
sage of these waves is expressed in terms of the eigen�
vectors  = 0 corresponding to real or close to
real roots  of this equation. However, the
eigenvectors  are determined to constant factors;
therefore, in the framework of the modal analysis it is
impossible to obtain the real ratio between the ampli�
tudes of different modes excited by the given source.
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For solution of the problem of excitation of the

harmonic wave field  by the given source  in
the waveguide with plane�parallel boundaries (half�
space, layer, multilayered half�space or packet of lay�
ers) the method of integral Fourier transform with
respect to horizontal coordinates  is usually used;
this method provides the solution in the form of the
inverse Fourier integral of the product of Fourier sym�
bols of the Green’s matrix  of the medium and the
given load vector  [13],

(2)

The integration contours Γ1, Γ2 go along the real axis
and deviate from it to the complex plane to bypass the
real poles  of elements of the matrix . The residu�
als in these poles describe the surface and channel
waves,

(3)

where  is the characteristic wavelength;  are the
polar radius and angle; and , .
Waves (3) determined by the poles  include surface
Rayleigh waves and channel Lamb, Stoneley, Scholte,
and Love waves; below, they will be called Rayleigh�
type or Rayleigh waves for brevity.

The poles  coincide with the roots of dispersion
equation (1) derived in the framework of the modal
analysis and the amplitude factors  are proportional
to displacements described by the corresponding
eigen�solutions. However, unlike the latter, they are
unambiguously expressed in terms of the residuals

,  and the values of  for
 (see, e.g., [14, 15] and

references therein for details of derivation of (2), (3)).
Thus, the amplitude of each mode (3) is strictly
defined, which makes it possible to calculate the
dynamic reaction of the medium and the amount of
wave energy received from the given source (load )
and analyze its distribution between excited modes
using integral representation (2).

The method of derivation of integral and asymp�
totic representations (2) and (3) (i.e., methods of con�
struction of the matrix K, determination of real and
close to the real axis poles  and their residuals) is
quite well developed not only for multilayered isotro�
pic elastic media [16, 17], but also for more complex
structures, such as, for example, stratified media with
gradient dependence of elastic properties on the depth 
[16] or arbitrarily anisotropic layered waveguides [18].
It is natural to try to use a similar approach to the case
of poroelastic materials try to find out whether the
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amplitude of additional surface and channel waves
determined by the microstructure (porosity) can be,
unlike , comparable with the amplitude of principal
Rayleigh�type waves. It was indicated in [19] that the
history of construction of wave fields from a point
source in a porous Biot medium began in late 1970s–
early 1980s [20, 21], but is mainly limited by cases of
homogeneous infinite space or half�space [22]. In
spite of papers concerning multilayered poroelastic
media with sources published in the recent years,
results on the influence of porous microstructure on
the amplitude of Rayleigh�type waves are very few.
Note that traveling waves occur due to the porosity on
plane�parallel and cylindrical fluid�saturated well
waveguides. Numerical analysis of amplitudes of
waves excited in such a structure by a point source of
expansion–compression was performed in [23].

STATEMENT OF THE PROBLEM

The �layered half�space ,
, consisting of  layers 

with the finite thickness  and the lower
half�space :  is considered (Fig. 1). It is
assumed that the layer material can be two�phase
poroelastic (Biot medium) and purely elastic, i.e.,
without a microstructure. In the latter case the poros�

ity coefficient  characterizing the volume

fraction of the fluid phase  in some volume of the
porous material  is equal to zero. Layers are ideally
connected with each other, i.e., the conditions of con�

tinuity of displacements  =

and stresses  =  are satis�
fied at the internal boundaries , , and
in the case of contact of two porous materials these
conditions are added by the conditions of continuity

of pore pressure  and the normal component  of
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Fig. 1. Multilayered poroelastic half�space with surface
load.
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the relative velocity vector  (for definite�
ness the boundaries are assumed permeable with free
flow of the pore fluid). Correspondingly, the upper
surface  is free from stresses ( ) and the

pore fluid pressure ( , pores are open) beyond
the region of application of the surface load .

According to the Biot’s theory, averaged over the
elementary volume displacements of the porous mate�
rial  are the sum of displacements of the elastic skel�

eton  and the pore fluid ,

(hereinafter, the indices  and  denote the quantities
related to the elastic and fluid phases of the material,

respectively). Similarly,  and  denote the aver�

aged components of the stress tensor 
connected with the deformation  by the generalized
Hooke’s law [2],

(4)

Here,  is the volume expansion, 
or ,  is the Kronecker symbol. As usually, in the
case of indexed notation summing over the repeated
indices is assumed, and the indices after the comma
denote the derivative with respect to the correspond�
ing coordinate  = . The con�
stants  are the macroscopic elastic moduli of
the porous medium depending on the microstructure
of the porous material. For  the moduli  coin�

cide with the Lame constants  for the material of
the elastic skeleton, , and first relation (4)
degenerates into the Hooke’s law for the isotropic lin�
early elastic medium.

The motion of elementary volume of the porous
medium satisfies the equilibrium equations

(5)

after substituting relations (4) these equations yield the
motion equations in terms of displacements,
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the first of these equations for zero porosity ( )
degenerates into the Lame equations for the elastic

medium ( , ),

(7)

Here,  are the inertia coefficients connected

with the densities of the elastic and fluid phases  and

 as

(8)

and  is the pore tortuosity coefficient; the coefficient 
at  determines the level of dissipation of the wave
energy (analogue of the viscous medium). In the
examples considered below the skeleton is assumed to
be ideally elastic, and the pore fluid non�viscous, and
as a consequence, . Points above the variables
denote time derivatives.

Below the problem is formulated for the case of

established harmonic oscillations , i.e., it is for�
mulated with respect to the frequency spectrum of the
displacement vector connected with nonstationary
oscillations by Fourier transform with respect to
time Ft,

(9)

In this case the time derivative in (5)–(7) is replaced

by the factor : ,  and
the nonstationary displacements are calculated if nec�
essary by numerical integration over  according to

(9). The harmonic factor  is omitted below.

The representation of the stress vector τ on the hor�

izontal surface const with the normal  in
terms of the displacement vector  necessary for for�
mulation of boundary conditions has the form

or in terms of components,

0ε =

s
=u u s

ρ = ρ

( 2 ) 0λ + μ ∇ + μΔ − ρ = .u u u��div

11 12 22ρ ,ρ ,ρ

s
ρ

f
ρ

11 12

22 12 12

(1 )

(1 )

s

f f

ρ = − ε ρ − ρ ,

ρ = ερ − ρ , ρ = ε − α ρ ,�

α� γ

w�

0γ =

i te− ωu

0

1

0

( ) [ ( )] ( )

1( ) [ ( )] ( )

i t
t

i t
t

F t t e dt

t F e d

∞

ω

∞

− − ω

,ω = , = , ,

, = ,ω = ,ω ω.

π

∫

∫

u x u x u x

u x u x u xRe

i− ω ( ) ( )t i→− ω ωw w�

2( ) ( )t → −ω ωu u��

ω

i te− ω

z = (0 0 1)T
= , ,n

u

rot3( ) 2 ( ),

( ) ,

s f s ss f s

s f ff

e Qe

Qe Re p

,
= + , = λ + + μ + μ ×

= + = −ε

τ τ ττ

τ

n u n u

n n

( )3 3

3 3 3 3

0 1 2,

2 .

s s s f
i i i i

s s s f f s f

u u i

e u Qe Qe Re

, ,

,

τ = μ − , τ = , = ,

τ = λ + μ + , τ = +



ACOUSTICAL PHYSICS  Vol. 57  No. 2  2011

INFLUENCE OF POROSITY ON CHARACTERISTICS OF RAYLEIGH�TYPE WAVES 233

In the case of the medium with open pores the bound�
ary conditions on the upper surface  have the
form

(10)

Here,  is the vector of arbitrary surface
load applied to the domain . Below numerical results
for the medium with closed pores are presented for
comparison. For this medium it is assumed that on the
surface  free flow of the pore fluid is absent,

(11)

In this case the condition for  in (10) is replaced by
condition (11).

The conditions on the permeable boundaries
between the poroelastic layers  and  have the
form

(12)

Hereinafter, square brackets denote the jump of a cor�
responding function of  at the interface ,

If one medium is purely elastic ( ), the first three
conditions of (12) remain unchanged (assuming that

for  , , ) and the fourth one is

rejected (the pressure  at the interface with the elas�
tic medium is not determined).

The condition of zero displacement at infinity
closes the formulation of the boundary value problem,

in the case of the ideal medium ( ) this condition
is added by the radiation condition following from the
principle of limiting absorption: the homogeneous
limit of the corresponding problem with absorption

 for  is taken as the problem solution for the
ideal medium.

It is known that displacements of the elastic
medium can be expressed in terms of the scalar and
vector potentials  and : , thus split�
ting Lame equations (7) into independent wave equa�
tions with respect to  and . For porous medium, the
similar representation contains two scalar potentials ,

. According to [2, 5], it is convenient to write this
equation in the form
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in which the constants  are chosen in such a way
that, if (13) is substituted into Eqs. (6) transformed to
the frequency representation, the latter are split into
the independent scalar Helmholtz equations and the
vector equation with respect to the vortex potential,

(14)

In this case , and  are the velocities of body
waves , and . Only two components of the vortex
potential  are independent; therefore, without losing

generality it can be written as  which

reduces the vector equation with respect to  to two
scalar Helmholtz equations,

(15)

The splitting is achieved if the vectors 

and  satisfy the homogeneous matrix
equations

,

i.e., are the eigenvectors corresponding to the eigen�
values ,

(16)

In the case of independent phase motion (Q = 0,
) they coincide with the wave numbers for

longitudinal waves in the elastic skeleton

( ) and pore fluid ( ).
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GREEN’S MATRIX OF POROELASTIC 
HALF�SPACE

Columns of the Green’s matrix  (see
(2)) are the fundamental solutions of the considered
problem corresponding to the concentrated surface
loads   applied along the coordinate
unit vectors . For the arbitrary load , the
solution is written in the form of convolution of the
Green’s matrix  and ,

or in equivalent form (2) in terms of the product of
their Fourier symbols  and . According to the rep�

resentation of  in terms of  and , the Green’s
matrix of the porous medium is composed of the

matrices  and  for the averaged displacements of
the skeleton and the fluid,

The general method for derivation of the algorithm
for calculation of elements of the matrix  is
the application of the Fourier transform  with
respect to the horizontal coordinates , which
reduces the initial equations for each layer  to the
system of linear ordinary differential equations with
respect to . The unknown constants included in the
general solution to these systems united in the vector t
are then determined from the systems of linear alge�
braic equations

(17)

which occur for satisfaction of the transformed
boundary conditions at the upper surface,

and internal boundaries .
In the case of the anisotropic medium when the

explicit representation of the general solution is too
cumbersome, the following approach proved to be
good [18]: the Fourier transform is formally applied
with respect to all three (rather than two) spatial vari�
ables : , . In this case the
factors  included in the obtained expressions are
actually the symbolic notation of the operator of dif�

ferentiation with respect to : ,

. Thus, the compact matrix form of the trans�
formed equations, their general solutions, and the
algorithm of construction of the matrix  become
possible.
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In the considered case, this approach makes it pos�
sible to reduce Eqs. (6) for the ideal medium ( ) to
the homogeneous system with the dimension ,

(18)

with respect to the vector , ,
. Here,

,

 is the unit matrix , and ,  are
 blocks with the components

The general solution to system (18) has the form
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where  are the unknown coefficients,
 are the roots of the characteristic

equations with respect to the parameter , and  are
the corresponding eigenvectors,

The number of terms in (19) is equal to eight, since
 is the eighth�order polynomial with respect to

.

In the anisotropic case, the roots  and the eigen�
vectors are numerically determined from the similar
equations, but in the considered case, due to the split�
ting of the original system into independent Helm�
holtz equations (14), (15) they can be written in the
explicit form,

The roots  are twofold, and for  ( )
they correspond to two pairs of eigenvectors  and

. For  (at branch points) in the Jordan

form of the matrix  Jordan cells occur and the
root  corresponds to the eigenvectors and
adjoint vectors. The form of general solution (19)
should change correspondingly, but this case has no
special practical value, since branch points are
rounded by the integration contour and, which the
most important, in the case of minimal variation of α,
representation (19) is valid.
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The form of the general solution to transformed
equations (14), (15) is

and that of relations between the Fourier symbols of
the functions included in them which follows from
(13) is

these representations can be used to easily to obtain

the explicit form of the eigenvectors ,

(20)

for the first value of the index  in  the upper plus
sign is taken in the substitution , and for the second
one, the lower minus sign.

Based on representations similar to (19), the gen�
eral solution  for each porous layer  can
be written in the form of the product of the known

matrix and the vector of unknown coefficients 

,

(21)

The columns of  matrix  are the vectors  of
form (20) in which the constants  and  are deter�
mined for the parameters of the kth layer, the matrix

 consists of the exponentials

the shift of the argument  and  in the
powers provides the numerical stability of solution to
system (17).

The vector of unknown coefficients of this system 
consists of the vectors  for each layer,
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, and the block diagonal structure of
the matrix  is determined by the matrix relations

which occur if representations (21) and similar matrix
representations for the Fourier symbols of the stress
vector  and relative velocity  are substi�
tuted into the boundary conditions at the surface 
and internal boundaries , . The
block structure of the matrix A looks similar to that in
the previous algorithms of  construction for layered
elastic media [17, 18] with obvious differences in block
representations. The main difficulty is the violation of
unification due to the possible absence of porosity

( ) in some layers. For these layers  is the vec�

tor of length , and in representation (19)  = 0,
i.e., actually only six unknowns are left. Thus, the
dimensions of the blocks  and  are different for the
numbers k corresponding to porous or purely elastic
layers. Note also that in representation (19) for the

lower half�space ( ) the exponentials  violat�
ing the radiation conditions for  and exponen�
tially growing for ,  for the lower half�
space, i.e., it is necessary to assume that

.

In the case of a large number of layers , it is rea�
sonable to use the sparseness of the matrix  and orga�
nize the solution to system (17) using the chain of
numerically stable recurrent matrix relations that
require inversion of matrix blocks of relatively low
dimension.

After determination of ,  jth columns of the matri�

ces  and  for  are calculated using repre�

sentation (21) (the first three components 

 are included in , and the last three

in ).
It should be noted that the same as in the case of the

isotropic elastic medium the problem of construction
of the matrix  can be split into two independent
problems (analogue of separation of the problem for
torsional oscillation or  waves). The detailed
description of this algorithm based on the determina�

tion of unknown coefficients  from two independent
linear algebraic systems is given in [24].

ANALYSIS OF THE INFLUENCE OF POROSITY 
ON CHARACTERISTICS OF EXCITED WAVES

In the case of investigation of wave processes in
porous fluid�saturated media, samples with fixed
material parameters are usually studied. In theoretical
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simulation the parameters  included in motion
equations (6) are calculated using the classical repre�
sentations [2] in terms of the compression moduli

, and  for the material of elastic skeleton,
pore fluid, and porous sample with dry pores which
can be experimentally measured, as well as the shear
modulus ,

Similarly, the inertia coefficients are expressed in

terms of the experimentally determined densities ,

 and the pore tortuosity  using relations (7).
The objective of this study is the investigation of the

influence of porosity  on the wave characteristics; for
this purpose the input material parameters should be
determined as functions of . Unfortunately, experi�
mental determination of such dependences is hardly
realized in practice; therefore, for numerical experi�
ments the dependence of input parameters on  is

determined in such a way that for the intermediate
value  they coincide with the parameters of
the medium used in [25] (for possible test representa�
tion of results) and in the limiting cases  and 1
they approach the properties of the elastic and fluid
phases,

These requirements are satisfied, in particular, by the
following dependences:

(22)

The inertia coefficients ρ11, ρ22 are determined by (8).
The agreement with the parameters from [25] is
achieved for the following values of the coefficients:

(23)

The elastic moduli  and μ are determined in GPa
(1 GPa = 109 n/m2), the density  in kg/m3, and the
other coefficients are dimensionless.

Figure 2 shows the results for the homogeneous
half�space ( ) with the same parameters as in [9,

25] for verification. The values of phase velocities
 and inverse to them slowness factors
 are compared; according to (3), they are

determined in terms of the poles  of elements of the
symbols of the Green’s matrix . In Fig. 2a solid lines
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Fig. 2. (a) Slowness  of body and Rayleigh waves as a function of porosity ; (b) phase velocity vn as a function of the shear
modulus µ for homogeneous porous half�space (comparison with [9, 25]).
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show the dependences of  on the real and imaginary
parts of the slownesses  (in s/km) for Rayleigh�type
waves ( ) and dashed lines show the slownesses of
body waves , ,  calculated according to (14) and
(16); the dark circle shows the value of  for 
taken from [25]. The Rayleigh pole  and the cor�
responding slowness  are real only for those values of

 for which , i.e., approximately in the range
0.05 < ε < 0.26. In the range 0.26 < ε < 0.85 the pole is
rather far from the real axis and returns toward it with�
out reaching it for ε > 0.85. In the case of complex 
Rayleigh wave (3) propagates with exponential attenu�

ation  which becomes essential in the range
0.26 < ε < 0.85, while for ε < 0.05 and ε > 0.85 the

attenuation  is very small ( ).

ε
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The right�hand side of Fig. 2b shows the depen�
dences of the phase velocities  on the ratio of the
shear modulus  and the pore fluid compression mod�
ulus  for the water�saturated half�space with the
parameters ε = 0.3, Ks = 360 GPa,  GPa,

 kg/m3, , and  (  is the
Poisson coefficient of the porous medium without a
pore fluid) considered in [9]. These curves for the
velocities of body waves ( ) and Rayleigh wave 
coincide with those shown in Fig. 6 from [9], but the
latter figure does not contain the curve  for the sec�
ond Rayleigh�type wave. The pole  determining this
wave is complex with the imaginary part yielding the

attenuation  of order . Since the characteristics
of this wave are close to the slowness of the Rayleigh
wave for the elastic half�space with the parameters
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obtained upon averaging the parameters of the water�
saturated half�space ( , dash–dotted line), it is the

principal Rayleigh wave, while  is the additional
mode occurring due to the medium porosity.

The occurrence of such additional waves (i.e.,
additional poles ) is well illustrated by the plots of

dispersion curves  (  is the frequency in Hz) for
the three�layered half�space (Fig. 3). Two upper layers
with the thickness  m with the parame�
ters (22), (23) can be water�saturated ( ) or
purely elastic ( ) and the lower half�space in all
examples is elastic with the parameters λ = 59.06, μ =
26.12 GPa, and  kg/m3. The series of four sets
of dispersion curves for all possible combinations of
the porosity  of two upper layers is presented:

sR

1R

nζ

( )ns f f

1 2 0 5h h= = .

0 1ε = .

0ε =

2700ρ =

kε

(a)  is the purely elastic medium (actu�
ally, the two�layered half�space with a �m�thick upper
layer and properties of elastic skeleton (23));

(b)  is the two�layered half�space and
the upper layer is fluid�saturated with open pores;

(c) ,  is the three�layered half�space
with the porous upper layer with a thickness of 0.5 m;

(d) ,  is the three�layered half�space
with the porous internal layer.

The comparison of these cases shows that the pres�
ence of porosity practically does not change the char�
acteristics (slowness) of Rayleigh�type waves for the
elastic two�layered half�space shown in Fig. 3a (simi�
larly to the slight difference of the wave  in Fig. 2b
and the classical Rayleigh wave), but in this case addi�
tional modes  (pore modes) occur. Output points
of the dispersion curves of these modes (cutoff fre�
quencies) are inversely proportional to the thickness of
the porous layer and, therefore, are shifted to the right
with decreasing thickness (compare Figs. 3b and 3c).

In the case of the upper elastic layer (Fig. 3d), prac�
tically dispersionless pore mode  occurs and the
cutoff frequency of the following mode  tends to
the right beyond the frequency range shown in Fig. 3.
The mode  is present for any thickness of the
upper layer  up to its degeneration at  into an
infinitely thin film closing pores (see Fig. 4a for

 but with boundary condition (11) for
closed pores). The amplitude of this additional mode
can be essentially higher than the amplitude of princi�
pal Rayleigh modes . This fact is illustrated in Fig. 4b;
this figure shows the dependences of the absolute value
of the amplitude factors  included in wave represen�
tation (3) on the thickness of the upper layer  for
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, , ,  Hz. For 
this corresponds to the case of the upper porous layer
with closed pores (see Fig. 4a), for  m the
medium is the same as in Fig. 3d, and for  m, it is
the same as in Fig. 3a. In the latter case the mode 
is absent, since the corresponding residual included in
the representation of  for  vanishes and the pole
becomes removable.

Note that while dispersion curves can be obtained
in the framework of the modal analysis, amplitude
characteristics shown in Fig. 4b and below depend not
only on the medium properties but also on the source

type. The concentrated vertical load 
is taken as the source for certainty; i.e., actually the
amplitude of elements of the third column of the
matrix  is considered.

Figures 5 and 6 show the dependence of the slow�
ness  on  and the amplitude of corresponding Ray�
leigh modes for the two�layered space ( ) at
the fixed frequency  Hz (for  the
parameters of the medium are the same as in Fig. 3b).
For chosen dependence (22) of the upper layer prop�
erties, the slowness of Biot body wave changes with
increasing  in a wavy way (Fig. 5, dashed line ). The
slowness of the additional pore mode  behaves in
a similar way. The slowness of the principal Rayleigh
wave  also depends on porosity, decreasing with
increasing  similar to the case of the homogeneous
half�space (Fig. 2a), and the velocity of the next prin�
cipal mode  is practically independent of . In the
limit for  the characteristics of all presented
modes coincide with the corresponding characteristics
of Scholte–Stoneley waves for the layer of acoustic
fluid on the elastic half�space.
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The plots in Fig. 6a show the dependence of  on
the amplitude of vertical components  of the dis�
placement vectors of these modes (  Hz, )

and the fraction  related to the elastic skeleton
(Fig. 6b). Due to a large value spread, the amplitude
characteristics are shown in the logarithmic scale.
Although in the elastic medium the pore mode is
absent (  for  and ), its amplitude
becomes larger than the amplitude of the waves  and

 already for rather small values of  both for vertical
displacements on the whole and displacements of the
elastic phase. It is also interesting to note that there
exist porosity values (  and 0.87 for  and 
0.78 for ) for which the indicated principal modes
are practically not excited.

The dominating character of the additional pore
mode is manifested in theoretical seismograms con�
structed for the vertical component of displacements
of the surface  at the distance  km from the
nonstationary source  (Fig. 7). The
form of the initial pulse  is determined by the Han�
ning frequency spectrum with the central frequency 
and the range half�width ,

The occurrence of the additional signal transferred
by the pore mode can be seen in the case of compari�
son with the seismograms for the two�layered elastic
half�space ( , dispersion properties see Fig. 3a) in
the upper parts of Figs. 7a and 7b. The lower parts of
these figures show the seismograms for the two�layered
half�space with the upper porous layer with the thick�
ness  m (Fig. 7a) and the three�layered
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half�space with the internal porous layer 
(Fig. 7b). The dispersion properties of these layers are
shown in Figs. 3b and 3d, respectively.

In the first case, the pulse  with the characteris�
tics ,  = 25 Hz excites three modes R1, R0,
and PM1 with the group velocities of the wave packets
cn = dω/dξ equal to 2.2, 0.43, and 0.25 km/s, respec�
tively. The arrival times for signals transferred by these
modes, t , , and  s agree
well with the principal maxima in the lower seismo�
gram (Fig. 7a).

The second example (Fig. 7b) demonstrates the
occurrence of additional wave packet with large
amplitude which arrives at the observation point with
the group velocity  km/s. Here, the signal
with the low central frequency  = 40 Hz and the half�
width  Hz at which there are no additional
pore modes in the first case (Fig. 3b), is taken, i.e., the
form of  for  is practically the same as for

.

Obviously, the ratio of amplitudes of excited modes
depends on the combination of elastic properties of
the layers . The results presented above were
obtained for the case of relatively hard lower half�
space  (  = 85, where  is the shear modulus
of the elastic material of  and µ is that of the porous
layers). If the plots of the amplitude of excited modes
as a function of  are considered, for example, for
the second case (not show here), the amplitude of 
is higher than that of  in the range .
For  the value of the latter is practically
unchanged, while the amplitude of  monotonically
decreases, and for  = 85 it becomes such as
shown in Fig. 4b for .
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