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Abstract

This study examined the influence of pyrolysis temperature on biochar characteristics and

evaluated its suitability for carbon capture and energy production. Biochar was produced

from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The

experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA,

NMR (C-13). Higher heating value (HHV) of feedstock and biochars was measured using

bomb calorimeter. Results show that carbon content of corn stover biochar increased from

45.5% to 64.5%, with increasing pyrolysis temperatures. A decrease in H:C and O:C ratios

as well as volatile matter, coupled with increase in the concentration of aromatic carbon in

the biochar as determined by FTIR and NMR (C-13) demonstrates a higher biochar carbon

stability at 500°C. It was estimated that corn stover pyrolysed at 500°C could provide of

10.12 MJ/kg thermal energy. Pyrolysis is therefore a potential technology with its carbon-

negative, energy positive and soil amendment benefits thus creating win- win scenario.

1. Introduction

Sustainable economic development, food security and environmental management are some of

the highest priorities of the modern world as these are concerned with the present and future

generations. The multidimensional crises of global climate change, energy and water shortages

as well as agricultural land degradation due to nutrient depletion provide major social, political,

and economic challenges of today’s world. [1]
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China is the second highest emitter of CO2. In December 2009, China’s State Council

declared that the country aims to reduce its 2005 carbon emissions by 40 to 45% in year 2020. If

successful, this would have a considerable positive impact not only for China but also the rest of

the world. [2–3] China has been an agricultural country for millennia, and tens of millions of

people are still involved in the agriculture sector which provides both and income and food

security. [4] Some of the main commodities produced include rice paddy, vegetables, tomato,

apples, wheat, potato and corn accounting for 18 to 59% of the world’s production (Table 1). [5]

Clare et al (2015) reported that there is over 800 million tonnes of agricultural crop straw

that China produces each year, up to 40% of which is burned in-field as a waste.[6] Residues

from agricultural produce are therefore an abundant and renewable energy source with poten-

tially low net CO2 emission. Corn is one of the main crops cultivated in China and production

accounts for 24% in the world (Table 1). [5] According to China Statistical Yearbook (National

Bureau of Statistics of China, 2013) [7], 0.2 billion tons of corn was produced and around 0.4

billion tons of corn stover (CS) was generated in 2012. In addition, a 100% increase in corn

production has been observed in China over the past 20 years. Compared to rice, wheat, pota-

toes and cotton, corn belongs to C4 plants characterized by a higher yield potential, lower ero-

sion-index, better CO2 reduction rates and need for less fertilizer, water and chemicals.[8]

At present, more than 70% of CS are land filled or burnt due to the high cost of collection,

transportation, and low price paid to the farmers for their residue.[9] Even though illegal in

most parts of China many farmers with burn their crop residues emits significant quantities of

green house gases into air like CO2, N2O, CH4, organic compounds (VOCs) as well as semi-

volatile organic compounds (SVOCs) and other particulates.[10] Therefore, it is necessary to

develop environmental friendly and effective technologies to utilize agricultural residues such

as CS in order to alleviate the environmental and energy issues.[11] Modern thermo-chemical

energy conversion technologies such as combustion, gasification and pyrolysis provide clean

energy from waste biomass and facilitate, to varying degrees, climate change mitigation.[4]

Pyrolysis, the heating of biomass in the absence or very limited presence of oxygen to produce

primarily biochar but also bio-oil and some pyrogas, is attractive because of its carbon negative

property.[12]. Biochar can be used as an effective amendment in degraded or low fertility soils

with substantial environmental benefits [13]. Life cycle assessment of biochars produced from

corn stover, yard waste and switchgrass revealed that the net greenhouse gas emissions for

both corn stover and yard waste were negative, at -864 and -885 kg CO2 equivalent emissions

reductions per tonne dry feedstock, respectively. Of these total reductions, 62–66% is realized

from C sequestration in the biochar.[14]

Few studies have partially investigated the effect of pyrolysis temperature on biochar yield

[15,16,17] elemental composition [15,16,17,18] ash content [15,16,17,18] and composition

Table 1. Main agricultural commodities produced in China.

Agriculture commodity China [Mt/yr] World [Mt/yr] %

Vegetables 160000000 269852343 59%

Apples 37000000 76378738 48%

Tomatoes 50000000 161793834 31%

Paddy 204236000 738187642 28%

Cotton 6840000 25955096 26%

Potatoes 87260000 365365367 24%

Corn 205614000 872791597 24%

Wheat 121023000 671496872 18%

doi:10.1371/journal.pone.0156894.t001
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[15,16] volatile matter [15,16,17] pH [15,16] cation exchange capacity [15,16] BET (N2)

[15,17,18] and electrical conductivity [4,15]. Quantitative knowledge of biochar-relevant

parameters is important to assess the quality and commercial value of the biochar as well as the

potential suitability, stability and impact of the biochar on the fertility of a given soil.[19] In

addition, empirical mathematical relationships between process conditions such as pyrolysis

temperature and physico-chemical properties of biochar enable researcher and practitioner

alike to select suitable process conditions to produce biochar of desired properties with mini-

mum trial and error.

The objectives of this research, therefore, are to independently produce and characterize

biochar from corn stover at different pyrolysis temperatures, consolidate the available literature

on biochar production from corn stover for comparison purposes as well as to establish com-

mon trends and empirical relationships, identify and discuss potential reasons for variations

and, last but not least, highlight gaps in knowledge for future research. In addition this study

will look into associated soil amendment; energy and carbon capture potential of the experi-

mental biochar.

2. Material and Methods

2.1. Ethics Statement

The corn stover used in this study was collected from agricultural fields around Lanzhou. No

specific permissions were required for the described locations because corn stover was the left

over waste having no use for the farmers. We confirm that the field studies did not involve

endangered or protected species.

2.2. Biochar production

Corn stover was collected from agricultural fields (104°09’E, 35°56’N, altitude 1750 m) around

Lanzhou, China and the biochar production method was used as described by Uzoma et al.

[20]. In brief, the dried feedstock was cut into 1–2 cm long pieces, placed on stainless steel

trays, covered with a tightly fitting lid, and pyrolyzed under oxygen limited conditions in a

muffle furnace. The CS was heated at a rate of 20°C min−1 to a final temperature of 300°C,

400°C or 500°C respectively, and held for 2 hours. All biochar samples were ground and sieved

at<0.154 mm for their physical and chemical analyses. Experiments were carried out in

triplicate.

2.3. Yield and elemental analysis of biochars

The experimental biochar samples were tested for ash, pH, total Ca, Mg, K, Na, total phospho-

rus (P), carbon (C), hydrogen (H), nitrogen (N), oxygen (O). Yield percentage of biochar was

determined by following equation:

Yield ð%Þ ¼ ðweight of biocharÞ = ðweight of feedstockÞ � 100%:

Ash content was analyzed by heating biochar samples at 500°C for 8 h in a muffle furnace [21].

The relative ash content was then calculated as follows:

Ash ð%Þ ¼ ðweight of ashÞ=ðweight of biocharÞ � 100%:

The pH of biochar was measured in deionized water at the ratio of 1:5 wt/wt with a cali-

brated pH meter.[21] The elemental composition was determined according to Enders et al.

(2012)[16] using an elemental analyzer from Elementar Analysensysteme GmbH (varioEL-

cube). Nutrient elements Ca, K, Mg, Na, and P were measured using an inductively coupled
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plasma-atomic emission spectrometer (IRIS ER/S). Before analysis, the biochar sample (about

0.05 g) was first digested by the concentrated HNO3/H2O2 solutions.[21]

2.4. Surface and Physical Characterization

The determination of BET surface area, crystal structures, functional groups and pyrolytic per-

formance and thermal resistance were carried out in the analysis laboratory of College of

Chemistry and Chemical Engineering, Lanzhou University, PR China. The Brunauer–

Emmett–Teller (BET) surface area y N2 gas sorption analysis at 77 K in a relative pressure from

0.05 to 0.35 using a Nova 2200e surface area analyzer (Tristar3200, Micromeritics, USA) after

degassing at -195°C for a minimum of 8 h. The total pore volume of the biochars was estimated

to be the liquid adsorbate volume of N2 adsorbed at a relative pressure of about 0.99. The aver-

age pore width was calculated as follows: [22]

average pore width ¼ ð4� ðtotal pore volume valueÞ=ðBET valueÞ

The surface functional groups of the biochars were determined by Fourier Transform Infra-

red (FTIR) spectroscopy using a Nicolet 380 spectrophotometer (Avatar370, Thermo Nicolet,

USA). Addition of solid KBr to the biochars provided dilution and homogenization. The spec-

tra were performed at 4 cm−1 resolution and a mirror velocity of 0.48 cm S−1 with a 400 to

4,000-cm−1 scan range. X-ray diffraction (XRD) was used to observe the changes in mineral

crystals between the biochars, using a computer controlled diffractometer (X'Pert PRO). The

scans were collected from 0–60° using Cu–Ka radiation (40 kV, 40 mA) at a scan rate of 1°

min−1. The significant phase peaks were tentatively identified by comparing the XRD patterns

with the mineral database in the resulting biochars. Thermo-gravimetric analysis (TGA) was

performed on a Q-5000IR (TA Instruments, USA) coupled with a differential thermal analyzer

(DTA). For the TGA experiment, 5 mg of each sample was processed and heated up to 700°C

at a heating rate of 10°C / min. Nitrogen was used as a carrier gas and applied at a flow rate of

25 ml/min. The 13C nuclear magnetic resonance (NMR) spectrum of the 500°C biochar were

obtained on an AVANCE 400WB (Bruker, Germany) using the cross-polarization magic angle

spinning (CP/MAS) technique.

2.5. Energy Measurements of Corn Stover and Biochars

Bomb calorimeter was used to estimate higher heating value (HHV) of corn stover feedstock

and biochars prepared at 400 and 500°C. Moisture content of corn stover and biochars was

determined by drying at 60°C to constant weight. Hydrogen % of the corn stover and biochars

was determined by using Elementar Analysensysteme GmbH (varioELcube). Following equa-

tion was used to measure the lower heating value (LHV) of the corn feedstock and biochars.[23]

LHV ¼ HHV � 2:454 � ðW þ 9HÞ

Where HHV = higher heating value [MJ/kg], W = moisture content [%-wt] on dry basis and

H = hydrogen content [%-wt.] The maximum net potential energy available during the pyrolysis

was estimated using the following equation. [24]

Maximum energy from pyrolysis ¼ biomass HHV � ðchar HHV � char yieldÞ

3. Statistical analysis

A SPSS (version 18.0) statistical software programme was used to perform statistical analysis of

the data for physico-chemical properties of experimental biochars and energy values.

Corn Stover Pyrolysis for Carbon Capture and Energy Surplus

PLOS ONE | DOI:10.1371/journal.pone.0156894 June 21, 2016 4 / 17



Significant differences between treatments were based on pyrolysis temperatures using one

way analysis of variance (ANOVA). Means were separated by least significant difference (LSD)

test, at 5% level.

4. Results and Discussion

4.1. Biochar Yield and Chemical Characteristics of Biochars

Biochar yield from corn stover and its chemical properties are summarized in Table 2. The

yield of biochar decreased as pyrolysis temperature increased. The physico-chemical and struc-

tural characteristics of biochar were significantly influenced by pyrolysis temperature

(p�0.05).

The degree of carbonization for biochar was accelerated with increasing pyrolysis tempera-

ture from 300°C, 400°C to 500°C. When plotting the biochar yields at different pyrolysis tem-

peratures and comparing with literature, a general exponential decrease can be observed (Fig

1). [16,17,25,26,27,28]

The primary thermal degradation of biomass happens during pyrolysis. The pyrolytic vola-

tiles are further broken into low molecular weight organics and gases as the pyrolysis tempera-

ture increases. [29] The results are also in agreement with the findings of the TGA (section

4.5). In TGA study of biochars the weight loss is maximum at 300°C suggesting more volatile

matters compared to chars produced at 400°C and 500°C.

The relative ash content of the resulting biochars increased with increasing temperature up

to 500°C. The increase in ash content from 300–500°C is the result of a progressive concentra-

tion of minerals and destructive volatilization of ligno-cellulosic matters as temperature

increased.[30,31] Comparing the findings with related literature also reveals an exponential

increase of ash content with pyrolysis temperature (Fig 2). [15,16,17,18,25,26,27,28,32,33,34]

However, the correlation coefficient of 0.46 is comparatively low partially due to inclusion

of apparent outliers. For example, one study reported an ash content in original corn stover of

28% (wt) [18] which is 4–10 times higher than any value reported elsewhere.[17,26,35,36,37]

The high ash contents in CS char reported are probably due to presence of foreign material

Table 2. Yield and Physico-Chemical Properties of Biochars. Mean values followed by different letters
within same rows are significantly different at P� 0.05.

Parameter Pyrolysis Temperature

300°C 400°C 500°C

Yield [%] 66±2 a 37±1 b 29.2±0.3 c

pH [H2O] 7.70±0.08 c 8.8±0.2 b 9.775±0.005 a

Ash [%] 5.7±0.2 c 12.5±0.2 b 18.7±0.3 a

Volatile matter (%) 54.0±0.6 a 45.5±0.5b 33.8±0.5 c

C [%] 45.5±0.5 b 64±1 a 64.5± 1 a

H [%] 5.4±0.6 a 3.9±0.3 b 2.7±0.1 c

O [%] 42±1 a 32±1 b 33.1±0.4 b

N [%] 0.63±0.04 a 0.42±0.04 b 0.25±0.01 c

P [mg L-1] 3.4±0.1 c 7.2±0.3 a 5.54±0.10 b

K [mg L-1] 60.1±0.2 c 102± 2 b 224±2 a

Ca [mg L-1] 21.0±0.3 c 24.1±0.2 b 29.7±0.1 a

Mg [mg L-1] 18.8±0.6 c 22.6±0.7 b 30.3±0.4 a

Na [mg L-1] 1.78±0.02 b 2.03±0.04 b 3.3±0.4 a

Total Cation Base [mg L-1] 101.7±0.5 c 151±2 b 288±2 a

doi:10.1371/journal.pone.0156894.t002
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since no effort was made to control for the dirt content of the stover.[38] In addition the meth-

ods used to determine ash content varied widely with ASTM D1762-84 (Standard Test Method

for Chemical Analysis of Wood Charcoal) used by four groups, ASTM D7582 (Proximate

Analysis of Coal and Coke by Macro Thermogravimetric Analysis) used by three, ASTM

D3172 (Standard Practice for Proximate Analysis of Coal and Coke) by two, ASTM E870-82

(Standard Test Methods for Analysis of Wood Fuels) used by one, while in-house methods

(e.g. heating at 650°C for 6 h) and external labs where also deployed in three cases. It has been

suggested that some methodological limitations of the ASTM D1762 method exist which can

Fig 1. Effect of pyrolysis temperature on biochar yield from corn stover produced at different heating
rates, holding times, particle sizes, reactor atmosphere and type (n = 22).

doi:10.1371/journal.pone.0156894.g001

Fig 2. Effect of pyrolysis temperature on ash content in biochar from corn stover (n = 41).Where
available, pyrolysis holding time of a given data point is indicated by a letter with S—short (<0.5 hrs), M–

medium (0.5–1 hr) and L–long (>1 hr). Atmosphere present inside the pyrolysis reactor is stated after the
reference.

doi:10.1371/journal.pone.0156894.g002
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cause the loss of certain inorganic elements such as P, K, S and fractions of carbonates at tem-

peratures as low as 500°C thus resulting in a negative bias in reported ash values.[16] The use

of air or inert gas N2, different holding times and heating rates are not able to individually

explain why some biochars had greater ash contents than others at comparable temperatures.

Other factors such as representativeness of temperature measurements especially in upscaled

reactors, representative sampling, sample storage conditions (e.g. duration, temperature, atmo-

sphere) and number of replicates used for proximate analysis (Enders et al., 2012 duplicate;

Brewer triplicate; all other studies considered here did not state number of replicates and did

not report standard deviations[16,25] are expected to affect the determination of ash content

and should be taken into account in the experimental design, execution and discussion of

results. It is also suggested to initiate a study which determines the measurement uncertainty in

ash content analysis as is required for ISO 17025 accredited laboratories. Determining and

reporting accurate ash contents is important because this parameter is frequently used in ele-

mental analysis to estimate the oxygen content in chars by difference [16’17’39] to model the

heating value from proximate analysis values [39] and to predict the elemental composition

from proximate analysis.[40] The data on the pH and mineral elements analyses of CS-derived

biochars are also listed in Table 2. The pH increased with temperature resulting in biochars

that are more alkaline in nature probably due to the concomitant decrease in acidic functional

groups (section 4.3) and increase in ash content.[16] Similar patterns are observed when com-

paring the findings of this study with literature (Fig 3).

The best fit was obtained with a polynomial equation of second order resulting in a correla-

tion coefficient of 0.597. The correlation coefficient drastically improves to 0.903 if the data

point fromMullen et al.[28] is removed. The reason(s) for the comparatively low pH value of

the CS biochar produced at 500°C are not clear. All authors but one [32] used either distilled or

deionized water for the determination of pH, however the w/v ratio of char to water ranged

from 1: 5to 1: 100. [28,33] The ash content of Calvelo Pereira et al. (2014) 550°C biochar was

10.8% while Mullen’s (2010) 500°C biochar contained 32.8% ash.[28,37] The implication that a

high ash content biochar gives rise to a low pH is contrary to the trends reported.[41,16] Calvelo

Fig 3. Effect of pyrolysis temperature on pH of biochar produced from corn stover (n = 15). All pH
values were determined in distilled or deionized water but at different char to water ratios.

doi:10.1371/journal.pone.0156894.g003
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Pereira used a TGA to heat the sample under N2 atmosphere to 900°C before oxidizing the spec-

imen.[37] As indicated by Enders et al. such high temperature could have caused the loss of vari-

ous mineral constituents such as P, K, S and carbonates and result in the apparent low ash

value.[16] It is therefore conceivable that the actual ash content of both Mullen’s and Calvelo

Pereira’s biochars was more similar than reported, and hence not the primary reason for the

observed difference in pH. It is worth noting that, in contrast to others, Calvelo Pereira et al.

heated the biochar—water suspension in a water bath to about 90°C, stirred for 20 min and sub-

sequently cooled down the suspension to room temperature for pHmeasurement in accordance

with Ahmedna et al. method for pH determination.[41] Such heat treatment may drive out dis-

solved CO2 and other volatile acids thus increasing the pH. It is suggested for the biochar

research community to either agree on an existing standard or practice for the determination of

pH, or develop a new standard that harmonises the biochar: water ratio and minimizes interfer-

ences from dissolved CO2. In addition, a more accurate predictor of biochar’s impact on soil pH

would be the determination of its acid neutralizing capacity (% CaCO3 equivalent).[42]

The elemental composition of the biochar is presented in Table 2. The carbon content in the

biochar increased from 45.5% to 64.5% with increasing pyrolysis temperature, whereas the oxy-

gen content decreased corresponding to an increase in the carbon content. This finding shows

that carbonization was promoted with increasing pyrolysis temperature.[43–44] Hydrogen and

oxygen losses at high pyrolysis temperature were due to the cleavage and breakage of weak

bonds within the biochar structure. [36]

The total N content for the experimental chars at 300°C, 400°C and 500°C were found to be

0.63%, 0.42% and 0.25%, respectively (Table 2). The total N content declined with increased

pyrolysis temperature–suggesting an ignition loss of N during pyrolysis of corn stover. Yuan

et al investigated the effect of pyrolysis temperature on physico-chemical properties of corn

straw and observed similar patterns.[45] A van Krevelen plot summarizing original and car-

bonized corn stover produced by various research groups worldwide under different process

conditions is shown in Fig 4.[16,17,18,25,26,27,28,34,46,47] Overall the hydrogen and oxygen

content decreases with increasing temperature suggesting a greater hydrophobicity of the bio-

chars, which agrees with the formation of more aromatic compounds as was evidenced by the

FTIR analysis of the biochars (section 4.3). Variability in molar H/C and O/C ratios of original

and carbonized corn stover at a given temperature are probably due to the presence of mud

and other foreign substances in some cases, different holding times used, and uncertainties

associated with representative sampling and the elemental analysis itself.

Variability in molar H/C and O/C ratios of original and carbonized corn stover at a given

temperature are probably due to the presence of mud and other foreign substances in some

cases, different holding times used, and uncertainties associated with representative sampling

and the elemental analysis itself.

The total base cations and total P values of corn stover biochar were found to increase with

pyrolysis temperature. The higher content of base cations and total P in the biochars are due to

the concentration of relevant chemical elements in the biochars during the pyrolysis process

[48]. The recycling of the soil nutrient is often desired to maintain soil fertility and improved

crop productivity that can be achieved by the application of biochar to soil as biochars contain

essential nutrient need to the soil. In addition to nutrient recycling, biochar has been proved to

reduce chemical fertilizer application to soil.[49]

4.2. Surface area and pore properties of biochar

Table 3 describes the surface area and pore properties of biochar. The BET surface area of the

corn stover biochars increased with increasing temperature. This phenomenon can be

Corn Stover Pyrolysis for Carbon Capture and Energy Surplus
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generalized as shown in Fig 5. As pyrolysis temperature increases pore blocking substances are

driven off or are thermally cracked thus increasing the externally accessible surface area. How-

ever, prolonged holding times can have the opposite effect since reactions continue at the pore

surface area causing a decrease in micro pores and a shift towards meso- and macro pores. The

relatively low surface area observed for corn stover biochar is probably due to the inorganic

material that partially fills or blocks the micro pores.[50,38]

The reported surface areas may temporarily increase if biochars are added to soil and pore

water leaches out minerals with low affinity for the char surface. For example, Hale et al. deter-

mined the BET (N2) surface area of unwashed and leached corn cob biochar and noted an

increase from 36.4 to 84.3 m2/g.[51] It is reasonable to expect that humic substances and other

organic matter, heavy metals, micro-organisms and tertiary roots may occupy eventually the

Fig 4. Van Krevelen diagram of original and carbonized corn stover. (S–slow pyrolysis; F–fast pyrolysis; G–

gasification; ND–not determined). (n = 31).

doi:10.1371/journal.pone.0156894.g004

Table 3. Surface area and pore properties of corn stover biochars.

Biochar sample SBET
1 (m2g-1) Smicr

2 (m2g-1) Vt3cm3 g-1 Vmicro
4 (cm3 g-1) Dave

5 (nm)

300°C 3.19 - 0.00843 Not detectable 10.6

400°C 3.17 0.127 0.00689 Not detectable 8.69

500°C 4.58 1.02 0.00722 0.000294 6.30

1. N2BET surface area.
2. Micro porous surface area by t-plot method.
3. Total pore volume by from single point adsorption at relative pressure close to 0.995.
4. Micro porous pore volume by the t-plot method.
5. Average pore width, estimated by 4Vt/SBET

doi:10.1371/journal.pone.0156894.t003

Corn Stover Pyrolysis for Carbon Capture and Energy Surplus

PLOS ONE | DOI:10.1371/journal.pone.0156894 June 21, 2016 9 / 17



vacated pore volumes. An exponential equation was the best fit for the data presented in Fig 5.

However, the correlation coefficient of 0.273 suggests that other process parameters than tem-

perature has a more pronounced effect on BET surface area. Most biochars were produced

under slow pyrolysis conditions while the BET surface area of the two fast pyrolysis biochars

from bubbling fluidized bed reactors are nested within the slow pyrolysis biochars. Based on

Antal et al.’s experience the accidental exposure of carbon to air during carbonization dramati-

cally affects its surface area and pore properties.[50] There appears to be a tendency in Fig 4

that the presence of air results in corn stover biochar with lower BET surface area. However,

more data are required to confirm this apparent trend. The BET surface area may also be

affected by variations in sample preparation (crushing and dry or wet sieving), the degassing

method (vacuum vs flow), degassing temperature and duration, quantity of sample used during

surface area analysis, number of replicates, using a representative sample quantity especially

from upscaled reactors, as well as the presence of foreign substances (e.g. sand or soil) on the

corn stover biomass during pyrolysis. Considering potential applications, the wide range of

BET among the corn stover biochars may affect nutrient plant availabilities of co-applied fertil-

izers.[33]

4.3. FTIR analysis

The infrared spectra of the biochars are shown in Fig 6. The O–H stretch peak around 3600–

3200 cm-1 is clearly visible in the char produced at 300°C but decreases as pyrolysis tempera-

ture increased representing dehydration of cellulose and ligneous compounds.[52–53] The

presence of uncharred biomass in corn stover char produced at 300 and 400°C is exemplified

by CH2 peaks at ~2900 and ~1400 cm
-1.[54] Peaks of aliphatic C-O-C (1046 cm-1) and alco-

hol-OH (1160 cm-1) groups indicate the presence of hemicellulose and cellulose in corn stover

biochar (300°C) suggesting the incomplete charring of corn stover at this temperature.[52,54]

This also agrees with XRD and TGA results discussed further in sections 4.4. and 4.5. Corn sto-

ver biochar produced at 300°C is therefore expected to be at least partially biodegraded in soil.

Fig 5. Effect of pyrolysis temperature on BET (N2) surface area of biochar produced from corn stover
under slow (S) or fast (F) pyrolysis or gasification (G) conditions (n = 23).

doi:10.1371/journal.pone.0156894.g005
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4.4. XRD

X-ray diffraction is a valuable approach to investigate the biomass crystallinity and biochar

structure. [55] XRD results for corn stover biochars are illustrated in Fig 7. Two narrow, sharp

Fig 6. FTIR spectra of corn stover biochars produced at 300, 400 and 500°C.

doi:10.1371/journal.pone.0156894.g006

Fig 7. XRD spectra of corn stover biochars produced at 300, 400 and 500°C.

doi:10.1371/journal.pone.0156894.g007
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peaks at the 2θ values around 16° and 22° for the control were assigned to the crystalline region

of cellulose in wood (Yang et al., 2007).[56] For biochar-300°C, these two peaks decreased in

intensity and became broader, indicating that some partial crystalline structure of cellulose was

lost.[53] Although the biomass was partially decomposed at 300°C, the crystalline structure of

cellulose remained due to the thermal stability of cellulose at such low temperatures. However,

these two peaks were hardly visible in the XRD spectra for Biochar-400°C and Biochar-500°C

indicating that crystalline cellulose was destroyed during char formation at 400°C and above.

4.5. Thermogravimetric analysis of corn stover biochar

TGA and derivative thermogravimetric (DTG) curves are shown in (Fig 8a, 8b and 8c). TGA of

experimental biochars was carried out to study their pyrolytic performance and thermal resis-

tance. The TGA weight loss at temperatures upto 130°C was due to moisture loss. The subse-

quent weight loss of corn stover biochar (300°C) at 244°C and above may be attributed to

thermal degradation of uncharred hemicellulose residues followed by uncharred cellulose and

lignin. The onset temperature for TGA weight loss of biochars produced at 400 and 500°C

shifted to 288 and 300°C, respectively, suggesting the presence of uncharred cellulose and lig-

nin, which are more heat-stable than hemicellulose.[57] However, XRD analysis showed that

crystalline cellulose disappeared in corn stover biochars produced at 400°C and above suggest-

ing that lignin or other volatile pyro-compounds were responsible for the observed weight loss.

The TGA curves also show that biochar produced at 500°C exhibited the greatest thermal

stability with an overall weight loss of 20% after heating to700°C,followed by chars produced at

400°C (35%) and 300°C (53%). The results confirm findings of Kim et al. that with increased

pyrolysis temperature, biochars from pitch pine woodchips become more stable.[58]

4.6. CP/MAS 13C NMR

In order to evaluate the aromaticity of corn stover biochar produced at 500°C, CP/MAS 13C

NMR was deployed. A dominant broad peak (Fig 9), at around 127 ppm was observed which

can be attributed to aromatic carbon resonance. [58] The subordinate small and broad peaks

around 205 ppm and 45 ppm for Biochar-500°C are due to spinning side bands originating

from the dominant aryl peak.[59] Peaks at 50–100 ppm indicative of carbohydrates, were

absent thus confirming that the observed weight loss in Fig 8 was not due to hemicellulose or

cellulose.

4.7. Net energy balance for pyrolysis

The higher heating values (HHV) and lower heating values (LHV) of corn stover feedstock and

corn stover biochars have been given in Table 4. The results show that corn stover biochar has

significantly greater LHVs than corn feed stock on dry basis. However, gross and net energy

value of biochars prepared at 400°C and 500°C did not differ significantly. While net energy

balance is higher at higher temperature. Previous studies suggest that pyrolysis technology has

potential to produce more surplus energy in addition to biochar for land applications is more

attractive being environment friendly. [60]

4.8. Biochar Characteristics and Carbon Stability

Table 2 shows that with increasing temperature there is an increasing trend in carbon content

of biochars. Lowest volatile matter content (33.8%) was recorded in the CS char produced at

500°C and H/C value of 0.493 lowest among the CS chars indicated that chars produced at

500°C have highest stable carbon among the experimental biochar. These findings are very
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Fig 8. TGA/DTG spectra of corn stover biochars produced at, 300°C, 400°C 500°C obtained in a N2 atmosphere.

doi:10.1371/journal.pone.0156894.g008
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close to the Enders et., al.[16] about carbon stability of the chars. FTIR,TGA and 13C NMR

confirmed the presence of more aromatic stable carbon in biochar produced at 500°C. Thus

pyrolysis at 500°C may be a potential approach using crop residue for producing biochar for

carbon cut off and green energy.

5. Conclusion

The biochar yield decreased when the pyrolysis temperature increased. The physico-chemical

and structural characteristics of biochar were significantly influenced by pyrolysis temperature.

The degree of carbonization for biochar was accelerated with increasing pyrolysis temperature

from 300°C, 400°C to 500°C. TGA indicated that increased pyrolysis temperature developed

more stable form of biochar. As the pyrolysis progressed, oxygen and hydrogen were removed,

leaving to form more aromatic carbon bonds. The results of 13C NMR confirmed aromatic car-

bon in corn stover biochar at 500°C. Result suggested that corn stover pyrolysis is pertinent to

reduce carbon emissions with net positive bioenergy production and its use as soil amendment.

Comparison of findings with literature showed that biochar production from corn stover is

influenced by various factors. Significant non-linear correlations between pyrolysis tempera-

ture and yield and pH were noted. Contributing factors for poor correlations between pyrolysis

temperature, ash content and BET surface area include the presence of dirt from the field

which can artificially increase ash content and block pores but also affect biochar yield and pH.

Moreover, it was found that most studies appeared to analyse samples with one replicate only

using various standard and non-standard methods. Issues of representative sampling and tem-

perature measurements, especially in pilot- and industrial-scale reactors further complicate

data comparison. It is suggested for the biochar community to establish an international com-

mittee to develop and agree upon standardized sample preparation and analysis methods to

facilitate data interpretation and reliability.

Fig 9. 13C NMR Spectra of Biochar- 500°C.

doi:10.1371/journal.pone.0156894.g009

Table 4. HHV and LHV of corn stover and biochars produced at 400 and 500°C.

Material HHV MJ/Kg LHV MJ/Kg H% Moisture% Maximum energy from pyrolysis MJ/ kg

Corn Stover 18.18±0.06 a 16.74±0.06 a 5.89±0.02 a 5.4±0.2 a -

Biochar (400°C) 27.50±0.08 b 26.60 ±0.08 b 3.9±0.3 b 1.65±0.09 b 8.03

Biochar (500°C) 27.6 ±0.2 b 27.0 ±0.2 b 2.7±0.1 c 1.18±0.04 c 10.12

Mean values followed by different letters within the same column are significantly different at P<0.05. Where H% = Hydrogen Percent

doi:10.1371/journal.pone.0156894.t004
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