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The inhomogeneous solar corona is continuously disturbed by transverse MHD waves.

In the inhomogeneous environment of coronal flux tubes, these waves are subject to

resonant absorption, a physical mechanism of mode conversion in which the wave

energy is transferred to the transition boundary layers at the edge between these flux

tubes and the ambient corona. Recently, transverse MHD waves have also been shown

to trigger the Kelvin-Helmholtz instability (KHI) due to the velocity shear flows across

the boundary layer. Also, continuous driving of kink modes in loops has been shown

to lead to fully turbulent loops. It has been speculated that resonant absorption fuels

the instability by amplifying the shear flows. In this work, we show that this is indeed

the case by performing simulations of impulsively triggered transverse MHD waves in

loops with and without an initially present boundary layer, and with and without enhanced

viscosity that prevents the onset of KHI. In the absence of the boundary layer, the

first unstable modes have high azimuthal wavenumber. A boundary layer is generated

relatively late due to the mixing process of KHI vortices, which allows the late onset of

resonant absorption. As the resonance grows, lower azimuthal wavenumbers become

unstable, in what appears as an inverse energy cascade. Regardless of the thickness of

the initial boundary layer, the velocity shear from the resonance also triggers higher order

azimuthal unstable modes radially inwards inside the loop and a self-inducing process

of KHI vortices occurs gradually deeper at a steady rate until basically all the loop is

covered by small-scale vortices. We can therefore make the generalization that all loops

with transverse MHD waves become fully turbulent and that resonant absorption plays

a key role in energizing and spreading the transverse wave-induced KHI rolls all over

the loop.

Keywords: magnetohydrodynamics (MHD), sun: activity, sun: corona, sun: oscillations, resonant absorption,

instabilities

1. INTRODUCTION

The solar corona is continuously disturbed by perturbations at photospheric and chromospheric
levels, either locally by means of e.g., convective motions or reconnection, or globally, by means
of the internal oscillations of the Sun leaking radially outwards (and particularly p-modes).
These continuous perturbations generate stress in the magnetic field and energy release processes
lead to upflow of material that fills the coronal magnetic field with plasma, thereby generating
coronal loops.
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The particulars of coronal loop generation and destruction
is, however, still a matter of debate. Observations mostly show
the cooling stage of coronal loops [1], in which loops appear
and disappear in specific bandpasses a time that can be either
large or small [2], depending on the radiative cooling time
and also on the unresolved substructure of loops [3–5]. Loops
are thought to be composed of elementary substructures called
strands. These strands may be elementary in the magnetic sense,
being associated with tiny concentrations of magnetic field in
the photosphere (of a few 100 km in width, e.g., [6]), or may
be elementary in the sense of their independent thermodynamic
evolution due to the fact that transport coefficients in the corona,
and thus most plasma processes, are field aligned. On the other
hand, the heating stage of the strands forming a loop is still
unresolved, and are thought to occur in very short time and
on very small spatial scales. Estimations of loop widths in the
corona are thus based on the observed widths during the process
of cooling, assuming that neighboring field lines composing
the loop evolve more or less similarly. Even though there is a
debate on how many strands actually compose a coronal loop
on average [7], there seems to be consensus over the observed
width of coronal loops (or the envelope of the strand bundle).
Indeed, observations in coronal lines indicate an average coronal
loop width of roughly 2 Mm [4, 8, 9], confirmed also at higher
resolution by the characteristic width of coherent catastrophic
cooling of loops [10, 11].

Besides the substructure of loops, other very relevant
questions in coronal loop dynamics are how large are their
boundary layers and what actually defines them [12–14]. The
relevance lies particularly in the field of MHD waves. Kink waves
(a particular class of transverse MHD waves characterized by the
transverse displacement of the entire waveguide, [15, 16]) have
been shown to permeate the corona and may be a candidate to
heat the corona [17–20]. An observational characteristic of these
waves is their fast damping and the leading theory explaining the
damping is resonant absorption [21–26], also known as mode
coupling in the case of propagating modes, contrary to standing
modes [27–31]. During this process the plasma motions involved
in the kink mode vary, and pass from initially being coherent
lateral displacements of the loop’s axis (thus affecting the whole
loop) to azimuthal displacements highly localized in the regions
within the loop where the resonance occurs. This happens where
the kink speed matches the local Alfvén speed (or, in the case of
driven propagatingmodes, where the kink frequencymatches the
local Alfvén frequency). These locations are usually assumed to
be primarily at the edges of loops, although non-uniform loop
distributions with resonance locations within the loop evolve
similarly due to the collective nature of the kink mode [32, 33].

The formation process of coronal loops is very likely 3D,
involving the local magnetic field topology and the conversion of
the magnetic free energy into kinetic and thermal energies. This
means that the initial energy deposition can have a characteristic
area across the field over which magnetic field lines are affected
roughly equally. This is the case for instance either through
magnetic reconnection (case in which the field lines reconnect
along separatrices) or through waves (case in which the diffusion
process is linked to the 3D nature of the wave). This argument

therefore poses a big question on how is the boundary layer
of a coronal loop characterized. If the heating process is very
spatially localized (which may be more the case of magnetic
reconnection) it may suggest that the subsequent upflow into the
loop from chromospheric evaporation is equally highly localized
and therefore that the boundary layer separating the loop with
the external medium is very thin [12]. If, however, the heating
process has a smooth spatial distribution (for instance in the case
of a wave produced by convective motions, which are usually
coherent over some area) the width of the loop should be broader
from the beginning.

The thinner the boundary layer, the more concentrated
the azimuthal motions from resonant absorption will be [34]
and therefore the larger the velocity shear produced with
the surroundings. This velocity shear is additional to the
velocity shear that is naturally produced by the (global) lateral
displacement from the kink mode [35]. This velocity shear
from the global motion happens between the internal motion
of the loop and the (dipole-like) motion of the external plasma
(produced by the displacement of the loop). On the other hand,
it has been speculated that the resonance increases the shear with
the external (dipole-like) motion due to the increase in amplitude
in the azimuthalmotions around the loop edge that the resonance
entails [36]. Additionally, the resonance also produces an internal
velocity shear between the inner shells of the loop due to phase
mixing [37]. For these reasons it has been assumed that resonant
absorption enhances the generation of dynamic instabilities due
to shear flows [38]. In this paper, we study the effects of these
additional shearing layers from the resonance and assess their
influence on the generation of dynamic instabilities, and in
particular the Kelvin-Helmholtz instability.

Transverse wave-induced Kelvin-Helmholtz rolls (also known
as TWIKH rolls) are expected to exist from a large amount
of recent numerical simulations in coronal conditions [36, 39–
41], and also in prominences [38] and spicules [42]. Although
TWIKH rolls have still not been observed directly due to
the lack of instrumental resolution [43], there are a number
of indirect observational characteristics that seem to match
current spectroscopic and imaging observations, such as the
generation of strand-like structure [36], the observed 3D motion
of prominence strands combined with heating [38, 44], the
differential emission measure broadening of loops [45] or
the corrugated Doppler shift transitions across spicules [42].
Karampelas and Van Doorsselaere [46] have shown that the
continuous driving of kink waves in loops leads to fully turbulent
loops due to the TWIKH rolls. The potential existence of
TWIKH rolls is particularly interesting for coronal heating since
it provides a means to the waves to dissipate their energy
[47]. Indeed, the generated turbulent-like regime of vortices and
current sheets in the TWIKH rolls leads to additional wave
dissipation [38, 41].

TWIKH rolls differ from the more generally known velocity
shear-induced KHI vortices [48–51] in that the velocity shear is
not laminar, constant and field-aligned, but oscillatory and at an
angle to the magnetic field (perpendicular in the case of non-
twisted flux tubes). The non-zero angle of the wave vector with
the magnetic field implies a lower magnetic tension opposing the
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development of the instability. [52, 53] have analytically shown
that this constitutes a major difference leading to flux tubes being
always K-H unstable to such flow, regardless of the amount
of twist. This finding supports previous numerical results of
TWIKH rolls produced by very low amplitude kink modes [36].

The article is organized as follows. We introduce the
numerical model in section 2, together with the initial conditions,
MHD equations and details of the code. In section 3 we present
the results, which we discuss in section 4 and conclude the paper.

2. NUMERICAL MODEL

2.1. Initial Conditions
The numerical model consists of a straight, cylindrical flux tube
(with circular cross-section) in pressure equilibrium with the
background, representing a coronal loop. Our experiments (and
the results we obtain) are largely independent of the conditions
within the flux tube and the corresponding contrast with the
ambient corona. This is because the specifics of the KHI are
relatively insensitive to the density and magnetic field contrast,
compared to the velocity shear, boundary layer thickness and
loop radius to length ratio. For instance, uniform temperature
or uniform magnetic field (hence, a cool or hot loop) would
lead to the same results [43]. The presence of magnetic twist in
the loop delays the onset of the KHI [51, 54, 55] but does not
suppress it [52].

As observed in some loops [25], here we choose loops that are
all hotter and denser than the background by a factor of 3, i.e.,
Ti/Te = 3 and ρi/ρe = 3. Correspondingly, the loop-aligned
magnetic field is slightly lower than the background field to
keep pressure balance. We set the external temperature and total
number density to Te = 106 K and ne = 109 cm−3, respectively.
The external and internal magnetic fields are Be = 18.63 G and
Bi = 17.87 G, respectively. The plasma β parameter outside and
inside the flux tube is equal to 0.01 and 0.098, respectively.

We consider different cases of loops with and without
boundary layer. This layer connects the internal and external
plasma and is described as follows:

ρ(x, y) = ρe + (ρi − ρe)ζ (x, y), (1)

where

ζ (x, y) = 1

2

(

1− tanh

(

b

(

r(x, y)− 1

2

)))

. (2)

Here, (x, y) denotes the plane perpendicular to the loop axis
(along z). The r(x, y) = √

(x2 + y2)/w term denotes the
normalized distance from the loop center andw = 2Mmdenotes
the loop width (diameter). We take the case of a loop with b =
0.01, which essentially describes a step function between internal
and external plasma (and therefore no boundary layer), and a
second case with b = 16, leading to a boundary layer width of
0.4 R, with R = 1 Mm, the radius of the loop.

At t = 0 a transverse perturbation in x aimed at triggering
mainly the fundamental kink mode is set by imposing a velocity
perturbation along the loop that has the same spatial distribution
of the density. That is, we have vx = v0 sin(zπ/L)ζ (x, y),

where z denotes the distance along the loop, L = 200 Mm,
and v0 = 16.6 km s−1. Given that the internal Alfvén speed
is vA,i = 1006 km s−1, the initial amplitude A relative to
internal Alfvén speed corresponds to A/vA,i = 0.0165, and can
therefore be considered nonlinear, since, as defined by Ruderman
and Goossens [56], the non-linearity parameter ν ≈ AL

R =
3.3 is larger than 1. This velocity is chosen to mimic usually
observed kink mode amplitudes (most of the energy of the initial
perturbation leaks out, and the average velocity in the first quarter
oscillation is equal to ≈ 9 km s−1). Following the perturbation,
the loop oscillates with a standing kink mode with a period of
P ≈ 315 s, approximately equal to the expected period, given
that the kink speed is ck = 1256 km s−1. It is worth mentioning
that this numerical model corresponds to the impulsively excited
loop model used in Van Doorsselaere et al. [45].

The choice of no boundary layer initially for one of our
flux tube cases has a 2-fold motivation. As explained in the
introduction, it is not unreasonable to think that when a loop
first forms, presumably by an impulsive heating event somewhere
along the loop, if the heating is very localized in space it
may trigger very localized chromospheric evaporation, thereby
producing a sharp boundary layer. The second reason behind this
choice has to do with the late onset of resonant absorption, a time
delay that allows to investigate more properly the role it has on
the KHI.

2.2. MHD Equations and Numerical
Scheme
We solve the following set of resistive MHD equations
without gravity:

∂ρ

∂t
+∇ · (ρEv) = 0, (3)

∂

∂t
(ρEv)+∇ ·

[

ρEvEv+
(

p+
EB2
8π

)

EI −
EBEB
4π

]

= 0, (4)

∂ EB
∂t

+∇ × (
η

µ
Ej− Ev× EB) = 0, (5)

∂

∂t

(

p

γ − 1
+ 1

2
ρEv2 +

EB2
8π

)

+∇ ·
[(

γ p

γ − 1
+ 1

2
ρEv2

)

Ev

+
(

η

c
Ej− 1

4π
Ev× EB

)

× EB
]

= 0, (6)

p = 2kb

mp
ρT, (7)

where ρ,T, p, Ev, EB and Ej denote the usual quantities of mass
density, temperature, pressure, velocity, magnetic field and
current density, respectively. We take a fully ionized hydrogen
plasma, so that ρ = 1

2mpn, with mp the proton mass and n the
total number density (hence, we assume that the electron number
density is half the value of n). The quantity EI denotes the identity
tensor. Also, kb denotes Boltzmann’s constant, c is the speed of
light, µ is the magnetic permeability and η is the resistivity. We
adopt an anomalous resistivity model following Sato and Hayashi
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FIGURE 1 | TWIKH vortices throughout, for a loop without initial boundary layer and no viscosity. From top to bottom rows we have the cross-section at the apex of

the loop of, respectively, the total number density (in units of 109 cm−3), the temperature (log T ), the flow velocity (in km s−1), the z−vorticity component (in s−1) and

the z−current density component (in cgs units). The 3 columns, from left to right, show 3 instances in time, respectively at t = 154 s ≈ P/2, t = 371 s ≈ 1.2 P, and

t = 2, 334 s ≈ 7.4 P, where P = 315 s is the period of the kink mode. The half ellipse in white (or black in the flow velocity panels) corresponds to the ellipses

calculated in section 3.2. See also the accompanying movie in the Supplementary Material.

[57], Ugai [58], and Miyagoshi and Yokoyama [59], given by:

η =
{

0, for vd < vc,

η0(vd/vc − 1)2, for vd ≥ vc,
(8)

where η0 is the resistivity parameter, vd ≡ j/(en) is the ion-
electron drift velocity (with e the elementary electric charge
and j = √

(j2x + j2y + j2z) the total current density), vc is
the threshold above which anomalous resistivity sets in. We
set η0 = 3.3 × 1014 cm−2 s−1, which is much higher than
the Spitzer resistivity in the solar corona (104 cm−2 s−1) and
decreases the magnetic Reynolds number down to 10-100, that
is, 3 orders of magnitude smaller than in cases without resistivity.
This ensures fast dissipation of the strong currents. The average
value of vd in our simulation is 2.5 × 10−4 km s−1. We
therefore choose vc = 0.15 km s−1, which ensures that the
anomalous resistivity only comes into play when strong currents
are produced. This treatment ensures a spatial localization of
the anomalous resistivity and helps deal more realistically with

current sheets (see [60] for the effect of this parameter on
magnetic reconnection in current sheets). In particular, the use of
anomalous resistivity in our model ensures that strong currents
generated, for instance, by the sharp spatial gradients, do not
produce spurious results in the solution of the MHD equations.
We note however that in the present simulations we do not obtain
such strong currents and the threshold velocity drift vc is almost
never reached.

Our model also includes an explicit, constant and artificial
viscosity [61], and by controlling its magnitude we can model
conditions close to ideal (and more realistic, by setting it to
very small values), or highly viscous (unrealistic) conditions that
prevent dynamic instabilities to set in. We choose to include
the case of a flux tube with boundary layer and with enhanced
viscosity in order to artificially prevent the onset of the KHI. All
other simulated models have very low viscosity and close to ideal.

The numerical simulations are performed with the CIP-
MOCCT code [62], which uses the cubic-interpolated
pseudoparticle/propagation scheme (CIP, [63]) to solve the
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FIGURE 2 | TWIKH vortices throughout for a loop with initial boundary layer and no viscosity. The same variables as in Figure 1 are shown, setting the same minima

and maxima for better visualization. The same times are shown, except for the middle panel, for which we select a later time of t = 504 s ≈ 1.6 P, corresponding to

the first formation of KHI vortices. See also the accompanying movie in the Supplementary Material.

mass conservation, momentum and energy equations, while
the method of characteristics-constrained transport (MOCCT,
[64, 65]) is used to solve the induction equation. The CIP-
MOCCT code has been shown to maintain sharp contact
surfaces [66, 67], thereby reducing the effect of diffusivity on the
sharp spatial gradients in our model and those obtained by the
dynamic instabilities.

The numerical box has a size of (512, 256, 50) in (x, y, z) and
we model only a quarter of a loop profiting of the kink mode’s
symmetries, in order to have a high spatial resolution while
keeping the simulation at feasible levels. The box has a non-
uniform grid along x and y, where these axes describe the plane
perpendicular to the loop, x is along the direction of oscillation,
and only half the loop is modeled in y. The box has a uniform grid
along z, which is parallel to the loop axis and only half the length
of the loop is modeled. We use symmetric boundary conditions
in all boundary planes except for the x boundary planes, where
periodic boundary conditions are imposed. In this way the full
loop hosting a fundamental kink mode is modeled. The smallest
grid cell in the (x, y) plane has a size of 15.6 km and is kept
constant in the region where the loop oscillates. The x and y grids

cell sizes are allowed to increase above distances of≈ 4 R (where
R is the radius) and the maximum distance from the center is
16 R along both axes. The grid cell along z is uniform and has
a size of 2, 000 km. From a parameter study, we estimate that
the effective (combined explicit and numerical) Reynolds and
Lundquist numbers in the code are of the order of 104−105 [38].
The simulation with enhanced viscosity has a Lundquist number
of the order of 10− 100.

3. RESULTS

3.1. TWIKH Rolls Throughout the Loop
We show in Figures 1–3 different instances of the evolution for
various quantities for the 3 loop cases we have considered (no
boundary layer and no viscosity, with boundary layer and no
viscosity, and with boundary layer and with viscosity). Among
these quantities we show the z-component of the vorticity, ωz =
∂vy/∂x − ∂vx/∂y, and the z-component of the current density,
jz = 1/µ(∂By/∂x − ∂Bx/∂y). These quantities are particularly
useful to track the development of resonant absorption and KHI
vortices and current sheets generated by dynamic instabilities.
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FIGURE 3 | No TWIKH vortices for a loop with initial boundary layer and with enhanced viscosity. The same variables as in Figure 1 are shown. Note that the minima

and maxima (notably for the velocities, vorticity and the current density) are smaller than for Figures 1, 2 due to the enhanced viscosity. The same times as in

Figure 1 are shown. See also the accompanying movie in the Supplementary Material.

Due to the sharp contact discontinuity around the loop for
the case without boundary layer and no viscosity, as soon as the
perturbation starts, TWIKH rolls form around the side edges.
This is expected since a flux tube (straight or twisted) is always
unstable to the KHI [52], the sharp contact discontinuity and
no viscosity ensures that the scale length where the velocity
shear first exists is small enough to trigger these high azimuthal
modes, and high azimuthal mode numbers have the highest
growth rate. Additionally to these vortices at the side of the
loop, we can see vortices at the wake. These vortices correspond
to Rayleigh-Taylor (RT) vortices (and also lead to rolls in 3D,
extending all along the loop), characterized by the finger-like
structures (also produced for strong perturbations in dense,
spicule-like structures with thicker boundary layers, [42]). As
seen in Figure 2, these initial small-scale vortices (both, RT and
KHI types) are absent for the case with initial boundary layer and
no viscosity, since the scale length where the velocity shear first
exists is larger than the size of these unstable modes.

After a period of oscillation (second column in Figures 1, 2)
we note the appearance of larger vortices for the cases without

viscosity. The boundary layer thickness is increased due to the
vortices. After several periods (third column in Figures 1, 2) the
global mode oscillation has largely damped (true for all cases), the
boundary layer thickness has significantly increased to a radius or
so without any significant difference between the models without
viscosity and the vortices have expanded radially outwards and
inwards. At a late stage only small-scale vortices remain, seen
mainly in the vorticity and current density maps. On the other
hand, the case with viscosity shows no dynamic instabilities and
its boundary layer thickness remains largely unchanged between
the initial and final stages (Figure 3).

In Figure 4 we show the evolution of the displacement of
the loop axis at the apex and along the direction of oscillation.
Since the models have slightly different maximum velocities
and, correspondingly, different maximum displacements (all
within 0.5 R and 0.6 R), to better visualize the damping we
normalize the displacement by the respective maximum values.
The displacement of the flux tube can be calculated in multiple
ways. One way is to calculate the center of mass of the middle
slice y = 0 at the apex for each time step. Another way is
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FIGURE 4 | Displacement of the loop axis (at apex) with time. For each time

step we define the center of the loop as the center of mass. The result over

time is plotted for the loop with no initial boundary and no viscosity (black solid

curve), with initial boundary layer and no viscosity (red dashed curve) and with

initial boundary layer and viscosity (blue dotted curve). We also overlay the fits

to the maxima and minima of each profile performed with a damped Gaussian

function (see text for details).

to fit a Gaussian of the density profile along the direction of
oscillation at each time step. We choose the former method to
calculate the damping, since this method suffers less influence
from the vortices at the boundaries. In the rest of the paper,
and in particular for section 3.2 we are more interested in the
displacement of the boundary of the flux tube rather than the
displacement of the loop’s core, and hence we choose the second
method for those cases.

In Figure 4 we can see that the effect on the damping time of
not having an initial boundary layer and no viscosity is to extend
it. This is expected since resonant absorption is delayed due to
the initial absence of the boundary layer, which is created soon
after by the KHI and RT vortices. As demonstrated by Pascoe
et al. [68], Pascoe et al. [69], and Hood et al. [70], the damping
of a fundamental kink mode due to resonant absorption is first
governed by a Gaussian envelope and later on by an exponential
envelope, and the switching time depends on the boundary
layer thickness and the density contrast. To better quantify the
damping time we therefore choose to fit the maxima of each
profile with damped Gaussians of the form v(t) exp(−t2/L2g) (and
we therefore define the damping time only by the Gaussian
envelope time). Doing so we obtain damping times of 1,303 s
(= 4.13 P), 1,280 s (= 4.06 P), and 1,030 s (= 3.27 P),
respectively, for the cases of no initial boundary layer and no
viscosity, initial boundary layer and no viscosity, and initial
boundary layer and viscosity. The absence of an initial boundary
layer means that the switch occurs slightly later and therefore less
damping is obtained, as can indeed be seen. Also, by comparing
the cases with and without viscosity, we can see that the presence
of viscosity strongly reduces the damping time. In addition, at
long times the cases with dynamic instabilities and no viscosity
never damp completely.We discuss probable causes for this effect
in section 4.

To compare with observations we can fit the envelopes of the
oscillating profiles with an exponential rather than a Gaussian,

and we find values between 2.2 and 2.6 P for all models.
Accordingly, there is not much difference between the models
since a boundary transition layer is rapidly formed due to the
KHI. Comparing with linear damping (≈ 3.2 P, [21, 71]) we can
see that the damping from our models with KHI with nonlinear
amplitudes lead to stronger damping compared to the linear
case, as has been found already by Magyar and Van Doorsselaere
[40], who suggested this mechanism to explain the observed
dependence of kink oscillation damping on the amplitude [72].

To see the extent of the KHI vortices we plot in Figure 5 the
time-distance maps of density and z-vorticity cuts parallel to the
y axis, moving with the flux tube and always crossing its center
(where the center is defined with the Gaussian fit method as
explained above). This method is better than tracking the center
of mass since it takes more properly into account the radial extent
of the KHI and RT vortices (relative to the Gaussian fit, the center
of mass is displaced much less). Figure 5, and particularly the z-
vorticity maps for the cases without viscosity show that the radial
layers where the TWIKH rolls are generated move more rapidly
inward than outward at a fast rate in the 1 − 2 periods (to t =
7 − 10 min), from y = 0.6 R to y = 1.3 R. Note that during this
time interval the boundary layer thickness for the case without
initial boundary layer increases steadily, while the increase is
more abrupt for the case with initial boundary layer. This is due
to the absence of small-scale KHI vortices initially for the latter
model. The vortices then largely stop extending outward while
they keep extending inward more gradually and at a steady rate
until the end of the simulation (t = 69 min, corresponding to
13 periods), when the vortices have extended from y = 0.2 R to
y = 1.4 R. The inward extension of vortices for the case with
initial boundary layer seems to be slightly slower. On the other
hand, the model with viscosity has a much lower vorticity that
is concentrated around the resonant layer, and is diffused away
relatively rapidly. An important consequence of this result is that
impulsively excited kink waves generate turbulent loops, and thus
that probably all loops in the solar corona are in a turbulent state.

The density panels of Figure 5 for the cases without viscosity
show that the first set of vortices at the boundary edge increase
in size, producing deep entrances of the external material toward
the loop center. The following sets of vortices that continuously
develop are only internal and small-scale vortices, seen mainly
in the vorticity maps since they do not produce large density
changes. We can see that the changes in both the density and
vorticity are slightly larger in the case of no initial boundary
layer. The herringbone pattern seen in the vorticity panel reflects
an apparent super slow wave propagation of the kind discussed
by Kaneko et al. [73], produced by the phase mixing of the
continuously produced KHI vortices.

3.2. Effect From Resonant Absorption
As investigated in, e.g., [43], the KHI smoothens the boundary
layer. Hence, the influence of the KHI on resonant absorption
is to increase the layer where the resonance (and phase mixing)
occurs. In our simulation with no initial boundary layer we have
only the KHI at first and only at later times (even if shortly
after) the combined effect from KHI and resonant absorption.
On the other hand, the simulation with enhanced viscosity has no
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FIGURE 5 | Outward and inward expansion of the vortices. For each loop model we take a parallel cut to the y axis across the loop passing through its center at each

time step (see text for details on the procedure) and plot the resulting time-distance maps of the density (top panels) and z−vorticity (bottom panels) cuts. From left to

right the columns correspond, respectively, to the model with no initial boundary layer and no viscosity, the model with initial boundary layer and no viscosity, and the

model with initial boundary layer and viscosity. Note that the time range in the simulation with initial boundary layer and viscosity is slightly more extended in order to

better visualize the inner vortices reaching the core of the loop. Note also that the extrema for the z−vorticity are much smaller for the enhanced viscosity case.

KHI and only resonant absorption. Hence, by comparing these 3
models we can investigate the effect of the resonance on the KHI.

To investigate more carefully the development of resonant
absorption we calculate the azimuthal velocity vφ for each loop
model, taking the center of the loop obtained through Gaussian
fitting of the density profile explained previously. For each radial
distance from the loop’s center, we then calculate the azimuthal
velocity amplitude by averaging the absolute value over ellipses
around the center. We choose ellipses instead of circles since the
loop cross-section deforms considerably due to high order radial
modes and the KH and RT vortices [43, 55]. Since the ellipses are
modified over time, we define the radial distance as the distance
from the loop’s center along the cut parallel to the y axis. For
each time step, we find the semi-major and semi-minor axes of an
ellipse along x and the axis parallel to y passing through the loop’s
center by locating (through interpolation) the position where the
density is equal to 2 ne(t = 0), that is, the intermediate value
between the internal and external density values at the beginning
of the simulation. Therefore, we define this density point as the
middle of the loop boundary layer. We also apply a temporal
smoothing to the obtained variation of the ellipse axes over time,
in order to get rid of the high frequency perturbations from the
vortices. The temporal smoothening for the ellipse’ s semi-axis
parallel to the y axis has a very long boxcar width of 950 s in
order to catch the long term variations only and not those from
the high-frequency ones from the vortices. For a given time step
we then take different self-similar ellipses with respect to the
ellipse that fits the loop edge by changing the radial distance and
keeping the same ratio between the axes. In Figures 1–3 (and
the accompanying movies in the Supplementary Material) we

overlay for each panel the ellipse fitting the loop edge obtained
with this technique.

In Figure 6 we show for each loop model the time-distance
diagram of the azimuthal velocity amplitude averaged along
each self-similar ellipse located at different radial distances from
the loop’s center. The fringe pattern indicating high azimuthal
velocity power has double the frequency of the kink mode, as
expected. Note that the fringes within a short radius distance
decrease in amplitude. This damping also reflects the damping
seen in Figure 4. At the same time the amplitude of the region
located within the contour where the kink speed is roughly
equal to the local Alfvén speed increases. This is characteristic
of resonant absorption. Note that for the model without initial
boundary layer the amplitude within this contour reaches a
maximum at t ≈ 15 min (roughly 3 periods) and extends to
≈ 26 min. For the model with initial boundary layer and no
viscosity the maximum amplitude in the resonant layer is found
at ≈ 7 min and extends to ≈ 23 min. On the other hand, the
model with enhanced viscosity shows a maximum amplitude in
the resonant layer at ≈ 7 min and extends to only ≈ 16 min
due to the enhanced viscosity. Note that for the models with
KHI the region of resonance is shifted inward toward the loop’s
center in time. We have checked that the kink speed is roughly
constant throughout the simulation. Hence, this shift is due to
the variation of the boundary layer due to the KHI. The regions
outside of the contour show also significant amplitudes that grow
with a similar rate as resonant absorption. At t > 30 min in
both models most of the power within the resonant region has
disappeared, while the regions of highest power have now shifted
inwards (with a smaller power region outward). This shows
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FIGURE 6 | Azimuthal velocity amplitude from the loop’s center. For each loop model, the azimuthal velocity amplitude (in absolute value) is calculated along moving

ellipses around the loop’s center that evolve through time. The ellipses are self-similar and their semi-major to semi-minor axis ratio matches the ellipse fitting the edge

of the loop at each time step. Hence, for each ellipse at a given radial distance from the loop’s center, we obtain an average value of the azimuthal velocity amplitude

(in absolute value). The upper and lower dashed contours correspond, respectively, to the regions where the local Alfvén speed is 10% higher and 10% lower than the

kink speed (see text for further details). From left to right the columns correspond, respectively, to the model with no initial boundary layer and no viscosity, the model

with initial boundary layer and no viscosity, and the model with initial boundary layer and viscosity. Note that the color table has not been normalized to the same

maximum between all loop models.

that the energy from the resonant flows have transferred to the
TWIKH rolls within the loop, themselves being triggered by the
velocity shear produced by the resonance.

Hence we can see that the effect of the resonance on the KHI is
to trigger the instability within the loop. The resonance acts as a
localized energy reservoir by incrementing the azimuthal velocity
shear in the loop’s boundary layer.

3.3. High Azimuthal Wave Modes
We investigate now more closely the contribution from high
azimuthal wavenumbers on the KHI dynamics. For this we follow
the procedure of Terradas et al. [55] and calculate the Discrete
Fourier Transform on the radial (vrR) and azimuthal velocities
(vφR), and also on the density (ρR) at a distance R from the loop
center. These quantities are computed over the ellipses described
in the previous section. Themapping of these quantities along the
circumference of the ellipses is uniform with respect to the angle
φ. Using the same notation as in Terradas et al. [55] we calculate:

G(p) = 1

N

N−1
∑

k=0

g(k)e−i 2πN pk, (9)

where g(k) denotes either vφR, vrR or ρR, N is the total number
of modes (p = 0, 1, ...N − 1). We show for all models the
contribution for the first 5 azimuthal modes to each quantity in
Figure 7. It is worth to mention that due to the parity of vφR, vrR
and ρR they are, respectively, purely imaginary, real and real
functions, and that the dominant terms are shown in Figure 7

and the following figures.
The p = 1 mode has the dominant contribution overall for all

models and for all quantities, except for ρR(t < 10 min). For the
models developing KHI, the p = 2 mode has a significant power,
similar or even higher to the p = 1 mode in some instances for
the azimuthal velocity (and for the density at the beginning of the
simulation). The higher ordermodes (p > 2) also have significant
power. For the model without initial boundary layer, these higher

order modes have the dominant power at the beginning of the
simulation for the azimuthal velocity and density, compared to
the model with initial boundary layer and no viscosity. For the
latter, the higher order modes become dominant after 1 − 2
periods. And at the end of the simulations with KHI all modes
for the azimuthal velocity have similar power.

As explained in Terradas et al. [55] in the absence of KHI the
excitation of the p = 2 is produced mostly by the nonlinear
effect of the inertia from the loop’s motion (a squashing effect,
described analytically in Ruderman and Goossens [56]), its
frequency is double that of the kink mode, and the amplitude
of the p = 2 mode is smaller than that of the p = 1 mode
by the square of the amplitude. These properties can be seen in
Figure 7 for the model with initial boundary layer and viscosity.
The higher azimuthal wavenumbers increase their power only
once the KHI has set in, as can be seen when comparing the
3 models. The higher order modes correspond to the small
KHI and RT vortices that populate the edge of the loop, which
are the fastest growing unstable modes in the model without
initial boundary layer. In the case with an initial boundary layer
the length scale over which velocity shear exists is larger, and
therefore the first unstable modes have larger wavelength, and it
is only in the nonlinear stage of the instability that higher order
modes develop.

In the cases with KHI, all the high order modes have much
higher power than that predicted by linear theory. The ellipses
we construct are co-moving with the loop’s edge and therefore
we largely reduce the power coming from the deformation of
the loop due to its inertia and also the nonlinear influence from
the radial modes (hence, the power of p = 1 and p = 2). The
large power still present in these modes and the higher order
ones is due to the fact that the edge of the flux tube does not
correspond to the spatial extent of the KHI vortices (as can

be seen in Figures 1, 2 and the accompanying movies in the

Supplementary Material). Hence, the vortices cross the ellipse
boundary each time they form. This is particularly the case at the
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FIGURE 7 | Fourier coefficients for the azimuthal and radial velocities and the density. We show the contribution of the azimuthal modes to each quantity along an

ellipse fitting the edge of the loop by calculating the Discrete Fourier Transform (Equation 9). We only show the first 5 modes (see legend for line style).

beginning of the simulation (when the deformation of the flux
tube is large). Hence, the significant power at the beginning of
the simulation without initial boundary layer comes mostly from
the KHI. The observed increase of the power of all modes over the
first 15 min (matching the time at maximum azimuthal velocity
amplitude) is due to an influence from resonant absorption. The
overall effect over the first 15 min is to have an apparent inverse
energy cascade, where the lower order modes have increasing
power in time (a trend that is particularly clear in the vφR and ρR
panels in Figure 7). Indeed, this is not observed in the case with
initial boundary layer and no viscosity, for which once the higher
order modes set in, all modes show an amplitude that remains
roughly constant until t ≈ 20 min.

To investigate the generation of high azimuthal wavenumbers
across each loop’s cross section we now calculate the Discrete
Fourier Transform on the azimuthal velocity along various of
the self-similar ellipses located at different radii from the loop’s
center, described in the previous section. We thus take vφr for
r = 0.3 R, 0.4 R, 0.5 R, 0.6 R, 0.8 R, 1 R, 1.2 R and 1.4 R and
show in Figures 8–10 (respectively for the loop without initial
boundary layer and no viscosity, with initial boundary layer and
no viscosity and with initial boundary layer and with viscosity)
the corresponding contribution of the first 5 modes to the
total signal.

Away from the region where most of the KHI occurs we
mostly have the dipole (azimuthal) field generated by the kink
mode (R1 = 1.4 R panel in Figure 8), and its damping is
similar to the damping observed in the same layer in the model
without KHI. Note however, that higher order modes have
nonetheless higher power even at this distance from the loop’s
center, reflecting a rapid but small influence of the KHI even
at this distance. As we approach the KHI region in the models

without viscosity, an increase of power in all modes can be seen,
as noted previously (R2 = 1.2 R,R3 = 1 R,R4 = 0.8 R panels
in Figures 8, 9). As we pass from r = R to r = 0.8 R we can
see for the model without initial boundary layer that the time
of maximum power of all modes has been shifted to later times,
from t = 15 min to t = 20 − 25 min. For the model with
initial boundary layer, significant power in the high order modes
at r = 0.8 R can be observed until t ≈ 20 min. This time shift
(and time interval) matches the time of maximum resonance (or
significant resonance), which is seen in Figure 6, and the spatial
shift of the resonance from R to 0.8 R in the same time interval.
Therefore, this further supports that the resonance is acting as
catalyst of the KHI in both models without viscosity, irrespective
of the presence of an initial boundary layer.

As we move further radially inward in the case without KHI,
no significant difference in power for vφRi is observed. On the
other hand, for the cases with KHI we note a temporal shift to
later times of the power increase in the high azimuthal wave
modes. This suggests that the KHI self-induces itself, layer after
layer deeper into the loop, starting from the resonant layer at
the edge of the flux tube, which acts as an energy reservoir for
the velocity shear. Moreover, even after the energy from the
resonance has largely disappeared the inner vortices continue to
trigger deeper KHI vortices. Thus, we can predict that both entire
loops become eventually turbulent.

As mentioned in section 3 the model without initial boundary
layer shows a slightly faster inward propagation of the KHI
vortices. This can be explained by the fact that by allowing the
boundary layer to develop naturally due to the KHI, the velocity
shear that is produced by resonant absorption is slightly higher
than in the model with initial boundary layer, thereby increasing
the effectiveness for KHI.
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FIGURE 8 | Fourier coefficients for the azimuthal velocity vφRi at radial distances Ri for the case without initial boundary layer and no viscosity. We show the

contribution of the azimuthal modes to the azimuthal velocity along self-similar ellipses whose semi-minor axis has various lengths Ri (as indicated in the panels). The

semi-major to semi-minor axis ratio of all ellipses matches the ellipse fitting the edge of the loop at each time step (see text for further details). We show the first 5

azimuthal wave modes (see the legend for the corresponding line style).

4. DISCUSSION AND CONCLUSIONS

In this paper we have taken three different loop models: a
coronal loop without an initial boundary layer, a coronal loop
with initial boundary layer, and a coronal loop with initial
boundary layer and unrealistically high viscosity. We have
simulated a perturbation leading to a fundamental kink mode,
matching the usually observed amplitudes of transverse MHD
waves. Although the case without an initial boundary layer
is a rather extreme case of coronal loop formation and may
be unrealistic, we do this mainly to investigate the effect that
resonant absorption has on the development of the KHI. Also,
a possible physical justification for sharp boundary layers is

the case of a highly spatially confined energy deposition, for
instance through magnetic reconnection, that would result in

a spatially confined chromospheric evaporation and therefore

sharp boundary layer for a loop.
By taking a sharp boundary layer we manage to delay the

onset of resonant absorption in that loop compared to the case
with initial boundary layer. As soon as the loop starts oscillating

the small length scale over which the velocity shear takes place
at the edges of the flux tube triggers the TWIKH rolls. At the
wake of the flux tube RT rolls are also generated. High azimuthal
wave modes are generated first, as expected since they are the
fastest growing modes [52]. Lower and more energetic wave
modes grow after 1 − 2 periods, not only from the KHI but
also due to the squashing of the loop produced by the inertia
[55, 56]. These low order modes are the first ones that grow
in the case of an initial boundary layer. Higher order modes
follow as well in the nonlinear stage of the KHI. Hence, this
initial process can be seen as an apparent inverse energy cascade,
produced mainly by the initially sharp boundary layer in that
loop model. Due to KHI, the layer thickens quickly, and with it
resonant absorption starts to take place. As the resonance reaches
a maximum amplitude so does the power of high azimuthal
wave modes. The time interval and spatial extent of significant
resonance power matches the time interval and spatial extent
of significant power in the high order azimuthal modes. The
resonance triggers, in particular, TWIKH rolls radially inwards
inside the loops and a self-inducing process of TWIKH rolls
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FIGURE 9 | Fourier coefficients for the azimuthal velocity vφRi at radial distances Ri for the case with initial boundary layer and no viscosity. See Figure 8 for

more details.

occurs gradually deeper at a steady rate (producing a super slow
apparent wave propagation of the kind discussed by Kaneko et al.
[73]) until they end up covering basically the entire loops.

In this paper, we have proven that also impulsively excited
loops, regardless of their initial boundary layer thickness
eventually render the loop’s cross-section to a turbulent state, as
was previously proven for continuously driven loops [46]. This
has as important implication that probably all observed loops
(which undergo transverse oscillations at some point in their life,
[20]) are in a turbulent state.

This investigation shows that resonant absorption is key to
energize TWIKH rolls and spread them all over the loop. In our
cases of only one perturbation only high azimuthal wave modes
reach the loop center, and therefore the energy transfer to the
inner layers is small in the absence of continuous driving. K-H
rolls have also been analytically and numerically predicted from
the shear flow of other transverse waves, such as torsional Alfvén
waves [37, 47, 51, 74]. Our results suggest that in the absence of
continuous driving the absence of resonant absorption in these
cases may lead to important differences. Namely, the absence of
velocity shear at the resonance layer would fail to induce inner
KHI vortices eventually making the entire loop turbulent in the
self-induction process we have found.

In the case of the loop with an initially present boundary
layer, resonant absorption starts occurring immediately after the
impulsive excitation, which produces a slightly stronger damping
than in a case with no initial boundary layer and hence a
relatively faster switch from a Gaussian damping profile to an
exponential damping profile [68–70]. From Figure 4 we can see
that some differences indeed arise between cases with or without
initial boundary layer. But more importantly, there are strong
deviations from both the Gaussian and exponential damping
during the evolution, due to the KHI. Since the switch between
the Gaussian and exponential damping profiles is mostly defined
by the density ratio and the boundary layer thickness, It is usually
considered that the envelope can be used for seismology. This is
of course not valid in our models, since this switch is controlled
by the width of the boundary layer that varies extremely over time
due to KHI.

Based on the comparison between the models with and
without boundary layers leading to TWIKH rolls, we predict that
loops with larger boundary transitions would lead to somewhat
longer times (but on the same order) for the loops to become
fully turbulent. This is because thicker boundary layers imply
lower velocity shear and hence a delay on the onset of the
KHI. On the other hand, a loop with a thicker boundary
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FIGURE 10 | Fourier coefficients for the azimuthal velocity vφRi at radial distances Ri for the case with initial boundary layer and with viscosity. See Figure 8 for

more details.

transition implies a more energetic resonant flow, and therefore
a larger energy reservoir for the self-inducing process of KHI
inwards. Hence, the vortices reaching the loop core may be larger
(more energetic).

Another interesting feature seen in Figure 4 and in Figures 8–
10 is that the global kink mode (p = 1) does not seem
to damp completely for t > 30 min within the flux tube
(for r < 0.5 R). This result was also noticed by Magyar
and Van Doorsselaere [40], and they suggested an explanation
based on KHI energy being transferred to the core of the
loop. Indeed, our experiments confirm this hypothesis. It is
also possible to have a feedback mechanism from the TWIKH
rolls on the loop, due to an overall vorticity imbalance (and
therefore momentum imbalance) within the loop due to the
TWIKH rolls, as is observed in the phenomenon of vortex
shedding [75, 76]. The slight change in period and beat at
t ≈ 25 − 30 min for the inner shells and for the center
of mass oscillation (Figure 4), compared to the model without
KHI, supports this theory. If true, this could be another possible
mechanism to generate the observed decayless transverse
oscillations [20, 77, 78].

Given that loops eventually become fully turbulent following
a kink oscillation, a relevant question is the timescale on which
this happens. This is particularly relevant in the context of
coronal heating, since the small scales produced by dynamic
instabilities can be a means for wave dissipation. Our models
show that the loops become fully turbulent after 13 − 14
periods (69 − 72 min), which is a very long timescale for
coronal heating and therefore the wave dissipation rate over
the entire loop may be too small to account for coronal
heating. In the cases of continuous driving at the natural
frequency of the loop, as in the numerical experiments by
Karampelas and Van Doorsselaere [46], the situation improves,
since the amplitudes obtained at the apex are on average stronger
and the loops become fully turbulent after ≈ 7.5 periods
(2000 s in their model), which may still be considered long for
coronal heating.
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Video 1 | TWIKH vortices throughout, for a loop without initial boundary layer and

no viscosity. From top to bottom rows we have the cross-section at the apex of

the loop of, respectively, the total number density (in units of 109 cm−3), the

temperature (log T ), the flow velocity (in km s−1), the z−vorticity component (in

s−1) and the z−current density component (in cgs units). The half ellipse in white

(or black in the flow velocity panels) corresponds to the ellipses calculated in

section 3.2. This animation corresponds to Figure 1.

Video 2 | TWIKH vortices throughout for a loop with initial boundary layer and no

viscosity. The same variables as in Video 1 (or Figure 1) are shown, setting the

same minima and maxima for better visualisation. This animation corresponds

to Figure 2.

Video 3 | No TWIKH vortices for a loop with initial boundary layer and with

enhanced viscosity. The same variables as in Video 1 (or Figure 1) are shown.

Note that the minima and maxima (notably for the velocities, vorticity, and the

current density) are smaller than for Videos 1, 2 (Figures 1, 2) due to the

enhanced viscosity. This animation corresponds to Figure 3.
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