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Abstract—Digital stochastic measurement method 
implementation is considered from signal stationarity point of 
view. It is shown how conceptual block diagram for digital 
stochastic measurement of one Fourier coefficient can be 
simplified and used for developing conceptual block diagram for 
measuring predefined set of signal harmonics. Hardware of 
digital stochastic measurement block interfaced to recording 
block. made for recording stationary signals is used also for 
recording EEG signal as an example of non-stationary signals. 
The results of simulation and experimental verification of the 
method implementations are presented, and the main numerical 
results are: experiment error of 2.50E-03V, simulation error of 
1.34E-04V and theory uncertainty of 2,83E-03V, thus confirming 
theoretical calculation of standard measurement uncertainty of 
the method. 
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I.  INTRODUCTION 

All signals can be divided into either stationary or non-
stationary categories. Non-stationary signals are not constant in 
their statistical parameters over time (i.e. its amplitude 
distribution and standard deviation are not the same over time). 
Stationary signals are constant in their statistical parameters 
over time. Stationary signals further can be divided into 
deterministic and random signals. Random signals are 
unpredictable in their frequency content and their amplitude 
level, but they still have relatively uniform statistical 
characteristics over time.[1-2]  

Development of DSM (Digital Stochastic Measurement) 
method is described in [3-6]. Concept of digital stochastic 
measurement compared with typical digital measurement is 
shown at Fig. 1. The outputs of digital measurement are digital 
values in time domain. Each digital value is actually digitized 
value of appropriate analog sample from the input and that is 
well known classical approach of digital measurement – 
sample by sample. Instead of such approach, the outputs of 
digital stochastic measurement are Fourier coefficients ai and 
bi. Each Fourier coefficients is the function of all analog 
samples from the input over the measurement subinterval. 
Hence, this method is not based on “sample by sample” 
approach, but it is an interval-based method. 

II. METHOD IMPLEMENTATION FOR STATIONARY SIGNALS 

Over the measurement interval T, signal s, from viewpoint 
of Fourier analysis can be interpolated as: 
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Figure 1.  Digital measurement versus digital stochastic measurement. 

 

Figure 2.  Conceptual block diagram for digital stochastic measurement of 
one Fourier coefficient. 

ai are cosine Fourier coefficients, bi are sine Fourier 
coefficients and M is the last index of the coefficients 
(interpolation of the signal is more accurate for greater M).  

The conceptual block diagram of digital stochastic 
measurement of one Fourier coefficient is given at Fig. 2. 
Auxiliary signal sa is a dithered base (cosine or sine) function. 
If R is input range of analog-to-digital (A/D) converter from 
Fig. 2, then tkRsa 0cos ω= , for measuring kth cosine Fourier 

coefficient and tkRsa 0sin ω=  for measuring kth sine Fourier 
coefficient. d1 and d2 are generated dithering signals and they 
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satisfy the following conditions that limit their amplitude and 
define their probability density function:  
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Sampled values of signal s and auxiliary signal sa at every 
time instant within the measurement interval T are Ψe and Ψa, 
respectively. The measured value Ψ (multiplier output) differs 
from the input signals’ product by the measurement error e, 
which includes effect of quantization within A/D converter and 
the introduced dither:  

ess aae +⋅=Ψ⋅Ψ=Ψ  (3) 

The two terms in (3) are statistically independent, and 
average is the sum of their average values. The average value 
of the second term in (3) is zero, as shown in [5] and does not 
affect the average value of the expected output over the 
measurement period. A finite input range of ±R of digital 
stochastic measurement block defines the boundary of the 
average noise integration. Therefore the remaining term in the 
average value is:  
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On the other side, for N digital samples of the measured 
signal over the interval T, the average value is:  
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Summing of samples during the measurement subinterval is 
done by the accumulator and this sum is the output of the 
accumulator (Fig. 2). This output can be processed by 
microprocessor which divide the accumulator output by the 
number of samples N, and also calculates each sine (or cosine) 
component of the kth harmonic of the output (subscripts sink 
and cosk indicates that kth sine and kth cosine Fourier 
coefficient is measured):  

 Ra kk /2 cosΨ= , Rb kk /2 sinΨ=  (6) 

According to [6-9], the standard measurement uncertainty u 
is limited by: 
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According to (6) and (7) standard measurement uncertainty 
of any Fourier coefficient measured by this method is limited 
by: 

 Nbuau kk 2/)()( 1Δ≤=  (8) 

The quantum Δ1 is defined by the A/D converter resolution, 
and the number of samples N can be chosen according to the 
necessary measurement speed and the required accuracy.  

The conceptual block diagram from Fig. 2 can be 
implemented as in Fig. 3 having Ψa digital values stored in the 
memory thus resulting in elimination of second A/D converter 
from Fig. 2. If the system should measure DC component and 
Nh harmonics this structure requires 2Nh+1 multipliers and 
2Nh+1 accumulators. At first sight, block diagram from Fig. 3 
seems to require complex hardware structure but its hardware 
implementation can be relatively simple. These multipliers and 
accumulators can be implemented by field-programmable gate 
array (FPGA) structure which finally calculates Fourier 
coefficients, while microprocessor interfaces this block with 
recording block (as it is done in [6-9]). Block diagram of 
hardware implementation is given at Fig. 4. Pseudostochastic 
dither signal can be generated by FPGA chip, analog adder is 
required for performing addition of dither, and finally interface 
to recording block can be implemented by microprocessor too. 
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Figure 3.  Conceptual block diagram for measuring predefined set of signal 
harmonics. Each element marked with M&A is consisted of one multiplier 

and one accumulator. 

 

Figure 4.  Hardware block diagram of digital stochastic measurement block 
interfaced to recording block. 
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III. METHOD IMPLEMENTATION FOR NON-STATIONARY 

SIGNALS 

Fourier Transform is adequate for processing stationary 
signals. Hence, at first sight it can be concluded that digital 
stochastic measurement is convenient only for measuring 
harmonics of stationary signals. But, it can be also used for 
measuring non-stationary signals, by modifying the 
implementation according to Short Time Fourier Transform 
(STFT) approach. 

First modification of the method is to divide the 
measurement interval T into short subintervals. The 
subintervals are chosen such that each one by itself can be 
considered a windowed sample of a stationary signal. The 
duration of the subintervals has to be determined either by 
having some a priori information about the signal or by 
examining its local characteristics. Also, it is possible to make 
the subintervals of equal or different duration, depending on 
the signal and the application. 

In general, the STFT is a two-dimensional, time-frequency 
function, and the resolution of the STFT on the time axis 
depends on the duration T of the subinterval. Modification in 
PC software should be made for representing the results. Now, 
the result is two-dimensional STFT function represented by the 
spectrogram with time and frequency axes. The narrower the 
subinterval, the better the time resolution. When choosing a 
short-duration subinterval, a wider-band window is obtained. 
The wider the window in the frequency domain, the larger the 
spectral leakage and hence the deterioration of the frequency 
resolution[10]. In very highly non-stationary signals, such as 
the speech signal, short, constant-duration subintervals should 
be used. In Electroencephalography (EEG) signal 
measurement, the signal may consist of “stationary” 
subintervals with very wide duration range[10]. Hence, 
segmentation should be carefully made, because a priori fixed-
duration subintervals may be inadequate. 

It should be also noted that standard STFT approach is 
based on calculating Fourier coefficients after all analog 
samples over a signal segment are digitized by A/D converter. 
Instead of waiting for digitalization of all analog samples 
before beginning calculations, digital stochastic measurement 
method simultaneously perform digitalization of the samples 
and calculations of Fourier coefficients. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

One example of digital stochastic measurement of 
stationary signal is the calibrator voltage measurement 
described in [11]. Root Mean square (RMS) of the calibrator 
sinusoidal voltage is 1,0V (HP3490A is the referent instrument 
used for measuring RMS of the voltage), and frequency is 
50Hz. Measurement interval T is equal to signal period of 
20ms, and 200 measurements are done. 

DSM is implemented by 1-channel instrument (Fig. 5), 
based on Analog Devices AD7663AST A/D converter, FPGA 
chip CY39K100, and external memory M29040B. The 
instrument measured 15 harmonics’ amplitudes. Results of 
these measurements is given at Table I, showing that 

measurement error is less than measurement uncertainty 
limit(8). 

TABLE I.  RESULTS OF MEASURING CALIBRATOR SINUSOIDAL VOLTAGE. 
RMS IS 1V. 

Average of first harmonic (V) 1,0002 

Number of measurements 200 

Experiment error (V) 0,0002 

Theory uncertainty (V) 0,0013 

TABLE II.  NON-STATIONARY SIGNAL MEASUREMENT EXAMPLE: DSM 
BLOCK PROPERTIES IN SIMULATION AND EXPERIMENTS SETS. 

Number of simulations and 
experiments 

100 

A/D converter  
Resolution: m1=6 bits 
Input range: ±R and R=2.5V 
Sampling frequency: fadc = 15625 Hz 

Measurement interval [0,T] and T = 20ms 

Fundamental frequency f0 = 1/T = 50Hz 

Digital dithered base 
functions 

Stored in memory in 64-bit floating 
point resolution but passed to the 
multiplier in 8-bit resolution, thus 
faithfully simulating an A/D converter 
with properties: 
Resolution: m2 = 8 bits 
Range: ±R and R=2.5V 
Sampling frequency: fadc = 15625 Hz 

TABLE III.  NON-STATIONARY SIGNAL MEASUREMENT EXAMPLE: 
AVERAGE ERROR PER HARMONIC COMPARED VERSUS THEORY MAXIMUM FOR 

MEASUREMENT UNCERTAINTY. 

Experiment error (V) 2.50E-03 

Simulation error (V) 1.34E-04 

Theory uncertainty (V) 2,83E-03 

 

FPGA chip CY39K100 is programmed with a very-high-
speed integrated circuits hardware description language 
(VHDL) program. The VHDL program is consisted of 4 
processes (P1, P2, P3 and P4) which execute simultaneously. 
Process P1 receives 6-bit digital values from A/D converter. 
Process P2 is the main process, and all the mathematical 
calculations are implemented by this process. Process P3 has 
the task to send the results of process P2 to the microprocessor. 
Process P4 waits for request from the microprocessor, and 
when the request comes in P4 activates the process P3. 

 

Figure 5.  Prototype DSM instrument. 
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Basic technical characteristics of FPGA chip CY39K100 
are: 

• high packing density, 
o up to 200K logic gates, 
o up to 3072 macrocell, 
o up to 428 IO pins, 

• up to 480k bits of SRAM memory, 
• maximum working speed of 233 MHz, 
• 3.3 V, 2.5 V, 1.8 V and 1.5 V at IO lines 
• low consumption of 5 mA in "standby" mode, 
• programmable delay on all IO pins, 
• “in-system" reprogrammable chip 
• "carry-chain" logic for fast arithmetic operations. 

One example of digital stochastic measurement of non-
stationary signal is the measurement of EEG signal produced 
by EEG calibrator (Fig. 6). In preparatory real measurement 
(which was a typical digital measurement), EEG signal was 
stored 256 samples per second (S/s). For obtaining smooth 
input  for simulation and experiment, these 256 S/s records 
were transformed into 3,840 S/s data. This was achieved by 1) 
calculating Fourier coefficients by Discrete Fourier Transform 
(DFT) for original (256 S/s) records and 2) calculating 3,840 
S/s data by using IDFT with previously calculated Fourier 
coefficients. Each sample of measured signal is stored as 64-bit 
floating point value in simulation lookup-table. 
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Figure 6.  2 seconds of  EEG signal. This signal was used for both simulation 
and experiment input. 

For obtaining correct experimental results, comparable with 
theory and simulation, each experiment included measuring the 
same EEG signal. Of course, this repeatability of EEG signals 
could not be achieved with a humane subject and “live” 
measurement for each experiment. Therefore, the source of 
EEG signal in experimental measurements was not a humane 
subject, but an artificial source of EEG signal was made. This 
source was made by development board with a programmable 
system-on-chip (PSoC) CY8C27843, using an embedded 8-bit 
digital-to-analog (D/A) converter, 16-bit counter and lookup 
table.  

The DSM instrument was configured according to data 
presented in Table II. 100 computer simulations and 100 

experiments are done, and results are given in Table III. 
Results showed well adjustment with the limits calculated by 
(8). The experimental error when noise is not added is above 
the simulation error and this exception can be explained with 
the resolution of the D/A converter used for generating input 
signal, and with the ambient noise interfered with the interface 
between input signal generator and DSM block. 

V. CONCLUSION 

Digital stochastic measurement method implementation for 
stationary signals is described and compared to the. method 
implementation for non-stationary signals. One example of 
measuring stationary signals is presented and experimental 
results are given. Also, simulation and experimental results for 
measuring non-stationary signal are presented. Both results 
confirm theory calculations of measurement uncertainty. 
Future development of the method implementations should be 
directed on improvement of used A/D converter and FPGA 
chip for further improvement of accuracy. Also, acquisition 
software should be improved by visualization of STFT 
diagrams for non-stationary signals measurement. 
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