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Abstract: The paper investigates the probability of failure of slopes using both traditional 

and more advanced probabilistic analysis tools. The advanced method, called the 

Random Finite Element Method (RFEM), uses elastoplasticity in a finite element model 

combined with random field theory in a Monte-Carlo framework. The traditional method, 

called the First Order Reliability Method (FORM), computes a reliability index which is 

the shortest distance (in units of directional equivalent standard deviations) from the 

equivalent mean-value point to the limit state surface, and estimates the probability of 

failure from the reliability index. Numerical results show that simplified probabilistic 

analyses in which spatial variability of soil properties is not properly accounted for, can 

lead to unconservative estimates of the probability of failure if the coefficient of variation 

of the shear strength parameters exceeds a critical value. The influences of slope 

inclination, factor of safety (based on mean strength values) and cross correlation 

between strength parameters on this critical value have been investigated by parametric 

studies in this paper. The results indicate when probabilistic approaches which do not 

model spatial variation may lead to unconservative estimates of slope failure probability 

and when more advanced probabilistic methods are warranted. 
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Introduction 

 

Slope stability analysis is a branch of geotechnical engineering that is highly amenable to 

probabilistic treatment, and has received considerable attention in the literature. The 

earliest papers appeared in the 1970s (e.g. Matsuo and Kuroda 1974, Alonso 1976, Tang 

et al. 1976, Vanmarcke 1977) and have continued steadily (e.g. D’Andrea and Sangrey 

1982, Chowdhury and Tang 1987, Li and Lumb 1987, Oka and Wu 1990, Mostyn and Li 

1993, Lacasse 1994, Christian et al. 1994, Chowdhury and Xu 1995, Wolff 1996, 

Christian 1996, Lacasse and Nadim 1996, Low 1996, Low and Tang 1997, Low et. al, 

1998, Hassan and Wolff 1999, Whitman 2000, Duncan 2000, El-Ramly et al. 2002, Low 

2003, Bhattacharya et. al, 2003, Griffiths and Fenton 2004, Babu and Mukesh 2004, Xu 

and Low 2006, Low et al. 2007, Cho 2007, Shinoda 2007). In spite of this activity, the 

geotechnical profession is slow to adopt probabilistic approaches to geotechnical design, 

especially in traditional problems such as slopes and foundations. In particular, while the 

importance of spatial correlation (or auto-correlation) and local averaging of statistical 

geotechnical properties has long been recognized by some investigators (e.g. Mostyn and 

Soo 1990), it is still regularly omitted from many probabilistic slope stability analyses. 

Griffiths and Fenton (2004) studied slope stabilities using Random Finite Element 

Method (RFEM), which combines elasto-plastic finite element analysis with random 

fields generated using the Local Average Subdivision Method (Fenton and Vanmarcke 

1990). The results indicated that traditional probabilistic analyses, in which spatial 

variability is ignored by implicitly assuming perfect correlation, can lead to 

unconservative estimates of the probability of failure. This paper thoroughly investigates 

this observation by assessing the influence of the spatial correlation length and coefficient 

of variation of strength parameters on slope stability across a wide range of parametric 

variations. Numerical results show that for a given value of the spatial correlation length, 

there is a critical value of the coefficient of variation of strength parameters, above which 

FORM, if spatial variation is not modeled, underestimates the probability of failure and is 

therefore unconservative. The influence of slope inclination, factor of safety (based on 

mean strength values) and cross correlation between strength parameters on the critical 

value of the coefficient of variation has been investigated by parametric studies, 

indicating when more advanced probabilistic methods are warranted. 

 

In spite of the fact that most traditional Limit Equilibrium Method (LEM) existing in 

literature do not consider spatial variability, some investigators have combined the LEM 

with random field theory (e.g. Li and Lumb, 1987, Mostyn and Soo 1990, Low and Tang 
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1997, El-Ramly et al. 2002, Low 2003, Babu and Mukesh 2004, Low et al. 2007, Cho 

2007, Slope/W 2007 Version). However, the inherent nature of LEM is that it leads to a 

critical failure surface, which in 2-d analysis appears as a line which could be 

non-circular. The influence of the random field is only taken into account along the line 

and is therefore one-dimensional. All results obtained by the previously mentioned 

implementations indicate that increasing the spatial correlation length leads to an 

increased probability of failure irrespective of the variance of the shear strength 

parameters. Some of the results presented in the current paper however, indicate that both 

the spatial correlation length and the input variances can affect the probability of failure.  

 

Both undrained 0u  and drained ' ', tanc slopes are considered with the slope 

profile shown in Fig. 1. In this study, the slope has height 10.0 mH , foundation depth 

ratio 2D , and soil unit weight, 
3(or ) 20.0 kN/msat , which are all held constant. 

For undrained slopes, the shear strength uc  is assumed to be a random variable and 

expressed in a dimensionless form given by /( )u u satC c H . For drained slopes, both 

the shear strength 'c , expressed in the dimensionless form /( )C c H , and the 

tangent of the friction angle, 'tan , are assumed to be random variables. Three different 

slope angles  are considered: = 18.4 (3:1 slope), 26.6 (2:1 slope) and 

45 (1:1 slope). 

 

Probabilistic descriptions of strength parameters 

 

In this study, the shear strength parameters uC , C and tan  are assumed to be 

random variables characterized statistically by lognormal distributions (i.e. the logarithms 

of the properties are normally distributed) . The lognormal distribution will be applied at 

the point level. The lognormal distribution is one of many possible choices (e.g. Fenton 

and Griffiths 2008) however it offers the advantage of simplicity, in that it is arrived by a 

simple nonlinear transformation of the classical normal (Gaussian) distribution. 

Lognormal distributions guarantee that the random variable is always positive, and in 

addition to the current authors, it has been advocated and used by several other 

investigators as a reasonable model for physical soil properties (e.g. Parkin et al. 1988, 

Parkin and Robinson 1992, Gui et al. 2000, Nour et al. 2002, Massih et al. 2008). The 

RFEM methodology has been described in detail in other publications (e.g. Fenton and 

Griffiths 2008), so only a brief description will be repeated here for the random variable 

uC . An identical procedure is applied to C and tan . 
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The lognormally distributed undrained shear strength uC  has three parameters; the mean, 

uC , the standard deviation 
uC  and the spatial correlation length. The variability of uC  

can conveniently be expressed by the dimensionless coefficient of variation defined as 

u

u

u

C

C

C

v                                     (1) 

The parameters of the normal distribution (of the logarithm of uC ) can be obtained from 

the standard deviation and mean of uC  as follows: 

2

ln ln 1
u uC Cv                                 (2) 

2

ln ln

1
ln

2u u uC C C                                (3) 

Inverting Eqs. (2) and (3) gives the mean and standard deviation of uC : 

2

ln ln

1
exp

2u u uC C C                             (4) 

2

lnexp( ) 1
u u uC C C                              (5) 

A third parameter, the spatial correlation length ln uC , will also be considered in this 

study. Since the actual undrained shear strength field is lognormally distributed, its 

logarithm yields an “underlying” normally distributed (or Gaussian) field. The spatial 

correlation length is measured with respect to this underlying field, that is, with respect to 

ln uC . In particular, the spatial correlation length ( ln uC ) describes the distance over 

which the spatially random values will tend to be significantly correlated in the 

underlying Gaussian field. Thus, a large value of ln uC  will imply a smoothly varying 

field, while a small value will imply a ragged field.  

 

In this work, an exponentially decaying (Markovian) correlation function is used of the 

form: 

 ln

2

C ue                                  (6) 

where  is the correlation coefficient between properties assigned to two points in 

the random field separated by an absolute distance .  
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In the current study, the spatial correlation length has been non-dimensionalized by 

dividing it by the height of the embankment H  and will be expressed in the form, 

ln /
u uC C H                                  (7) 

Figs. 2a and b show typical failure mechanisms corresponding to different spatial 

correlation lengths. Fig. 2a shows a relatively low spatial correlation length of 0.2
uC  

and Fig. 2b shows a relatively high spatial correlation length of 2
uC . The figures 

depict the variation of ln uC , and have been scaled in such a way that dark and light 

regions depict “strong” and “weak” soil respectively. Black represents the strongest 

element, and white the weakest in the particular realization. It should be emphasized that 

both these shear strength distributions come from the same lognormal distribution (same 

mean and standard deviation) and it is only the spatial correlation length that is different. 

A great benefit of RFEM is that the shape and location of the failure surface is not 

determined a priori and the algorithm is able to “seek out” the most critical path through 

the heterogeneous soil mass (e.g. Griffiths et al. 2006). 

 

The input parameters relating to the mean, standard deviation and spatial correlation 

length are assumed to be defined at the “point” level. While statistics at this resolution are 

obviously impossible to measure in practice, they represent a fundamental baseline of the 

inherent soil variability which can be corrected through local averaging to take account of 

the sample size. In the context of the RFEM approach, each finite element is assigned a 

constant property. The “sample” is represented by the size of each finite element used to 

discretize the slope. If the point distribution is normal, local averaging results in a 

reduced variance but the mean is unaffected. In a lognormal distribution however, both 

the mean and the standard deviation are reduced by local averaging. Following local 

averaging, the adjusted statistics ,
uA uAC C  represent the mean and standard deviation 

of the lognormal field that is actually mapped onto the finite element mesh. Further 

details can be found in Griffiths and Fenton (2004). 

 

In the limit as 0uC , local averaging removes all variance ( 0
uAC ), and the mean 

tends to the median, thus 

2

ln ln
2

1
Median exp( ) exp(ln )

2 1

u

uA u u u u

u

C

C C C C C

Cv
          (8) 
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Traditional probabilistic methods 

 

Undrained slope 

 

In this paper the term “traditional probabilistic methods” refers to probabilistic methods 

(whether using Monte-Carlo simulation or FORM) which do not explicitly take account 

of the spatial correlation length, hence slopes are assumed to be uniform (spatially 

constant properties) with uC  selected randomly from a lognormal distribution. The 

traditional probabilistic methods imply a spatial correlation length 
uC , so no local 

averaging is applicable.  

 

Since there is only one random variable in an undrained analysis, the probability of 

failure (  fp ) is simply equal to the probability that the shear strength parameter uC  will 

be less than , 1u FSC , where , 1u FSC  is the value that results in a factor of safety FS  

equal to unity. Quantitatively, this equals the area beneath the probability density 

function corresponding to , 1u u FSC C . For example for 26.6 , , 1u FSC =0.17 and 

, 1.47 0.25u FSC  (from Taylor’s charts or limit equilibrium), so if we let 0.25
uC  and 

0.125
uC ( 0.5

uCv ), Eqs. (2) and (3) give that the mean and standard deviation of the 

underlying normal distribution are ln 1.489
uC  and  ln 0.472

uC  respectively. 

The probability of failure is therefore given by: 

ln

ln

ln 0.17
0.17 0.281u

u

C

f u

C

p p C                  (9) 

where   is the cumulative standard normal distribution function. 

 

In order to investigate the influence of FS  on  fp  , and for , 1.25 0.21
uC u FSC , 

, 1.47 0.25
uC u FSC  and , 1.70 0.29

uC u FSC , the probability of failure 

corresponding to different 
uCv  can be easily obtained, and are listed in Table 1. For the 

purposes of our parametric studies, it was necessary to push the 
uCv  up as high as 1.5 in 

some cases in order to find the critical value at which the traditional method ceases to be 

conservative.  

 

While considering the influence of the slope inclination, it may be noted that in an 

undrained slope, the slope inclination makes no difference to fp  if FS  (based on the 

mean) is the same in all cases. Thus the  fp  values shown in Table 1 apply to any slope 

inclination. 
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FORM and the Hasofer-Lind reliability index  

 

The first order reliability method (FORM) is a process which can be used to estimate the 

probability of failure of systems involving multiple random variables with given 

probability density functions, in relation to a “limit state” function that separates the 

failure domain from the safe domain. Xu and Low (2006) used FORM combined with the 

finite element method to estimate the probability of failure of slopes. The conventional 

FORM based on the Hasofer-Lind reliability index (Hasofer and Lind 1974), HL , 

assumes that the mean values of random variables lie on the safe side of the limit state 

function. The method then obtains the reliability index, which is related to the minimum 

distance, in directional standard deviation units, between the mean values and the limit 

state surface. The conceptual and implementation barriers surrounding the use of HL  

for correlated normals and the FORM for correlated non-normals can largely be 

overcome as shown by Low and Tang (1997, 2004). Calculation of the reliability index 

involves an iterative optimization process, in which the minimum value of a matrix 

calculation is found, subject to the constraint that the values are on the limit state surface. 

Commonly used software packages (e.g. Excel and Matlab) are easily adapted to perform 

the optimization (see e.g. www.mines.edu/~vgriffit/FORM). Once the reliability index 

(the distance between the means and the closest failure point) has been determined, the 

method assumes a “first order” limit state function tangent to the  contour, and the 

probability of failure,  fp   follows from  

 1fp                            (10) 

It should be noted that the reliability index is given a negative value if 50%fp  (e.g. 

Low 2005). 

 

If dealing with two random variables, the “first order” assumption results in a straight 

line limit state function, in which case fp  is the volume under the bi-variate probability 

density function on the failure side of the line. A similar concept applies to cases 

involving multiple random variables. 

 

Each reliability analysis requires a limit state function, which defines safe or unsafe 

performance. Limit states could relate to strength failure, serviceability failure, or 

anything else that describes unsatisfactory performance. The limit state function, g , is 

customarily defined 
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1 2

1 2

( , ,.., ) 0 Safe

( , ,.., ) 0 Failure

N

N

g X X X

g X X X
             (11)  

where 1 2, ,.., NX X X  are the input random variables. An advantage of the Hasofer-Lind 

index HL  for correlated normal variates and the FORM index  for correlated 

non-normal variates is that the result it gives is not affected by the form of the limit state 

function. For example, the limit state function could be defined as the resistance minus 

the load, the factor of safety minus one, the logarithm of the factor of safety or some 

other algebraic combination without influencing the computed value of HL  or . 

 

The limit state function can sometimes be determined directly from theory, or for more 

complex systems, the Response Surface Method (e.g., Melchers, 1999) needs to be used. 

The basic idea of the Response Surface Method is to approximate the limit state boundary 

by an explicit function of the random variables, and to improve the approximation via 

iterations 

 

In detail, the determination of  in FORM is an iterative process (as explained by 

Haldar and Mahadevan 2000, for example). An alternative interpretation involving an 

equivalent hyperellipsoid was given in Low and Tang (2004) and Low (2005) as follows: 

1

0
min              =1,2,...,n

T
N N

i i i i

N Ng
i i

X X
R i         (12) 

where iX  is the thi  random variable, N
i  is the equivalent normal mean of the thi  

random variable, N
i  is the equivalent normal standard deviation of the thi  random 

variable, {( ) / }N N
i i iX  is the vector of n  random variables reduced to standard 

normal space and R  is the correlation matrix. 

Drained slope 

 

For slopes of tanc  soils, no analytical equation exists which can serve as a limit 

state function. The Response Surface Method (e.g. Xu and Low, 2006) has been 

introduced in this study. This can be accomplished, for example, by fitting a curve to the 

results from several finite element analyses using the strength reduction method (e.g., 

Griffiths and Lane 1999). This method involves applying gravity loads to the finite 

element mesh and systematically weakening the soil until a sufficient number of elements 

have yielded to allow the formation of a failure mechanism.  
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For example, with two ( 2)n  random variables a quadratic surface without cross-terms 

with five (2 1 5)n  constants of the form 

22

1 2 3 4 5ln , ln tan ln ln tan ln ln tanFS C a a C a a C a   (13) 

could be used to approximate the factor of safety function. 

  

The limit state function could then be defined as the factor of safety function minus one, 

thus 

ln ,ln tan ln ,ln tan 1g C FS C                 (14) 

In order to find the five constants in Eq. (13), five finite element analyses were run. For 

each random variable, its equivalent normal mean value, N
i  and two other 

values
N N

i im  were sampled while fixing the other random variable at its equivalent 

normal mean value. Some investigators (e.g. Xu and Low 2006, Griffiths et al. 2007) 

have related the two other sampling points to some factor of the standard deviation given 

by m . A popular choice is 1m  which will be used later in this section. For cases 

involving high v , the use of 1m  leads to some sampling points being far from the 

central sampling point and thus, the performance function may not always be defined 

with accuracy in the zone of interest (i.e. near the tentative design point). For slope 

reliability analysis however, limit state functions for slopes have been shown to be quite 

linear in the space of cohesion and friction angle (e.g. Mostyn and Li 1993, Low et al. 

1998), so  fp  is rather insensitive to the choice of m . 

 

Since the design point is not known in advance, the limit state function is initially derived 

at the equivalent normal mean which gives a first approximation of the design point. This 

design point can be far from the optimal one and may lead to incorrect results.  The 

current work uses the following iteration procedure (e.g. Tandjiria et al. 2000), which 

leads to the limit state function being approximated at the design point. 

 

1) Derive the limit state function at the equivalent normal mean values. 

2) Use FORM to obtain the design point and hence  fp . 

3) Update the limit state function using the design point just found. 

4) Use FORM to update the design point and hence  fp . 

5) Repeat 3) to 4) until convergence when two successive values of  fp  is smaller 

than a prescribed tolerance. 
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The factor of safety at the design point should equal one at convergence. 

 

In order to investigate the influence of slope inclination and the FS (based on the mean) 

on the critical value of coefficient of variation, five slopes have been analyzed using 

FORM. The mean values that would result in the target FS  values for different slope 

inclinations are shown in Table 2. The investigation will consider a 2:1 slope with three 

different FS values, and a 1.47FS  slope with three different slope inclinations.  

 

In the present work,  and tanC  are assumed to be lognormally distributed. The mean 

value of C  can be retrieved from the values in Table 2 as /( )C c H . 

 

Since  is defined in the normal space, transformations of Eqn. (2) and (3) need to be 

applied and the optimization will be performed in normal space . The five sample points 

in the normal space will be  l n l n ( t a n ) ,  C , ln ln ln(tan ) ,  C C ,  

l n l n l n ( t a n ) ,  C C , ln ln(tan ) ln(tan ) ,  C  and ln ln(tan ) ln(tan ) ,  C .  

 

Since these sample points depend on the input coefficient of variation, five deterministic 

analyses need to be performed for each v . In the present study, for the sake of simplicity, 

the coefficients of variation relating to cohesion and friction are assumed to be equal, 

thus 

tanCv v v                                (15) 

It may be noted that since the five deterministic analyses must be performed in the real 

space, actual properties were retrieved by raising e  (the base of the natural logarithm) to 

the five sample points mentioned above. The coefficients of the limit state function for 

the case when 0.5v  used in Eqs. (13) and (14) are shown in Table 3. 

 

Some investigators (e.g. Rackwitz 2000) believe that the cross-correlation  between 

lnC  and ln(tan )  is negative, however, this is still a controversial area in need of 

more realistic data. Since a positive cross correlation coefficient ( ) between lnC  and 

ln(tan )  gives higher values of  fp  and is therefore conservative,  is initially 

assigned a value of 0.5, although other values in the range 0.5 0.5  are considered 

later in this paper.  

 

For the case of 0.5v , the limit state functions for the 2:1 slope with three different 

FS values (based on the mean) are shown in the standard normal space along with 

contours of  in Fig. 3. Also shown in Fig. 3 are the three contours of  that just 
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touch the three limit state functions corresponding to 1.25FS , 1.47FS and 

1.70FS  indicating reliability indices of 0.2750, 0.6892 and 1.0396 respectively. The 

corresponding  fp  are thus determined using Eq. (10) to be 0.392, 0.245 and 0.149. It 

should be noted that in this standard normal plotting space, the contours of  are 

functions only of , while the limit state function lines are functions of  and FS v . The 

corresponding plot in real space is shown in Fig. 4. In this plotting space, the contours of 

 are now functions of ,  and FS v , while the limit states remain functions of 

 and FS v . The proximity of the limit state functions to each other in the real space is 

striking. Two of the lines are almost identical. 

 

Fig. 5 shows the influence of v on the limit state function in the standard normal space for 

the case of 1.47FS . It can be seen that larger values of v result in the limit state 

function being closer to the mean value, indicating lower and higher  fp  values.  

 

The limit state functions in standard normal space for three different slope inclinations 

are shown in Fig. 6 for the case when 1.47FS . The 0.6892  contour is exactly 

tangent to the 2 :1 limit state line, but almost tangent to the other two lines, emphasizing 

again that the slope inclination makes little difference to fp  for slopes with the same 

FS  (based on the mean). Table 4 summarizes the computed fp for all cases considered. 

 

The influence of  on slope probability of failure has also been investigated in this 

paper. Results shown in Table 5 indicate that when the mean values are on the safe side 

of the limit state function  0.5fp  positive  is conservative because it gives 

higher probabilities of failure than negative . If the equivalent normal mean values lie 

in the unsafe side of the limit state function  0.5fp  however, the opposite is true, 

with positive  giving lower probabilities of failure. The explanation lies in the fact 

that irrespective of the location of the equivalent normal mean values relative to the limit 

state function, positive  always results in the  contours touching the limit state 

function at lower absolute values of  than when  is negative. Since  is 

interpreted as being positive when  0.5fp  and negative when  0.5fp , Eq. (10) will 

lead to lower  fp  when is positive since the resulting  will be less negative than 

when  is negative. 

 

Figs. 7 and 8 show the influence of  when 0.5  and 1.5 . The mean values lie 

in the safe region when 0.5  and the unsafe region when 1.5 .  
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Random finite element method 

 

In this section, the results of full nonlinear RFEM analyses with Monte-Carlo simulations 

are compared with results from FORM. 

 

The RFEM involves the generation and mapping of a random field of properties onto a 

finite element mesh. The current on-line RFEM codes have implemented only normal, 

lognormal and bounded distributions (Fenton and Griffiths, 2008). There is no restriction 

however on the type of distribution that could be modeled by RFEM, providing a normal 

transformation is available (e.g. Fig. 5 in Low and Tang 2007). Since the random field in 

RFEM is generated in the underlying normal space, it is easy to map this normal 

distribution to some other distribution types. Full account is taken of local averaging and 

variance reduction (Fenton and Vanmarcke 1990) over each element, and an 

exponentially decaying (Markov) spatial correlation function is incorporated. The random 

field is initially generated and properties assigned to the elements. After application of 

gravity loads, if the algorithm is unable to converge within a user-defined iteration ceiling 

(see e.g. Griffiths and Lane 1999), the implication is that no stress distribution can be 

found that is simultaneously able to satisfy both the Mohr-Coulomb failure criterion and 

global equilibrium. If the algorithm is unable to satisfy these criteria failure is said to 

have occurred. The analysis is repeated numerous times using Monte-Carlo simulations. 

Each realization of the Monte-Carlo process involves the same mean, standard deviation 

and spatial correlation length of soil properties, however the spatial distribution of 

properties varies from one realization to the next. Following a “sufficient” number of 

realizations, the  fp  can be easily estimated by dividing the number of failures by the 

total number of simulations. The analysis has the option of including cross correlation 

between properties and anisotropic spatial correlation lengths (e.g. the spatial correlation 

length in a naturally occurring stratum of soil is often higher in the horizontal direction). 

Further details of RFEM can be found in Griffiths and Fenton (2004) and Fenton and 

Griffiths (2008).  

 

A typical mesh is shown in Fig. 2, which has 910 finite elements, and thus contains 910 

random variables for an undrained 0u slope and 1820 for a drained ,c  slope. 

Two thousand simulations were used in most cases, while five thousand simulations were 

used for high spatial correlation lengths ( 1.0 ) and high input coefficients of variation 

( 1.0v ). The aim of this paper is to find critv , and the minimum corresponding value of 

fp  observed in the parametric studies was about 10%. If the maximum error of  fp  is 
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0.01 at a confidence level 90%, the required number of realization is 2435 (see e.g., 

Fenton and Griffiths 2008). It can therefore be said that 2000 simulations is nearly 

adequate to achieve this target error bound. The CPU time depends on  fp  and runs to 

about 10 minutes if  0fp  and two hours if  1fp (every simulation hits the iteration 

ceiling) on a T7700@2.4GHz laptop for two thousand simulations. 

 

Undrained 0u
 slope 

The value of
uC  was fixed at , 1.47u FSC , while

uCv  was varied in the range 

0.1,0.2,...,1.0
uCv , and 

uC  was varied in the range {1/ 32,1/16,..., 4}
uC . Figs. 9, 

10 and 11 show the probability of failure estimated by RFEM for the three slopes 

compared with the 
uC  result obtained by FORM or Monte-Carlo simulations. 

 

It can be seen that ignoring spatial variation underestimates the probability of failure 

when 
uCv  is relatively high and overestimates the probability of failure when 

uCv  is 

relatively low. The intersections of the 
uC  line with other lines gives the critv  at 

which the 
uC  approach (i.e. no spatial variation) ceases to be conservative. A plot 

of critv  verses 
uC  is shown in Fig. 12. It can be seen that ignoring spatial variation 

will underestimate the probability of failure at lower values of critv  for steeper slopes 

than for flatter slopes. In the case of steeper slopes critv  could be as low as 0.27. Typical 

ranges of 
uCv  as reported for example by Lee et al. (1983), Lacasse and Nadim (1996) 

and Lumb (1974) are 0.05~0.5. It may be noted that from Fig. 12 that ignoring spatial 

variation will always underestimate  fp  for a 1:1 slope when 0.5
uC . 

 

If spatial variation is ignored, the slope inclination made no difference to  fp  if FS  

(based on the mean) is the same in all cases, but using RFEM, the  fp  of a steeper slope 

was higher than that of flatter slope. The reason for this is that RFEM allows the failure 

mechanism to “seek out” the most critical path through the heterogeneous soil mass. For 

flatter undrained slopes, the failure mechanism is nearly always deep and passes through 

the foundation soils. For steeper slopes, the failure mechanism has more choice, and may 

go through the toe or pass through the deeper foundation soils, leading to a higher  fp . 

 

In order to investigate the influence of the factor of safety on a single slope, similar 

computations were carried out for 2:1 slopes with , 1.25uC u FSC  and , 1.70uC u FSC .  

Results in Fig. 13 show that ignoring spatial variation will underestimate the probability 
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of failure at lower values of critv  for low FS slopes than high FS  slopes, where FS  is 

based on the mean.  

 

It should be noted that the critv  corresponding to 0.0
uC  in each case was obtained 

analytically from Eq. (8). The critv  in these cases is the value that causes the median to 

equal , 1.0u FSC . 

 

Drained tanC  slope 

The spatial correlation lengths of C and tan  are assumed to be the same. That is 

tanC                             (16) 

and all other parameters are varied in the same range as in the previous section. Figs. 14, 

15 and 16 show the probability of failure computed by RFEM for the three slopes with 

the  results obtained by FORM or Monte-Carlo simulations. 

 

It can be seen from Figs. 14, 15 and 16 that the slope inclination has little influence on 

the  fp  and that ignoring spatial variation underestimates the probability of failure when 

v  is relatively high and overestimates the probability of failure when v  is relatively 

low. The intersections of the  line with other lines give the critv  above which the  

 approach (i.e. ignoring spatial variation) ceases to be conservative. The critv  

verses  relationship is plotted in Fig. 17 which demostrates that the critv  is almost 

independent of the slope inclination. This is different from the undrained slope where 

critv  was lower for steeper slopes. RFEM results are less sensitive to slope inclination, 

and more like those given by ignoring spatial variation for drained ,c  slopes than 

undrained slopes, because the failure mechanism for nearly all slope inclinations tends to 

pass through the toe. 

 

In order to investigate the influence of the factor of safety (based on the means), similar 

computations were carried out for 2:1 slopes with 1.25FS  and 1.70FS . Results in 

Fig. 18 show that critv  is lower for low FS  slopes (based on the mean). This is a 

similar trend to that observed for undrained slopes.  

 

Finally, the influence of the cross correlation between 'lnC and ln(tan )  was 

investigated, for 2:1 slopes by performing additional RFEM runs with 0  and 
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0.5 . Results in Fig. 19 show that critv  is lower when lnC and ln(tan )  are 

positively correlated than when they are negatively correlated. It should be noted that 

RFEM always gave the highest  fp  when 0.5  and the lowest  fp  when 0.5  

irrespective of whether  0.5fp  or  0.5fp . Ignoring spatial variation, however, gave 

the opposite trend for  0.5fp and  0.5fp  as described previously. 

 

The range of v  reported, for example by Lee et al. 1983, Lacasse and Nadim 1996 and 

Lumb 1974 is 0.02~0.56 (the corresponding range of tanv  would be 0.03~0.74 when 

30 ). It was observed that critv  was higher when  was negative that when it was 

positive as shown in Fig. 19. Some investigators (e.g. Rackwitz 2000) have suggested 

that 0.5 . The minimum critv  obtained in this paper (based on tan ) is 0.56 for 

the 2:1 drained slope with 1.25FS  and a positive 0.5 . Lower critv  values will 

be observed in steeper slopes and/or slopes with lower FS . 

 

It should be noted that the critv  corresponding to 0.0  can be obtained analytically.  

As shown in Eq. (8), in the limit as 0 , local averaging removes all variance, and the 

mean tends to the Median, thus 

21

C
C A

critv
                                  (17) 

tan

tan
21

A

critv
                                 (18) 

where the subscript A denotes a local average. In this case, the slope will be uniform with 

the strength parameters set equal to their median as given by equations (17) and (18) 

everywhere. The value of critv  that would give 1.0FS  can be obtained by 

substituting Eqs. (17) and (18) into Eq. (13)  

tan

2 2

tan tan

1 2 3 4 5
2 2 2 2

ln ,ln

ln ln ln ln
1 1 1 1

1.0

c A A

C C

crit crit crit crit

FS

a a a a a
v v v v

   (19) 

The five coefficients 1 2 5, ,...,a a a depend on v  so an iterative process has been used to 

solve Eq. (19). The solution gives the value of critv  below which 0fp  and above 

which 1fp .  
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Concluding remarks  

 

The paper has investigated the probability of slope failure using FEM combined with  

FORMwithout spatial variation and more advanced (RFEM) probabilistic analysis tools. 

The term RFEM denotes FEM combined with Monte-Carlo simulation with spatial 

variation properly taken into accounts. The RFEM enables the failure mechanism to 

“seek out” the weakest path through the heterogeneous soil mass which can lead to higher 

probabilities of failure than would be predicted by ignoring spatial variation. The 

numerical studies have shown that ignoring spatial variation will lead to unconservative 

estimates of the probability of slope failure if the coefficient of variation of the input 

shear strength parameters exceeds a critical value critv . The lower the value of critv , the 

more likely it is that ignoring spatial variation will underestimate the probability of 

failure for typical ranges of soil variability. The paper has presented graphs to indicate 

the magnitude of critv  for different parametric combinations, from which readers can 

decide whether ignoring spatial variation (i.e., assuming perfect spatial correlation) is 

appropriate and conservative for use with their specific soil parameters. The lognormal 

distribution as used in this study is believed to be a reasonable model of soil strength 

although a thorough comparison of distribution types in the context of RFEM is a topic 

for future research. 

 

In summary: 

 

1. critv  is lower for slopes with low factors of safety (based on the mean) than for 

slopes with high factors of safety. 

 

2. critv  is lower for steeper slopes than less steep slopes under undrained 0u  

conditions. Slope steepness was found to have little influence on critv  in drained 

,c  slopes. 

 

3. critv  is lower if the strength parameters  and tanc  are positively correlated 

than if they are negatively correlated. 
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Notation 

 

The following symbols are used in this paper: 

 

'c    drained cohesion 

uc    undrained cohesion 

C    dimensionless drained cohesion 

uC    dimensionless undrained cohesion 

, 1u FSC   dimensionless undrained cohesion when 1.0FS  

, 1.25u FSC  dimensionless undrained cohesion when 1.25FS  

, 1.47u FSC  dimensionless undrained cohesion when 1.47FS  

, 1.70u FSC  dimensionless undrained cohesion when 1.70FS  

D    foundation depth ratio 

FS    factor of safety 

H    slope height 

m    constant used for sampling limit state function 

n    number of random variables 

 fp    probability of failure 

R    correlation matrix 

iX    random variable 

   slope angle 

   FORM reliability index 

HL    the Hasofer-Lind reliability index 

   soil unit weight 

sat    saturated soil unit weight 

ln uC   spatial correlation length of undrained cohesion 
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   dimensionless spatial correlation length 

uC   dimensionless spatial correlation length of undrained cohesion 

C    dimensionless spatial correlation length of drained cohesion 

tan   dimensionless spatial correlation length of drained tangent friction angle 

uAC   mean dimensionless undrained cohesion after local averaging 

C A   mean dimensionless drained cohesion after local averaging  

ln uC   equivalent normal mean of undrained cohesion 

N
i    equivalent normal mean of the thi  random variable  

tan A   mean tangent drained friction angle after local averaging 

v    coefficient of variation 

uCv    coefficient of variation of dimensionless undrained cohesion 

Cv    coefficient of variation of dimensionless drained cohesion 

tanv   coefficient of variation of tangent drained friction angle 

critv    critical coefficient of variation 

   cross correlation coefficient 

  correlation coefficient between properties assigned to two points  

uC    standard deviation of dimensionless undrained cohesion 

uAC   standard deviation of dimensionless undrained cohesion after local averaging 

ln uC   equivalent normal standard deviation of undrained cohesion 

N
i    equivalent normal standard deviation of the thi  random variable  

   absolute distance between two points in a random field 

u    undrained friction angle 

'    drained friction angle 

    the cumulative standard normal distribution function. 
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Table 1.   fp  corresponding to different 
uCv for an undrained slope  

 

uCv  , 1.25uC u FSC  , 1.47uC u FSC  , 1.70uC u FSC  

0.1 0.014 0.0 0.0 

0.2 0.152 0.032 0.004 

0.3 0.270 0.122 0.048 

0.4 0.350 0.209 0.118 

0.5 0.407 0.281 0.187 

0.6 0.450 0.338 0.248 

0.7 0.485 0.384 0.300 

0.8 0.514 0.422 0.343 

0.9 0.538 0.454 0.381 

1.0 0.559 0.481 0.412 

1.1 0.577 0.505 0.440 

1.2 0.593 0.525 0.464 

1.3 0.607 0.544 0.485 

1.4 0.620 0.560 0.504 

1.5 0.632 0.574 0.521 
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Table 2 Strength parameters of the five slopes 

 

Slope 

1.25FS  1.47FS  1.70FS  

c  tan  c  tan  c  tan  

3:1   15.00 0.21   

2:1 15.73 0.23 18.50 0.27 21.40 0.31 

1:1   26.00 0.36   
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Table 3 Coefficients of the limit state function for 0.5v  

 

Slope 1a  2a  3a  4a  5a  

2:1, 1.25FS  5.3045 1.6132 1.1186 0.2017 0.1793 

2:1, 1.47FS  5.1821 1.5026 1.1212 0.1793 0.1793 

2:1, 1.70FS  5.1765 1.5019 1.1204 0.1793 0.1793 

3:1, 1.47FS  5.9713 1.5081 1.5442 0.1793 0.2465 

1:1, 1.47FS  4.7636 1.8096 0.7733 0.2465 0.1344 
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Table 4.   fp  corresponding to different ,  and slope inclinationsv FS   

 

v  
1.25FS  

(2:1 slope) 

1.47FS   

(2:1 slope) 

1.70FS  

(2:1 slope) 

1.47FS  

(3:1 slope) 

1.47FS  

(1:1 slope) 

0.1 0.007 0.000 0.000 0.000 0.000 

0.2 0.124 0.015 0.001 0.018 0.017 

0.3 0.231 0.091 0.029 0.085 0.091 

0.4 0.331 0.167 0.089 0.166 0.169 

0.5 0.392 0.245 0.149 0.247 0.248 

0.6 0.438 0.319 0.216 0.318 0.321 

0.7 0.479 0.363 0.274 0.363 0.365 

0.8 0.513 0.409 0.322 0.410 0.408 

0.9 0.546 0.441 0.360 0.441 0.442 

1.0 0.571 0.475 0.399 0.475 0.475 

1.1 0.585 0.509 0.430 0.500 0.509 

1.2 0.608 0.527 0.462 0.527 0.527 

1.3 0.622 0.549 0.479 0.548 0.548 

1.4 0.639 0.569 0.508 0.568 0.568 

1.5 0.650 0.588 0.523 0.586 0.587 
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Table 5.   fp  corresponding to different  and  with =1.47 for a 2:1 slopev FS   

 

v  0.5  0.0  0.5  

0.1 0.000 0.000 0.000 

0.2 0.015 0.004 0.000 

0.3 0.091 0.051 0.010 

0.4 0.167 0.118 0.047 

0.5 0.245 0.199 0.116 

0.6 0.319 0.282 0.208 

0.7 0.363 0.334 0.272 

0.8 0.409 0.389 0.345 

0.9 0.441 0.428 0.399 

1.0 0.475 0.469 0.457 

1.1 0.509 0.512 0.516 

1.2 0.527 0.533 0.547 

1.3 0.549 0.560 0.584 

1.4 0.569 0.584 0.618 

1.5 0.588 0.607 0.649 
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Fig. 1. Slope profile 

Fig. 2. Influence of the spatial correlation length in RFEM analysis 

Fig. 3. Limit state functions for a 2:1 slope and  contours in standard normal space 

(v=0.5, 0.5) 

Fig. 4. Limit state functions for a 2:1 slope and tangent  contours in real space 

(v=0.5, 0.5) 

Fig. 5. Influence of v on the limit state function for a 2:1 slope with 1.47FS  (based on 

the means) in standard normal space ( 0.5) 

Fig. 6. Influence of slope inclination on the limit state functions for a slope with 

1.47FS  (based on the means) in standard normal space (v=0.5, 0.5) 

Fig. 7. Influence of  on  fp  for a 2:1 slope with 1.47FS (based on the means) in 

standard normal space when 0.5fp  and 0.5v ( g  is performance function). 

Fig. 8. Influence of  on  fp  for a 2:1 slope with 1.47FS (based on the means) in 

standard normal space when 0.5fp  and 1.5v ( g  is performance function). 

Fig. 9.  RFEM results giving  fp  of a 3:1 undrained slope with 1.47FS (based on 

the mean)  

Fig. 10. RFEM results giving  fp  of a 2:1 undrained slope with 1.47FS (based on the 

mean)  
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Fig. 11. RFEM results giving  fp  of a 1:1 undrained slope with 1.47FS (based on the 

mean)  

Fig. 12. critv  vs. 
uC  for different inclinations of an undrained slope with 1.47FS  

(based on the mean)  

Fig. 13. critv  vs. 
uC  for different FS  values (based on the mean) for a 2:1 undrained 

slope  

Fig. 14. RFEM results giving  fp  of a 3:1 drained slope with 1.47FS (based on the 

means) 0.5  

Fig. 15.  RFEM results giving  fp  of a 2:1 drained slope with 1.47FS (based on the 

means) 0.5  

Fig. 16.  RFEM results giving  fp  of a 1:1 drained slope with 1.47FS (based on the 

means) 0.5  

Fig. 17. critv  vs.  for different slope inclinations for a drained slope with 1.47FS  

(based on the means) 0.5  

Fig. 18. critv  vs.  for different FS  values (based on the means) for a 2:1 drained 

slope 0.5   

Fig. 19. critv  vs.  for different  values for a 2:1 drained slope with 1.47FS  

(based on the means). 
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