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Abstract 

 
The present generation of international structural steel design codes treat material 
nonlinearity through simplified elastic-plastic or rigid-plastic material models. However, 
the actual stress-strain response of structural steel is more complex than this and features, 
in particular, strain hardening. Strain hardening refers to the increase in strength beyond 
yield as a result of plastic deformation. The influence of strain hardening on the 
behaviour and design of steel structures is examined in this study both through 
experimentation and the analysis of existing data, and a method to exploit the additional 
capacity that arises is outlined. Both determinate and indeterminate structures are 
considered. The proposed design method, referred to as the Continuous Strength Method 
(CSM), is a deformation based design approach employing a continuous relationship 
between cross-section slenderness and cross-section deformation capacity, together with 
a material model that allows for strain hardening. Comparisons are made between test 
results generated as part of the present study and collected from existing studies, and the 
predictions from the CSM and Eurocode 3 (EC3). For all cases considered, the 
Continuous Strength Method, through a rational exploitation of strain hardening, offers a 
more accurate prediction of observed physical behaviour. 
 
Keywords: Bending; Continuous Strength Method; Continuous beams; Deformation 
capacity; Indeterminate structures; Plastic design; Portal frames; Steel structures; Strain 
hardening. 



Notation 
 
A  Cross-sectional area 
b  Section width 
COV  Coefficient of variation 
CSM Continuous Strength Method 
DSM  Direct Strength Method 
E  Young's modulus 
Esh  Strain hardening modulus 
fcr  Elastic buckling stress 
fcsm  CSM limiting stress 
fy  Material yield strength 
Fcoll Plastic collapse load 
Fcsm Collapse load predicted by CSM 
FEC3 Collapse load predicted by EC3 
Fu Test collapse load 
h  Section depth 
hi  Section depth at hinge i 
hw  Web height between flanges 
L  Length 
Mel  Elastic moment capacity 
Mpl  Plastic moment capacity 
Mi  Moment at hinge i 
Mcsm  Bending resistance predicted by the CSM 
MEC3  Bending resistance predicted by EC3 
Mu  Ultimate test moment capacity 
N  Axial load 
Ncoll  Plastic collapse load 
Ncsm  Compression resistance 
NEC3  Compression resistance 
Nu  Ultimate test load 
Ny  Yield load 
ri  Internal corner radius 
RHS  Rectangular hollow section 
SHS  Square hollow section 
t  Thickness 
tf  Flange thickness 
tw  Web thickness 
v Vertical beam displacement 
vmax Maximum vertical beam displacement 
Wel  Elastic section modulus 
Wpl  Plastic section modulus 
x Distance along beam 
α  Hinge demand at hinge i 
αmax  Hinge demand at critical hinge 
δ End shortening/virtual displacement 



δu  End shortening at ultimate load 
εcsm CSM limiting strain 
εlb  Local buckling strain 
εy  Yield strain 
λp Plate slenderness 
θ Rotation 
θpl Elastic rotation at Mpl 
θi Rotation at hinge i 
θmax  Rotation at critical hinge 
 
1. Introduction 
 
Strain hardening refers to the increase in strength of metallic materials beyond yield as a 
result of plastic deformation. This increase in strength is not systematically utilised in 
current international steel design codes, though allowance is made for the spread of 
plasticity throughout cross-sections (i.e. use of the plastic moment capacity) and 
redistribution of moments within an indeterminate structural frame until a collapse 
mechanism forms (i.e. plastic design). Both of these design techniques are synonymous 
with simplified elastic-plastic and rigid-plastic material modelling. This limits the 
resistance of cross-sections in compression to the yield load Ny (defined as the cross-
sectional area A, multiplied by the material yield strength fy) and the resistance of cross-
sections in bending to the plastic moment capacity Mpl (defined as the plastic section 
modulus Wpl multiplied by fy).  
 
The influence of strain hardening on the load carrying capacity of structural steel 
elements is investigated in the present study through laboratory testing and analysis of 
existing structural performance data from the literature. Consideration is first given to the 
behaviour of determinate structures, such as simple beams and columns, before 
proceeding to study the response of indeterminate structures, including continuous beams 
and frames. A new design approach, the Continuous Strength Method (CSM), has been 
developed that offers a systematic means of utilising strain hardening, based on cross-
section deformation capacity.1 The method allows the attainment of compression 
resistances greater than the yield load as well as bending resistances beyond the plastic 
moment capacity, resulting in better prediction of observed structural behaviour. In this 
paper, a brief account of the experimental study is reported, development and extension 
of the Continuous Strength Method is described and comparisons with test results and 
current design practice are made. 
 
2. Experimental Study 
 
2.1. Introduction 
 
An experimental programme comprising tensile coupon tests, measurements of geometric 
imperfections and residual stresses, 20 stub column tests, 6 simple beam tests and 12 
continuous beam tests has been carried out at Imperial College London, to investigate the 
structural behaviour of determinate and indeterminate structures. Both hot-rolled (S355) 



and cold-formed (S235) hollow sections have been examined and the tested specimens 
were generally of stocky proportions in order to suppress premature local buckling and 
assess the influence of stain hardening. A summary of the experiments performed and the 
key results obtained is presented herein, while a more detailed account of the testing 
programme is reported in Ref. 2. 
 
2.2. Material and stub column tests 
 
Tensile coupon tests on material extracted from the flat regions of each of the examined 
cross-sections were performed to determine the basic engineering stress-strain 
characteristics of the material. The obtained yield strengths (taken as the 0.2% proof 
strengths for cold-formed material) are presented in Table 1, and have been used in the 
analysis of the member test results. Full details of the coupon tests have been reported in 
Ref. 2.  A total of 20 stub column tests were carried out, two repeated tests on each 
section size denoted 1 and 2 in Table 1.  
 

Table 1. Geometric properties and ultimate load carrying capacities of the stub columns 

Stub column specimen L 
mm 

h 
mm 

b 
mm 

t 
mm 

ri 

mm 
A 

mm2 
fy 

N/mm2 
Nu 

kN 

SHS 100×100×4-HR1 405.2 100.01 100.89 4.09 2.75 1543 488 706 

SHS 100×100×4-HR2 405.2 99.83 100.84 4.11 2.75 1548 488 707 

SHS 100×100×4-CF1 405.0 100.55 100.56 3.59 6.38 1342 482 660 

SHS 100×100×4-CF2 404.8 100.75 100.68 3.61 6.13 1353 482 663 

SHS 60×60×3-HR1 245.0 60.21 60.18 3.35 2.38 739 449 353 

SHS 60×60×3-HR2 245.1 60.22 60.23 3.38 2.44 745 449 363 

SHS 60×60×3-CF1 245.1 60.30 60.14 2.78 3.75 614 361 249 

SHS 60×60×3-CF2 245.1 60.17 60.17 2.79 3.88 615 361 250 

RHS 60×40×4-HR1 245.0 59.84 40.09 3.83 1.88 682 468 344 

RHS 60×40×4-HR2 244.9 59.72 40.17 3.83 1.94 681 468 346 

RHS 60×40×4-CF1 244.9 60.09 40.07 3.95 2.19 701 400 370 

RHS 60×40×4-CF2 244.9 60.06 40.00 3.97 1.94 705 400 370 

SHS 40×40×4-HR1 165.2 40.00 39.94 3.91 2.06 537 496 333 

SHS 40×40×4-HR2 165.1 40.05 39.94 3.91 2.25 536 496 335 

SHS 40×40×4-CF1 165.1 40.36 40.32 3.76 3.13 518 410 256 

SHS 40×40×4-CF2 165.2 40.32 40.31 3.79 3.06 522 410 256 

SHS 40×40×3-HR1 165.0 40.25 40.23 3.05 2.13 435 504 263 

SHS 40×40×3-HR2 165.2 40.16 40.10 3.05 2.00 434 504 257 

SHS 40×40×3-CF1 165.2 40.12 40.13 2.76 2.56 394 451 224 

SHS 40×40×3-CF2 165.1 40.04 40.07 2.75 2.69 391 451 230 

 
The specimen designation begins with the section size, e.g. SHS 100×100×4, followed by 
the production route - HR for hot-rolled and CR for cold-formed, and finally the test 
number - 1 or 2. The geometric properties and ultimate load carrying capacities are also 



reported in Table 1, in which L is the specimen length, b and h are the outer cross-section 
width and depth dimensions, t is the section thickness, ri is the internal corner radius, A is 
the cross-sectional area and Nu is the ultimate test load. 
 
Typical normalised load-end shortening responses for both hot-rolled and cold-formed 
sections (SHS 40×40×3-HR1 and SHS 40×40×3-CF1) are shown in Fig. 1. On the 
vertical axis, the axial load N has been normalised by the yield load Afy and on the 
horizontal axis, the end shortening δ of the test specimens has been normalised by the 
stub column length L. The influence of strain hardening, characterised by load-carrying 
capacities in excess of the yield load (i.e. the Eurocode resistance for stocky sections), 
may be seen for both the hot-rolled and cold-formed sections. The hot-rolled sections 
exhibit a yield plateau before the commencement of strain hardening, while the cold-
formed sections display a more rounded response. For the cold-formed sections, part of 
the additional capacity beyond the yield load may be attributed to the enhanced strength 
in the corner regions of the sections, arising from high localised plastic deformations 
during production. Corner strength enhancements were measured as part of the 
experimental programme through tensile testing of corner coupons. For the cold-formed 
SHS shown in Fig. 1, the yield strength of the corner material was 534 N/mm2, resulting 
in an increased yield load of the section (based on weighted average calculations) of 6%. 
 
 

 

 

 

 

 

 

 

 

Fig. 1. Typical normalised load-end shortening graphs from stub column tests 

The results obtained from the stub column tests reported above have been combined with 
those from previous studies and analysed in Section 3 of this paper.  
 
2.3. Simple beam tests 
 
A total of 6 simply supported beam tests were conducted in three-point bending to obtain 
the basic flexural response characteristics and ultimate moment capacities of hot-rolled 
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and cold-formed sections. Full details of the tests are reported in Ref. 2, while a summary 
of the tests is presented in Table 2, in which Wpl is the plastic section modulus, Mpl is the 
plastic moment capacity Wpl fy and Mu is the ultimate test moment capacity. Note that all 
of the test specimens are Class 1 or 2 according to Eurocode 3. Typical normalised 
moment-rotation curves for hot-rolled and cold-formed sections RHS 60×40×4-HR and 
RHS 60×40×4-CF are shown in Fig. 2. On the vertical axis, the moment M has been 
normalised by the plastic moment capacity Mpl, and on the horizontal axis, the central 
rotation θ (calculated as the sum of the end rotations) has been normalised by the elastic 
rotation at the plastic moment θpl.  
 

Table 2. Summary of simple beam tests 

Simple beam specimen h 
mm 

b 
mm 

t 
mm 

ri 

mm 
Wpl 

mm3 
Mpl 

kNm 
Mu 

kNm 

SHS 40×40×4-HR 39.75 40.00 3.91 2.16 7080 3.51 3.84 

SHS 40×40×4-CF 40.31 40.42 3.70 3.10 6900 2.83 3.61 

SHS 40×40×3-HR 39.87 40.20 3.05 2.07 5900 2.97 3.44 

SHS 40×40×3-CF 40.16 40.11 2.80 2.63 5500 2.48 3.09 

RHS 60×40×4-HR 60.09 40.24 3.90 1.91 13400 6.27 7.14 

RHS 60×40×4-CF 60.04 40.09 3.93 2.07 13400 5.37 7.59 

 
Similar strain hardening characteristics to those seen in the stub column tests may be 
observed, with ultimate test moments in excess of the plastic moment capacity. The 
results from the beam tests are analysed in Section 3, in conjunction with data obtained 
from existing test programmes. 
 
 

 

 

 

 

 

 

 

 

Fig. 2. Typical normalised moment-rotation curves from simple beam tests 
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2.4. Continuous beam tests 
 
A total of 12 two-span continuous beam tests were carried out to investigate the structural 
response and strain hardening characteristics of indeterminate steel structures. The same 
6 nominal section sizes as tested in the simply supported setup were analysed. Tests were 
conducted in two configurations, as indicated by the final number in the specimen 
designation - in configuration 1, equal point loads were applied centrally in the two spans 
(denoted 1/2 span in Table 3), while in configuration 2, equal point loads were applied at 
a third of each span length from the central support (denoted 1/3 span in Table 3). The 
two different loading positions were employed to vary the load level between the 
formation of the first plastic hinge and the final collapse mechanism, which also creates 
differing rotation demands on the first plastic hinge. The test specimen geometries and 
key results are summarised in Table 3, where Fu refers to the value of total load at 
collapse (i.e. the sum of the two point loads). Further details of the continuous beam tests 
are reported in Ref. 2.  
 

Table 3. Summary of two-span continuous beam tests 

Continuous beam specimen Configuration h 
mm 

b 
mm 

t 
mm 

ri 

mm 
Wpl 

mm3 
Fu 

kN 

RHS 60×40×4-HR1 1/2 span 60.09 40.27 3.85 1.91 13300 78.1 

SHS 40×40×4-HR1 1/2 span 39.79 39.98 3.85 2.16 7010 44.6 

SHS 40×40×3-HR1 1/2 span 39.90 40.22 3.01 2.07 5850 38.1 

RHS 60×40×4-CF1a 1/2 span 60.14 40.20 3.89 2.07 13400 83.4 

RHS 60×40×4-CF1b 1/2 span 60.15 40.08 3.87 2.07 13300 83.3 

SHS 40×40×4-CF1 1/2 span 40.37 40.36 3.72 3.10 6930 40.6 

SHS 40×40×3-CF1 1/2 span 40.08 40.20 2.72 2.63 5370 34.2 

RHS 60×40×4-HR2 1/3 span 60.06 40.33 3.82 1.91 13200 98.4 

SHS 40×40×4-HR2 1/3 span 39.93 39.78 3.90 2.16 7090 55.2 

SHS 40×40×3-HR2 1/3 span 40.21 39.91 3.02 2.07 5890 49.0 

SHS 40×40×4-CF2 1/3 span 40.43 40.36 3.71 3.10 6930 51.6 

SHS 40×40×3-CF2 1/3 span 40.12 40.14 2.76 2.63 5430 42.3 

 
Typical normalised load-end rotation graphs for hot-rolled and cold-formed specimens 
RHS 60×40×4-HR1 and RHS 60×40×4-CF1a are shown in Fig. 3 for the 1/2 span loading 
configuration. On the vertical axis, the test load F has been normalised by the calculated 
plastic collapse load Fcoll for the continuous beam, and on the horizontal axis is the end 
rotation θ (in radians). For the continuous beams, strain hardening may be seen to result 
in collapse loads greater than those predicted by traditional plastic methods. More 
detailed analysis of the results of the continuous beam tests and comparisons with 
different design approaches are presented in Section 3 of this paper. 
 
 



 

 

 

 

 

 

 

Fig. 3. Normalised load-end rotation curves from continuous beam tests 

3. The Continuous Strength Method (CSM) 
 
3.1. Introduction 
 
The influence of strain hardening on the capacity of structural steel members has been 
illustrated through the experiments presented in Section 2 of this paper. The results have 
shown that the limiting resistances adopted in present design practice of the yield load in 
compression for stub columns, the plastic moment capacity in bending for determinate 
structures and the plastic collapse load for indeterminate structures are conservative in 
the case of stocky sections. The ability of a cross-section to sustain increased loading and 
indeed deform into the strain hardening regime, is limited by the effects of local 
buckling. Susceptibility to local buckling is currently assessed by means of cross-section 
classification, where structural cross-sections are assigned to discrete behavioural classes 
depending on the slenderness of the constituent elements. The Continuous Strength 
Method1 is an alternative approach to calculating cross-section resistance, which is based 
on a continuous relationship between cross-section slenderness and deformation capacity 
and a rational exploitation of strain hardening. Development of the method for both 
determinate and indeterminate structures is described below. 
 
3.2. CSM for determinate structures 
 
The CSM recognises that the resistance of structural cross-sections is a continuous 
function of their deformation capacity, as controlled by the slenderness (and hence 
propensity to local buckling) of the constituent plate elements. The method employs a 
continuous base curve (Fig. 4), defining the relationship between cross-section 
slenderness and cross-section deformation capacity, together with a material model that 
allows for the influence of strain hardening (Fig. 5). The CSM currently applies only to 
fully effective (i.e. non-slender) sections, though extension of the method to allow for 
partial plastification of slender sections is under consideration. Determination of cross-
section capacities in compression and bending, incorporating recent developments to the 
method is summarised in the following sub-sections. 
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3.2.1 Cross-section compression resistance 
 
Within the Continuous Strength Method, cross-section slenderness is defined through Eq. 
(3.1) by the plate slenderness of the most slender constituent element in the section: 
 

 (3.1) 

 
where fy is the material yield strength and fcr is the elastic buckling stress, taking due 
account of the element support conditions and the applied stress distribution as set out in 
EN 1993-1-53. Alternatively, as in the Direct Strength Method (DSM)4, the slenderness 
of the full cross-section rather than that of the most slender constituent element may be 
employed. This approach has been found to offer modest improvements in the accuracy 
of the method for the sections considered herein (I sections, SHS and RHS); the benefits 
are more significant in the case of slender sections with more complex geometries where 
element interaction and the influence on the elastic buckling behaviour is more 
pronounced. Having established the cross-section slenderness, the corresponding 
normalised deformation capacity of the cross-section εcsm/εy, referred to as the strain ratio, 
is then obtained through the base curve given by Eq. (3.2) and shown in Fig. 4. 
 

 

(3.2) 

in which εy=fy /E is the yield strain of the material, E is the Young's modulus, and εcsm is 
the CSM limiting strain of the section. The base curve Eq. (3.2) was generated as 
described in Ref. 1 by means of stub column test data, including those described herein 
together with further data collected from previous studies5-10. In interpreting the test data, 
for stocky sections, where the ultimate load Nu is greater than the yield load Ny, the CSM 
limiting strain εcsm is based on the local buckling strain εlb=δu /L, defined as the end 
shortening at ultimate load δu normalised by the stub column length L.  
 
For materials that exhibit a well defined yield stress, such as hot-rolled sections, the 
strain ratio εcsm/εy is given by Eqn. (3.3). 
 

 
(3.3) 

 
For materials that exhibit a more rounded, non-linear stress-strain response, such as with 
cold-formed sections, the strain ratio involves the subtraction of the plastic strain at the 
0.2% proof stress (i.e. 0.2%) as in Eq. (3.4).  
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Fig. 4. Base curve – relationship between strain ratio and slenderness 
 

For slender sections (Nu < Ny), where the response is influenced by elastic post-buckling 
behaviour, the strain ratio εcsm/εy is defined as the ratio of the ultimate load Nu to the yield 
load Ny as given by Eq. (3.5).  
 

 
(3.5) 

 
Since slender sections fail below their yield load, where stress is proportional to strain, 
adoption of Eq. (3.5) yields a normalised relationship between deformation capacity and 
slenderness that is similar to that between strength and slenderness given by the familiar 
Winter curve. Following recent developments, the base curve defined by Eq. (3.2) now 
differs from that presented previously1 due to: (1) Availability and inclusion of further 
test data2,5,7-10 upon which to establish the curve; (2) Element slenderness is defined using 
flat plate widths, in line with EN 1993-1-111, rather than centreline dimensions; (3) 
Applicability of the method has been limited to sections with slenderness no greater than 
0.748, with more slender sections being covered by the existing effective width3 or Direct 
Strength Methods; (4) A limit of 15 has been placed on the strain ratio, which 
corresponds to the material ductility requirement expressed in EN 1993-1-111; (5) 
Plotting of test data points accounts for element interaction by using the slenderness of 
the complete section, calculated by means of Ref. 12, rather than that of the most slender 
element. Having established the strain ratio of the section, the CSM limiting stress fcsm is 
determined directly from the strain hardening material model shown in Fig. 5 which 
shows the adopted bi-linear, elastic-linear hardening material model, with strain 
hardening slope Esh=E/100 as recommended in EN 1993-1-53.  
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Fig. 5. Bi-linear stress-strain material model 

Finally, the cross-section compression resistance Ncsm is given by Eq. (3.6) as the product 
of the gross cross-section area A and the limiting stress fcsm. 
 

 (3.6) 
 
where fcsm is determined from the strain hardening material model given by Eq. (3.7): 
 

 (3.7) 

 
While a strain hardening modulus Esh of E/100 has been adopted for all section types in 
the current study, this value has been found to be conservative for cold-formed sections, 
partly due to the influence of the enhanced strength at corner regions, and a value of E/50 
may be acceptable. Further investigation is underway in this area. 
 
3.2.2. Cross-section bending resistance 
 
Assuming plane sections remain plane and normal to the neutral axis in bending, the 
corresponding linear strain and bi-linear stress distributions for one half of a symmetric 
section is shown in Fig. 6, this represents the major axis with a cross-section depth of h. 
A cross-section where the strain ratio εcsm/εy≥1 implies the limiting stress fcsm is equal to 
or has exceeded the yield stress fy , hence the cross-section has met or exceeded its elastic 
moment capacity Mel.  
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Fig. 6. Stress distribution geometry from linear strain assumption for εcsm/εy≥1 
 
From Fig. 6, a general expression for moment capacity Mcsm, in terms of the elastic 
section modulus Wel, plastic section modulus Wpl  and an additional modulus Ww, is given 
by: 
 

 (3.8) 
 
With the distance from the neutral axis to the point of first yield as Y=0.5h(εcsm /εy )-1 and 
the expression for the limiting stress fcsm established from Eq. (3.7), stresses f1 and f2 are: 
 

 
(3.9) 

 
Substituting f1 and f2 into Eq. (3.8) and normalising by Mpl gives: 
 

 
(3.10) 
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The term Ww f2 in Eq. (3.8), represents the moment Mf2 associated with the triangular 
shaped stress block linked with stress f2 for y≤Y (see Fig. 6).  
 

  
 
 

(3.11) 

 
The integral is only evaluated up to y=Y, hence the associated area is termed AY; the 
function g(y) represents the stress distribution normalised to f2. As the stress distribution 
and section geometry is relatively simple, discretising into rectangles and triangles is 
suitable. For box and I sections bending about the y-y axis, Y will generally lie within the 
web of practical sections, giving: 
 

 
(3.12) 

 
For low strain ratios, Y may enter the flanges leading to: 
  

 
 
 
 
 

(3.13) 

 

Fig. 7. Section geometry 
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The section geometry used for the derivation of Ww is defined in Fig. 7. Note that the 
equivalent web thickness tw for box sections is twice the wall thickness. Analytic 
expressions have also been developed for circular hollow sections, and I/box sections 
bending about the minor axis. The generated expressions are exact, but are rather lengthy 
for practical design due in particular, to the Ww term. 
 
By inspection it can be seen from Fig. 6, that when εcsm/εy=1, the triangular stress block 
for f2 overlaps with that of f1, hence Ww=Wpl -Wel. Inserting this into Eq. (3.10) at a strain 
ratio of 1 shows that the overall expression collapses on the right hand side to Mel /Mpl. 
From Eq. (3.12) and Eq. (3.13), the decay of Ww, with respect to strain ratio can be shown 
to be conservatively taken as: 
 

 
(3.14) 

 
Combining with Eq. (3.10), the general moment equation can be expressed with only 
three ratios, the ratio of strain hardening modulus to Young's modulus Esh /E, Wel /Wpl and 
the strain ratio εcsm /εy, as given by Eq. (3.15): 
 

 

(3.15) 

By noting that in general Esh /E<<1, the (1-Esh /E) term can be conservatively (as the final 
term is subtractive) taken as 1, and the rest of the equation forced through Mel at εcsm /εy=1 
by Eq. (3.16). 
 

 
(3.16) 

 
Fig. 8 shows, for a typical I section beam, the normalised moment prediction M/Mpl 
versus strain ratio for the design expression Eq. (3.16), the exact analytical equation Eq. 
(3.10) and a previous model proposed by Kemp et al13, that also allows capacities beyond 
Mpl due to strain hardening. The simple design expression may be seen to closely follow 
the exact solution, tending towards it for increasing strain ratio where Ww is less 
influential. 
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Fig. 8. Analytical, design and Kemp et al relationships between normalised moment capacity and strain ratio 

3.2.3. Comparisons between test data and design models 
 
Comparison of the CSM predictions with the results of stub column and simple beam 
tests are shown in Fig. 9 and Fig. 10 respectively, in which the Eurocode design model is 
also depicted. The presented test data (comprising cruciforms, I sections and square and 
rectangular hollow sections) were obtained from Refs 2,5-10,14 and 15. In Fig. 10, the 
CSM design expression Eq. (3.16) is displayed for Esh /E=1/100 and a shape factor of 
1.25 which is representative of the data set. The maximum strain ratio of εcsm /εy=15, 
gives a cap to Mu /Mpl for slenderness values below 0.322. 



Fig. 9. Stub column test data and comparison with design models 
 
Numerical comparisons, including the mean and coefficient of variation (COV), of the 
CSM and Eurocode predictions with test data are presented in Tables 4 and 5. The results 
show that the CSM offers more accurate prediction of the test data and a reduction in 
scatter. 
 

Table 4. Comparison of the CSM and Eurocode methods with stub column test results 
 

No. of tests: 74 NEC3 / Nu Ncsm / Nu Ncsm / NEC3 
Mean 0.889 0.947 1.07 
COV   0.108 0.078 - 
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Fig. 10. Simple beam test data and comparison with design models 
 
 

Table 5. Comparison of the CSM and Eurocode methods with bending test results 
 

No. of tests: 88 MEC3 / Mu Mcsm / Mu Mcsm / MEC3 
Mean 0. 865 0. 915 1.06 
COV   0.076 0.069 - 
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3.3. CSM for indeterminate structures 
 
3.3.1 Introduction 
 
Indeterminate steel structures are generally designed using traditional plastic analysis 
methods, which are based on the formation and subsequent rotation of plastic hinges at 
their full plastic moment capacity. The formation of each plastic hinge causes a 
progressive reduction in stiffness of the structure until the final hinge forms resulting in a 
collapse mechanism. In reality though, plastic hinges do not rotate at a constant moment 
equal to Mpl due to the occurrence of strain hardening, with stockier sections often 
achieving resistances significantly beyond those predicted by current design approaches. 
The importance of strain hardening in indeterminate structures has been described by 
Ref. 16, which observed that enhanced capacity could be attained in steel frames by 
considering strain hardening provided local and lateral-torsional buckling were 
eliminated. 
 
3.3.2 Design approach 
 
A new design approach that combines features of the traditional plastic design method 
and the CSM has been developed to determine the collapse loads of indeterminate steel 
structures, with due allowance for the influence of strain hardening. For a given collapse 
mechanism, the critical plastic hinge is first identified as the one that undergoes the 
greatest deformation demand relative to the deformation capacity of the cross-section at 
that location. The demands at other plastic hinge locations are then assigned relative to 
that of the critical hinge. In cases of constant section sizes, the critical hinge is simply the 
one that undergoes maximum rotation. Based on the resulting demands, the 
corresponding bending moment diagram at collapse is determined. For plastic design the 
strain ratio at any hinge i should satisfy Eq. (3.17). 
 

 
(3.17) 

 
where εp /εy is the plastic strain ratio, which represents the strain ratio when Mcsm /Mpl =1 
from Eq. (3.16). For typical sections this can be taken as 3.0 for I sections and 3.6 for box 
sections bending about their major axis. Thus a hinge is defined as a cross-section that 
has reached Mpl and rotates at a reduced flexural stiffness of Esh I until Mcsm is reached. 
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Fig. 11. Plastic collapse mechanism for two-span continuous beam 
 
The key design steps, applied for illustration purposes to the two-span continuous beam 
shown in Fig. 11, where θ1 and θ2 are plastic hinge rotations and δ is a virtual 
displacement, are summarised as followed: 
 
(1) Identify the locations of the plastic hinges in a manner similar to traditional plastic 
design and determine the hinge rotations θi. 
 
(2) Based on each hinge rotation θi, section height hi and strain ratio (εcsm /εy)i calculate 
the corresponding hinge demands αi from Eq. (3.18). 
 

 

(3.18) 

 
The critical hinge is identified as the one with the highest hinge demand αmax=max{αi}, 
with the strain ratio at this hinge now labelled (εcsm /εy)max.  
 
(3) Calculate the corresponding bending moments Mi at the plastic hinges from Eq. (3.16) 
using (εcsm /εy)hinge,i as defined in Eq. (3.19). 
 

 

(3.19) 

(4) Produce the collapse bending moment diagram as shown in Fig. 12. Note that in this 
case the two hinges forming in the spans undergo the same rotation θ2, giving equal 
moments M2, the internal support rotation and moment being θ1 and M1 
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Fig. 12. Collapse bending moment diagram 
 
(5) Formulate the expression balancing external work done by the applied loads Fj acting 
through virtual displacements δj, to that of the internal work done by the hinges Miθi. 

 
(3.20) 

Satisfaction of the three conditions of equilibrium, mechanism and cross-section capacity 
remains a strict requirement in defining the unique plastic collapse load of a structure 
within the Continuous Strength Method. Thus the collapse bending moment diagram 
must be in equilibrium with the applied loads and satisfy M≤Mcsm at each section 
throughout, and there should be a suitable number of hinges for collapse. The key 
diversion from traditional plastic analysis is in the cross-section capacity condition, 
where the moment capacity Mi may be taken to Mcsm for each hinge in place of Mpl.  
 
It is important to note that, as with traditional plastic design, the method is based on the 
rigid beam-hinge geometry (which assumes no curvature between the hinges), with all 
deformation localised at discrete points. This ignores any elastic deformation of the 
members, and does not include the fact that the material adjacent to the assumed hinge 
location will have yielded if M≥Mel, giving a flexural stiffness between EI and EshI, 
leading to a hinge zone. 
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Fig. 13. Assumed plastic collapse vertical displacement and finite element model 
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This assumed collapse geometry is shown in Fig. 13 against the displacement plot from 
an ABAQUS finite element analysis (FEA) simulation of beam RHS 60×40×4-HR1, at 
the ultimate test load Fu using all experimentally recorded geometric and material data. 
On the vertical axis is v/vmax, the vertical displacement normalised by its maximum value 
and on the horizontal axis, x/L is the normalised position along the length of the 
continuous beam. The hinge spreading effects as well as the presence of elastic 
deformations, act to smooth out the beam displacement profile. The collapse shape made 
up of straight lines between hinges, proves to be a reasonable assumption. The applied 
load–end rotation plot is shown in Fig. 14 alongside the test measurements and traditional 
plastic analysis approach. The FEA curve, which includes the CSM material model, 
shows an improved conformity to the test data at an increased load carrying capacity over 
traditional plastic design. The complete plastic response of an indeterminate structure can 
be solved by computer analysis software that can incorporate the CSM strain hardening 
effects into the model, most easily accounted for by inclusion of the bi-linear material 
model as highlighted in Fig. 5. 

 
Fig. 14. Load-rotation plot for RHS 60×40×4-HR1 

 
The maximum capacity is reached when ε=εcsm (and consequently f=fcsm and M=Mcsm) 
anywhere along the beam. Note that the maximum load obtained from this approach may 
be marginally different to the collapse load obtained from Eq. (3.20) due to the difference 
between the assumed and actual geometries as highlighted in Fig. 13; for RHS 60×40×4-
HR1 this difference was 1.5%. 
 
3.3.3. Comparison of continuous beam test results with design models 
 
A total of 12 two-span continuous beam tests on steel SHS and RHS were conducted as 
part of the present study; two configurations were considered; in configuration 1, the 
loads were applied centrally between the supports (i.e. L1=L2 in Fig. 11), while in 
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configuration 2, loads were applied closer to the central support such that L1=2L2. 
Comparisons of the results of the continuous beam tests with those obtained from 
traditional plastic analysis and the CSM are shown in Table 6. 
 

Table 6. Comparison of continuous beam test results with design methods 
 

No. of tests: 12 FEC3 / Fu Fcsm / Fu Fcsm / FEC3 
Mean 0. 799 0. 882 1.10 
COV   0.078 0.077 - 

 
On average, for configuration 1, M1=M2=1.11Mpl whereas for configuration 2 the 
average M2 is reduced to 1.08Mpl. The Continuous Strength Method may be seen to 
provide a more accurate prediction of the test behaviour, with an average increase in 
capacity of 10% over traditional plastic methods. 
 
3.3.4. Comparison of a portal frame test result with design models 
 
Experimental results on full scale steel portal frames are relatively scarce, though one 
such test has been reported by Ref. 17. The pitched portal frame was constructed from I 
sections with following properties: fy=272 N/mm2, Mel=23.2 kNm and Mpl=27.4 kNm. 
The collapse load of the frame was predicted using traditional plastic analysis and the 
Continuous Strength Method. The collapse loads, as given in Table 7, indicate that the 
CSM provides a more accurate prediction of the test response, with a 9% increase in 
capacity over traditional plastic analysis. Further validation of the Continuous Strength 
Method, based on numerically generated structural performance data is underway. 
 

Table 7. Comparison of portal frame test with design methods 
 

No. of tests: 1 FEC3 / Fu Fcsm / Fu Fcsm / FEC3 
 0. 860 0. 940 1.09 

 
4. Conclusions 
 
The importance of strain hardening in the response of determinate and indeterminate steel 
structures has been highlighted in this paper. It was shown both through experimentation 
and the analysis of existing test data, that the limiting resistances adopted in present 
design practice of the yield load in compression for stub columns, the plastic moment 
capacity in bending for determinate structures and the plastic collapse load for 
indeterminate structures are conservative in the case of stocky sections, due to the 
influence of strain hardening. Refinements and developments to the Continuous Strength 
Method, which offers a rational means of exploiting strain hardening in steel design, have 
been presented. Extension of the method to cover indeterminate structures, following the 
principles of traditional plastic analysis but allowing bending moments in excess of the 
plastic moment capacity, has also been proposed. Comparisons have been made against 
test results on stub columns, simple beams, continuous beams and a portal frame. These 



comparisons show that the CSM provides a more accurate prediction of test response and 
enhanced structural capacity over current design methods. 
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