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Abstract

Background: Tsetse flies occur in much of sub-Saharan Africa where they are vectors of trypanosomes that cause
human and animal African trypanosomosis. The sterile insect technique (SIT) is currently used to eliminate tsetse fly
populations in an area-wide integrated pest management (AW-IPM) context in Senegal and Ethiopia. Three Glossina

palpalis gambiensis strains [originating from Burkina Faso (BKF), Senegal (SEN) and an introgressed strain (SENbkf)]
were established and are now available for use in future AW-IPM programmes against trypanosomes in West Africa.
For each strain, knowledge of the environmental survival thresholds is essential to determine which of these strains
is best suited to a particular environment or ecosystem, and can therefore be used effectively in SIT programmes.

Methods: In this paper, we investigated the survival and fecundity of three G. p. gambiensis strains maintained
under various conditions: 25 °C and 40, 50, 60, and 75 % relative humidity (rH), 30 °C and 60 % rH and 35 °C and
60 % rH.

Results: The survival of the three strains was dependent on temperature only, and it was unaffected by changing
humidity within the tested range. The BKF strain survived temperatures above its optimum better than the SEN
strain. The SENbkf showed intermediate resistance to high temperatures. A temperature of about 32 °C was the
limit for survival for all strains. A rH ranging from 40 to 76 % had no effect on fecundity at 25–26 °C.

Conclusions: We discuss the implications of these results on tsetse SIT-based control programmes.

Keywords: Tsetse flies, Area-wide integrated pest management, Sterile insect technique, Mass-rearing, Survival,
Fecundity, Environmental conditions

Background

Tsetse flies are the cyclical vectors of human African try-

panosomoses (HAT) and African animal trypanoso-

moses (AAT), which are debilitating diseases affecting

humans (i.e. ‘sleeping sickness’) and livestock (i.e. ‘na-

gana’), respectively [1, 2]. The presence of tsetse flies im-

pairs the development of sustainable and productive

agricultural systems in over ten million km2 of sub-

Saharan Africa [3, 4] leading to potential losses in live-

stock and crop production estimated at USD 4750

million annually [5]. In this context, vector control is

considered an important component of the integrated

management of both HAT [6] and AAT [1, 7–10].

Glossina palpalis gambiensis is one of the most im-

portant vectors of trypanosomes in West Africa [11, 12].

Over the past decades, chemotherapy-based manage-

ment strategies of the disease has shown limitations

linked to the development of parasite-resistance to the

available trypanocidal drugs [13]. In addition, vector

control programmes relying on the use of insecticides

and that were not implemented following area-wide

principles [14] failed to show sustainable results, with

re-introduction of the flies from bordering infested areas

as a consequence [15]. The use of the sterile insect tech-

nique (SIT) within an area-wide integrated pests
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management (AW-IPM) approach [16] appears neces-

sary (at least in West Africa for this riverine species) to

achieve eradication of this insect vector [17]. Recently,

considerable efforts have been directed towards improv-

ing the application of this technique against G. p. gam-

biensis to support eradication programmes in Senegal

and other countries [18–24]. Indeed, previous work car-

ried out in Mali and Senegal showed that the Burkina

Faso (BKF) strain of G. p. gambiensis competes with G. p.

gambiensis populations from other countries [19, 25, 26],

thus indicating the potential of the BKF strain to be used

in eradication strategies of isolated populations of this spe-

cies in selected areas of West Africa such as the Niayes in

Senegal [10, 27].

Little is known, however, of the relationship between

tsetse flies and environmental factors such as

temperature and relative humidity (rH) [28, 29]. Previ-

ous research in this area has focused on the pupa stage

and, specifically, on impacts of environmental variability

on pupal water loss [30, 31], the effect of dehydration on

mortality and adult emergence [30] and metabolic re-

sponses [32]. Previous studies on adult tsetse flies were

conducted mostly on the morsitans group flies, and they

focused on temperature-dependent metabolic rate vari-

ation [33–36] and thermic tolerance [34, 37].

In nature, climatic parameters influence the spatial

and temporal distribution, abundance and behavior of

insects [17, 34, 38–41]. Although the BKF strain is com-

patible with strains from other countries [19], seasonal

variations within one country and between countries

could affect important components of fly competitive-

ness, i.e. mating performance and survival. High temper-

atures and low humidity are detrimental for the survival

of tsetse flies [28, 34, 37] and under such circumstances

flies will seek resting places with more favourable micro-

climatic conditions, i.e. higher humidity and lower

temperature [42].

In view of results obtained in field cage studies and

during pilot trial releases, it was decided to use the BKF

strain for release in the Senegal project. In spite of data

that indicated adequate compatibility and competitive-

ness of the BKF strain with the local Senegal popula-

tions, two new strains were developed to serve as

alternatives in case of failure of the BKF strain to per-

form in certain ecosystems of the Niayes. These two

strains were a G. p. gambiensis Senegal (SEN) strain that

originated from Pout/Sebikotane in the Niayes and an

introgressed (SENbkf) strain, obtained from crossing

BKF females with SEN males. Whilst the BKF strain had

been cultured for more than four decades, and was more

prolific than the newly created SEN strain [19], it was

hypothesized that a strain introgressed with the BKF

strain, adapted to an artificial mass-rearing environment

but maintaining most of the SEN genetic background,

may lead to better adaptation to the harsh environment

of the Niayes and, therefore, better performance in cer-

tain ecosystems when compared to the BKF strain. In

the Niayes area of Senegal, the ecology of G. p. gambien-

sis populations from which SEN was obtained is differ-

ent from that of other G. p. gambiensis populations that

thrive in riparian forests. In the Niayes, the habitat

favoured by G. p. gambiensis includes mainly mango and

citrus tree plantations, residual riparian thickets and

palm tree plantations, as the flies have adapted to this

man-made vegetation and strong anthropic pressures

[8, 17, 43]. Moreover, the combined use of markers

such as microsatellites and mitochondrial DNA and

wing morphometrics showed that the Niayes popula-

tion was completely isolated from the main tsetse belt

in West Africa [10, 27] and can thus be considered a

different ecotype or even sub-species [44].

While best environmental conditions for rearing the

BKF strain are 24–25 °C, 75 ± 5 % rH and 12 h:12 hrs

light (L): dark (D) regime [45–47], the optimal condi-

tions for the SEN and SENbkf strains remain unknown.

In view of the differences in environmental conditions

between regions, it is therefore crucial to determine

which strain would perform best in which particular

ecosystem.

Methods

Fly strains

Three strains of G. p. gambiensis were used in this study:

BKF, SEN and SENbkf. The fly material of the BKF and

SEN strains was derived from colonies maintained at the

Insect Pest Control Laboratory (IPCL) of the Joint FAO/

IAEA Programme of Nuclear Techniques in Food and

Agriculture, Seibersdorf, Austria and the SENbkf flies

were derived from a colony developed at the IPCL and

maintained at the Slovak Academy of Sciences (SAS),

Bratislava, Slovakia.

The BKF strain was established at Maisons-Alfort,

France in 1972 using material collected in Guinguette,

near Bobo-Dioulasso, Burkina Faso. It was transferred in

1975 to the Centre de Recherche sur les Trypanosomia-

ses Animales (CRTA), Burkina Faso [45, 47] [CRTA was

later renamed Centre International de Recherche-

Développement sur l’Elevage en zone Subhumide (CIR-

DES)]. In 2009, 8000 pupae of this colony were shipped

to the IPCL to establish a colony for research purposes

to support the eradication programme in the Niayes

[19, 21]. The IPCL colony provided seed material to

the SAS where a colony was likewise established to

supply additional pupae to the Senegal project.

The SEN strain was established at the IPCL from Sep-

tember 2009 to December 2010 from pupae obtained

from wild females collected in Pout and Sebikotane and

that were shipped weekly to the IPCL [19].
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The SENbkf strain was developed in 2010 at the IPCL

and then transferred to the SAS insectary. Initial crosses

were made between SEN males and BKF females and the

hybrid females were backcrossed 4 times with SEN

males. Flies of the 5th generation were then intercrossed

for rearing, initially at the IPCL and later at the SAS.

The strain is, therefore, genetically composed of 97 % of

the SEN genome and 3 % of the BKF genome, with

mitochondria from the BKF strain.

These colonies were maintained in both insectaries at

24–25 °C and 75 ± 5 % rH with a 12 L:12D cycle. The

flies were offered blood meals using an in vitro silicon

membrane feeding system using bovine blood (Svaman

SRA, Majava, Slovak Republic), frozen at -20 °C and ir-

radiated with 1 kGy in a commercial irradiator [48].

Preliminary data from source insectaries

The SENbkf and SEN strains were reared at the SAS and

IPCL, respectively, while the BKF strain was reared in

both institutes. Production data of the SENbkf and SEN

strains were collected from August 2012 to October

2014 and from January 2010 to September 2014, respect-

ively. Production data of the BKF strain were collected

from January 2011 to September 2014 at the IPCL and

from April 2010 to September 2014 at the SAS. The

weekly datasets of the 3 colonies were analyzed with col-

ony size, daily mortality and fecundity being the main

parameters.

Transport of pupae

Pupae of the SENbkf strain were transported from

the SAS to the IPCL, where pupae of the BKF and

SEN colonies were added and shipped with a courier

service to the Centre de Coopération Internationale

en Recherche Agronomique pour le Développement

(CIRAD), Montpellier, France. Pupae were placed in

Petri dishes with the top lid perforated with holes of

~ 2 mm diameter for aeration. The Petri dishes were

placed in a kraft paper air bubble envelope (TAP

Comebag® type B (11 × 21.5 cm)) to absorb mechan-

ical shocks during transport. Due to the small size of

the SENbkf colony, pupae were collected over 1 week

and pooled to constitute 1 batch while for BKF and

SEN strains, pupae of the same batch had the same

age. There were 2 batches for each shipment and for

each strain. On the day of shipment, pupae of batch

1 were 15 days old for the BKF and SEN strains and

9–15 days old for the SENbkf strain, and those of

batch 2 were 8 and 2–8 days old, respectively. Each

batch of the BKF/SEN and the SENbkf strains con-

tained on average 200 and 50 pupae, respectively.

Pupae were shipped on Tuesdays and were received

on Fridays.

Experimental conditions

Pupae were divided on receipt into glass Borel jars

(Dutscher Scientific, Essex, UK) of 3.5 cm diameter and

8.2 cm in height (40 pupae per tube) and kept in an in-

cubation room (25 ± 1 °C, 75 ± 5 % rH, 12 L:12D) until

emergence. Every morning (except Saturday and

Sunday), the emerged flies were transferred to Roubaud

cages and placed in climate controlled rooms with ad-

justable temperature, rH and photoperiod. A climate

chamber (Memmert HPP 110, GmbH & Co KG, Schwa-

bach, Germany) with an internal size 40 × 25 × 32 cm

was also used for the 26 °C, 40 % rH treatment. A data

logger (KistockKTH-350A, KIMO, Montpon, France)

was placed inside each room and was programmed to

display temperature and relative humidity every minute

and to record data every 5 min. The data loggers have a

resolution of 0.1 °C and 0.1 % rH and an accuracy of ±

0.3 °C and ± 1.5 % rH.

The maximum critical temperature was evaluated at

temperatures ranging from 25 °C to 35 °C with an incre-

ment of 5 °C and the rH fixed at 60 %. The minimum

critical rH was assessed at a constant temperature of

25 °C and a rH of 40, 50, 60 and 75 %. Flies belonging to

the same cohorts were used to assess the survival and fe-

cundity. The fecundity was assessed in all treatments

where the longevity of flies allowed it. A photoperiod of

12 L:12D was maintained for all experimental rooms

and light intensity varied from 280 to 500 Lux depend-

ing on the position of the cages in the room.

Fly handling

Newly emerged flies were separated by sex and put into

Roubaud cages (maximum 25 flies per small cage (7.5 ×

5 × 4 cm) and 40 flies per large cage (13.5 × 8 × 4.5 cm)

and then placed in the experimental rooms. Due to the

low number of flies that emerged per strain and sex on

some days, the number per cage was often less than the

maximum (≤ 40 flies) and each constituted a replicate.

Females were put into cages covered with white tulle of

large mesh (2.5 mm) and males in smaller mesh cages

(1.5 mm). The large mesh allowed third instar larvae

(L3) to escape from the cage. Flies were offered a blood

meal three times a week (Monday, Wednesday and Fri-

day) on an in vitro silicon membrane system using defi-

brinated sheep blood collected aseptically and previously

frozen at -20 °C. The feeding system was installed in a

climatic room that was maintained at 25 ± 1 °C and 50 ±

5 % and the system was used for feeding flies from all

treatments. The flies remained in the feeding room for

less than 30 min.

Three to 4 day-old virgin females were mated with 6–

8 day-old virgin males (the time that the flies become

sexually mature) [49] and put into holding cages at an

initial male to female ratio of 1:3. Males and females

Pagabeleguem et al. Parasites & Vectors  (2016) 9:520 Page 3 of 13



remained together until all flies had died. Due to the low

number of females on some days, the mating was often

done in small number and each constituted a replicate.

Fecundity and reproductive biology

Mating cages were placed in individual larviposition

cups and pupae were collected daily (except Saturday

and Sunday) and sorted into normal and aborted L3.

The normal pupae were weighed using an electronic bal-

ance of 0.1 mg sensitivity and automatic calibration

(Precisa® 410 AM-FR, HE electronic, Kadikoy Istanbul,

Turkey). The production of pupae was recorded daily by

treatment and cage. The first larval period (time between

female emergence and the production of the first pupae)

and the subsequent interlarval period (time between the

reproductive cycles) was also recorded.

Mortality

Mortality was recorded daily (except on Saturdays and

Sundays) for each treatment per strain and per sex until

the death of the last individual. Dead flies were sorted

into blood-fed and starved fly mortalities.

Adult emergence rate

Pupae were kept in an incubation room at 25 ± 1 °C and

75 ± 5 % rH. The number of flies that emerged per treat-

ment was recorded daily (except on Saturdays and Sun-

days) and used to calculate the percentage of emerged

adults from the total number of pupae for each treat-

ment. Only flies that escaped from the pupal case were

considered as emerged.

Data analysis

The R Software (version 3.1.0) was used to perform all

statistical analyses [50]. The survival of flies kept under

various experimental conditions was analyzed using

Kaplan-Meier survival curves. Survival curves were com-

pared using the coxph model [51] where the strain, the

sex, the temperature, rH and their second and third

order interactions were used as explanatory variables

and survival rate as the response variable. The best

model was selected on the basis of the lowest corrected

Akaike information criterion (AICc), and the significance

of the fixed effect was tested using the likelihood ratio

test [52, 53]. When analyzing mortality, we considered

the mean temperature and humidity to which the flies

were subjected the day before their death, to account for

potential variability of the conditions within the climatic

rooms. For the fecundity analysis, we considered their

mean values over 10 days before each larviposition. Pair-

wise comparisons of median survivals between treat-

ments were tested with a Tukey’s post-hoc test (‘glht’

function in the ‘multcomp’ package). The best model

was used to plot the survival rate against the maximum

temperatures from 24 to 36 °C. The optimal temperature

for rearing the BKF strain is 25 ± 1 °C [45–47]. Thus,

from the plot for females, the mean survival correspond-

ing to the maximum temperature for BKF mass-rearing

(the reference strain), i.e. 26 °C, was used to determine

the maximum temperature for the mass-rearing of SEN

and SENbkf strains.

The pupal production was followed by cage and not

individually, thus the first larval period was determined

per cage. The number of pupae per cage was plotted

against the age of females and the first peak was consid-

ered as corresponding to the first larval period. The sub-

sequent interlarval interval was determined by

considering the following peak. When there were 2

peaks within less than 7 days, the highest peak was used.

The first and subsequent interlarval periods, the pupal

production and the pupal mass were analyzed using gen-

eral linear models [54] where the strain, the treatment

and their interactions were considered as fixed variables.

For modeling the first and subsequent interlarval pe-

riods, the cage number was considered as a random ef-

fect while for modeling the pupal mass, the random

effect was the emergence date. The smallest AICc of dif-

ferent models was used to choose the best model and

the significance of the fixed effect was tested using the

likelihood ratio test.

Results

Experimental conditions

The data recorded with the Kimo® loggers showed that

during the experiments, temperature and rH varied

around the expected values. Table 1 gives the target

values and the measured mean temperatures and rH ex-

perienced by the flies. In subsequent analyses, we there-

fore used the mean recorded conditions instead of the

target values.

A total of 5984 pupae were received from the ICPL

(BKF and SEN) and SAS (SENbkf) insectaries, of which

2883, 2245 and 856 were of the BKF (5 shipments), SEN

(6 shipments) and SENbkf (7 shipments) strains, respect-

ively. The emergence rates of the adult flies in the pupal

incubation room (25.6 °C, 73.4 % rH) were 95.1 %,

87.3 % and 84.4 % for the BKF, SEN and SENbkf strains,

respectively. Table 2 shows the number of flies by strain,

by gender and by treatment used in the experiments. Al-

most all females that survived until the mating date were

used for fecundity measurements.

Production parameters of the 3 colonies in the insectaries

of origin

Figure 1a shows the temporal fluctuations in colony size

(females) of the 3 strains in the insectaries of origin. At

the IPCL, the daily mortality (mean ± SD) was signifi-

cantly higher (P < 10-3; Table 3) for the SEN flies (1.3 ±
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0.5 %) than that of the BKF strain (0.9 ± 0.6 %) while in

the SAS insectary, the mortality was similar between

SENbkf (1.0 ± 0.2 %) and BKF (1.0 ± 0.3 %) flies (Fig. 1b).

Considering the 3 strains, the BKF flies had the lowest

mortality, followed by the SENbkf, and the SEN flies (P

< 10-3; Table 3). The fecundity was better for the BKF

than the SEN and the SENbkf flies, but the SEN colony

performed better than the SENbkf colony (P < 10-3;

Table 3; Fig. 1c). More importantly, fecundity of the SEN

colony increased significantly over time (P < 10-3; Table 3)

but not that of the SENbkf colony. When restricting the

analysis to the BKF colonies reared in the 2 insectaries, a

lower mortality and a better fecundity was observed for

the colony maintained at the IPCL insectary when com-

pared with the SAS colony (P < 10-3; Table 3).

Relationship between survival and environmental

conditions

Survival curves of the flies from the different treatments

are presented by strain and gender in Fig. 2. The median

survival times obtained from the curves are summarized

in Table 4. The analyses showed that survival of flies was

influenced by strain, sex and temperature (P < 10-3;

Table 5). Females survived significantly longer than

males, irrespective of the strain and treatment (P < 10-3;

Table 5). Survival was very short at high temperatures,

i.e. at 31.4 °C the median survival was 4 days for females

and 3 days for males of all strains, while at 35.3 °C the

median survival was 2 days for both sexes (Table 4).

Within the same gender, at 25–26 °C there was little dif-

ference in survival between 40 and 76 % rH (Fig. 2,

Table 4). Under these environmental conditions, the me-

dian survival for females was 46.7, 42.5 and 37 days for

BKF, SENbkf and SEN flies, respectively. For males, it

was 27.3, 16.8 and 18.5 days respectively. These results

show that the rH (40–76 %) has a marginal effect on

survival (P = 0.06; Table 5). Overall, BKF flies survived

longer than SENbkf and SEN flies irrespective of gender,

and SENbkf female flies survived longer than SEN fe-

males but not males (P < 10-3; Table 5). The relationship

between daily mortality and mean temperature for the 3

strains is presented by gender in Fig. 3.

The mean survival for the 3 strains (males and fe-

males) against the maximum temperature, i.e. the range

of 24–36 °C (at 60 % rH) using the binomial mixed

Table 1 Target temperature and relative humidity and mean (±
standard deviation) environmental conditions experienced by
the flies and recorded with the Kimo® loggers

Target
conditions
(°C–% rH)

Recorded conditions

Temperature (°C) Relative humidity (%)

Experimental rooms

25–50 25.2 ± 0.5 47.7 ± 8.5

25–60 26.4 ± 0.2 55.2 ± 1.6

25–75 25.1 ± 0.4 76.1 ± 8.0

30–60 31.4 ± 0.8 55.1 ± 2.0

35–60 35.3 ± 1.3 50.2 ± 2.5

Experimental chambera

26–40 26.0 ± 0.0 40.3 ± 0.7

Pupal incubation room

25–75 25.6 ± 0.3 73.4 ± 3.3
aMemmert HPP 110

Table 2 Number of flies used for the experiments per strain,
sex and treatment

Treatment (°C–%
rH)

BKF SEN SENbkf

♂ ♀ ♂ ♀ ♂ ♀

25.2 ± 0.5–47.7 ± 8.5 270 465 173 310 40 87

26.4 ± 0.2–55.2 ± 1.6 141 219 145 219 82 48

25.1 ± 0.4–76.1 ± 8.0 169 150 188 122 90 97

26.0 ± 0.0–40.3 ± 0.7 85 172 112 130 51 52

31.4 ± 0.8–55.1 ± 2.0 273 179 99 56 16 17

35.3 ± 1.3–50.2 ± 2.5 217 134 86 61 12 20

Total 1155 1319 803 898 291 321

Fig. 1 Performance parameters of the Glossina palpalis gambiensis

strains (BKF, SEN and SENbkf) in the insectaries of origin (IPCL and SAS).
The time was recoded in weeks from 2010. a Temporal fluctuations in
colony size (females), b daily mortality (%), and c fecundity

Pagabeleguem et al. Parasites & Vectors  (2016) 9:520 Page 5 of 13



model showed a decrease in survival with increasing

temperature (Fig. 4). There were negative effects on the

interactions between temperature and the SEN and

SENbkf strains on survival (P < 10-3; Table 5), showing

that BKF flies resisted better at higher temperatures than

SENbkf and SEN flies irrespective of gender. Females of

the SENbkf strain had a similar mean survival than BKF

females at moderate temperatures, whereas at higher

temperatures, the resistance of SENbkf females de-

creased faster than that of BKF females until they

reached the same level as SEN females (Fig. 4). Males of

the SENbkf strain had the lowest resistance to increasing

temperatures when compared with the BKF and SEN

males (Fig. 4). The introgression thus showed increased

resistance to high temperatures for females but not for

males. Above 32 °C, all flies, irrespective of the strain

and gender, died rapidly.

From the plot, the mean survival for BKF females at

26 °C (maximum temperature for BKF mass rearing)

was 50 days (Fig. 4). This survival value corresponded to

a maximum temperature of 25.6 and 24.9 °C for the

SENbkf and SEN females, respectively.

Fecundity in relation to environmental conditions

Fecundity of the different strains was assessed using a

range of rH values (40–76 %) and a temperature of 25

Table 3 Summary of the best mixed effect model results for the preliminary data from source insectaries and the experimental
fecundity

Trait Fixed effect Estimate Standard Error Z-value P(> |z|)

Preliminary data from source insectaries

Mortality (Intercept) -2.795867 0.016912 -165.32 <2e-16***

SAS insectary -0.021391 0.003165 -6.76 1.4e-11***

SENbkf 0.143523 0.004638 30.95 <2e-16***

SEN 0.529115 0.005628 94.02 <2e-16***

Production (Intercept) -0.212193 0.012092 -17.55 <2e-16***

SAS insectary -0.320035 0.001496 -213.88 1.4e-11***

SENbkf -0.633439 0.00255 -248.40 <2e-16***

SEN -0.382742 0.00319 -119.99 <2e-16***

Experimental fecundity

First larval period (Intercept) 20.5769 0.3254 63.244 <2e-16***

BKF -0.6436 0.5379 -1.196 0.23614

SEN -1.4465 0.4749 -3.046 0.00342**

Interlarval period (Intercept) 8.4706 0.5991 14.139 <2e-16***

SENbkf 1.9294 0.9844 1.96 0.0572.

SEN 1.8627 0.875 2.129 0.0396*

Pupae per initial female (Intercept) 3.1248 0.2986 10.464 <2e-16***

SENbkf -0.9939 0.3986 -2.494 0.0148*

SEN -0.5463 0.4314 -1.266 0.2092

Pupal mass (Intercept) 20.6968 0.3743 55.296 <2e-16***

BKF 0.7434 0.393 1.891 0.0631.

SENbkf -0.6608 0.3431 -1.926 0.0585.

26.4 °C–55.2 % -2.1292 0.396 -5.377 1.14e-06***

25.2 °C–47.7 % -0.2925 0.3994 -0.732 0.4666

26.0 °C–40.3 % -0.6103 0.4579 -1.333 0.1873

Adult emergence (Intercept) 2.9945 0.1545 19.387 <2e-16***

SENbkf -1.0086 0.2229 -4.524 6.07e-06***

SEN -0.9223 0.155 -5.95 2.68e-09***

26.4 °C–55.2 % -0.486 0.2303 -2.11 0.0349*

25.2 °C–47.7 % 0.4255 0.2601 1.636 0.1018

26.0 °C–40.3 % 0.3428 0.2192 1.563 0.118

Significance: ***P ≤ 0.001; ** P ≤ 0.01; *P ≤ 0.05 (these apply to values above)
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and 26 °C, since above 30 °C survival was too low to

monitor fecundity.

At 25–26 °C and between 40 and 76 % rH, the first

larva of the SENbkf strain was deposited on average on

day 19.7, which was similar to that of the BKF strain

(day 19.2) (P = 0.2; Table 3), but significantly later than

that of the SEN strain (day 19.0) (P = 0.003; Tables 3 and

6). These results indicate that the rH had no influence

on the first larviposition day (F(3,64) = 1.96, P = 0.1).

For all strains, at 25–26 °C the rH also had no effect

on the interlarval period (F(3,42) = 0.35, P = 0.8). Overall,

the analysis showed a significantly shorter interlarval

period for BKF (8.5 days) females as compared with SEN

(10.3 days, P = 0.04; Table 3) and SENbkf (10.4 days, P =

0.06; Table 3) females.

Results indicate that pupal production was signifi-

cantly influenced by the Glossina strain (F(2,80) = 3.19, P

= 0.04) but not by the treatment (25–26 °C and 40–76 %

rH) (F(3,80) = 1.68, P = 0.2). Indeed, the highest mean

pupae per initial female (PPIF) at 56 days (8 weeks), 3.2

(all treatments together except 31.4 and 35.3 °C treat-

ments) recorded for the BKF strain (Table 6), was signifi-

cantly higher than that for the SENbkf strain (2.1; P =

0.01; Table 3) and similar to that for the SEN strain (2.6;

P = 0.2; Table 3). The strain effect was marginal as it was

only observed at 25.2 ± 0.5 °C–47.7 ± 8.5 % rH.

At 25–26 °C, the mean pupal mass was relatively

similar between strains, irrespective of the experimen-

tal rH (P = 0.06; Table 3 and 6); mean (± SD) values

of 20.6 ± 1.4, 19.8 ± 1.7 and 19.4 ± 1.3 mg were ob-

tained for the BKF, SEN and SENbkf strain, respect-

ively. On the other hand, adult emergence was

significantly better for BKF flies (93.5 ± 9.4 %) as com-

pared with SEN (87.6 ± 18.5 %) and SENbkf (87.9 ±

19.0 %) flies (P < 10-3; Table 3). There was a marginal

effect of rH on pupal mass and adult emergence as

the lowest values were observed at 26.4 ± 0.2 °C and

55.2 ± 1.6 % rH (P < 10-3; Tables 3 and 6).

Discussion

The aim of this study was to assess the effect of different

temperatures at the same rH, but also to assess the effect

of variation in rH at a single optimal temperature to try

to determine the best environmental conditions for

mass-production of the new G. p. gambiensis strains

(SEN and SENbkf) and to define the critical maximum

temperature and critical minimum rH for each strain.

These aspects are important because, in 2000, the Afri-

can Heads of States and Governments decided to in-

crease efforts to address the tsetse and trypanosomosis

Fig. 2 Survival curves of flies by treatment, strain and sex

Table 4 Median survival (days) by sex, strain and treatment

Treatment (°C–%
rH)

Female Male

BKF SEN SENbkf BKF SEN SENbkf

25.1 ± 0.4–76.1 ± 8.0 57a 37bc 48ab 32c 30c 28ce

25.2 ± 0.5–47.7 ± 8.5 47ab 29c 46ab 25ce 13d 11d

26.4 ± 0.2–55.2 ± 1.6 36bc 33bc 30bc 25ce 13d 14df

26.0 ± 0.0–40.3 ± 0.7 58a 41bc 46ab 20ef 18def 14df

31.4 ± 0.8–55.1 ± 2.0 5g 4gh 4gh 3hi 3hi 3hi

35.3 ± 1.3–50.2 ± 2.5 1j 2k 3ik 2k 2k 2k

Median survivals were separated using Tukey’s post-hoc test and values that

have a common letter (a-k, amongst columns and rows) are not significantly

different (P > 0.05)
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problem on the African continent under the auspices of

the African Union (PATTEC) [55]. For West Africa, this

entails AW-IPM programmes against G. p. gambiensis;

this species thrives in riparian and forest environments,

and eradication strategies will require the use of the SIT.

The results of this study will facilitate optimization of

the mass-rearing of the three strains that are currently

established and guide programmes that include a SIT

component to select the strain that is best adapted to

the local environmental conditions of the target area.

Table 5 Summary of the best cox model for the survival of flies

Fixed effect Coef Exp(coef) SE(coef) Z–value P(> |z|)

Relative humidity -0.002520 0.997483 0.001334 -1.889 0.05892.

Temperature 0.531286 1.701118 0.010805 49.172 <2e-16***

SENbkf 2.183868 8.880592 0.671772 3.251 0.00115**

SEN 3.173181 23.88334 0.439600 7.218 5.26e-13***

Male 5.949196 383.4449 0.344772 17.255 <2e-16***

Temperature × SENbkf -0.076943 0.925942 0.024771 -3.106 0.00190**

Temperature × SEN -0.105743 0.899656 0.016044 -6.591 4.37e-11***

Temperature × Male -0.185816 0.830426 0.012024 -15.45 <2e-16***

SENbkf × Male -1.327588 0.265116 0.900588 -1.474 0.14045

SEN ×Male -2.860653 0.057231 0.566269 -5.052 4.38e-07***

Temperature × SEN ×Male 0.058313 1.060046 0.033291 1.752 0.07985

Temperature × SENbkf × Male 0.100787 1.106041 0.020437 4.932 8.16e-07***

Abbreviation: Coef coefficient, SE standard error

Significance: ***P ≤ 0.001; ** P ≤ 0.01 (these apply to values above)

Fig. 3 Correlation between daily mortality and mean temperature for male and female flies of the BKF, SEN, and SENbkf strains. The size of the
data points is proportional to the number of flies at each date of emergence with the equation of the linear model and R2 also supplied
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We found that female G. p. gambiensis survived sig-

nificantly longer than males irrespective of the strain

and environmental conditions except at sub-lethal

temperatures. The difference in lifespan between the

sexes is common in insects and it seems to be genet-

ically determined [56]. Indeed, similar results were

obtained with Anopheles arabiensis and An. funestus

under combinations of temperature and humidity

[57], with Aedes albopictus at constant temperatures

[58, 59], and with Ae. krombeini at both constant and

fluctuating temperatures [60]. In mosquitoes, this

gender-biased difference seems to be associated with

variations in the amount and composition of cuticle

lipids between the sexes [61] which influences water

loss [62], but also to differences in size [61]. Indeed,

the larger mass of females translates into a higher

water content, which further contributes to enhanced

survival time [61]. These same factors could be impli-

cated in the difference in survival of tsetse, as con-

firmed by pronounced differences in size between

males and females.

At higher temperatures, survival of the flies was very

low, i.e. the median survival was four days at 31 °C and

2 days at 35 °C for the two sexes (at 60 % rH). Similar

results were obtained with G. fuscipes fuscipes at 30 °C

and 19 % rH [63]. Mellanby [63]observed that at a

temperature of 30 °C, the flies died quicker at a higher

than at a lower humidity. G. f. fuscipes [63], G. morsitans

[64], G. tachinoides and G. m. submorsitans [49] can

survive at sub-lethal temperatures by evaporating water,

but they can only do so for a short period (a few hours)

and when the rH is low. In wild-caught G. pallidipes,

the median survival at 37.9, 36.2 and 35.6 °C (95 % CIs:

± 0.5 °C) were 1, 2 and 3 h, respectively [34].

The BKF strain showed better survival when compared

with the SEN and SENbkf strain even at high tempera-

tures irrespective of gender. Such differences have been

reported among species and determine their ability to

survive in some environments [65]. For example, teneral

G. f. fuscipes and G. morsitans exposed for 24 h to 25 °C

and 50 % rH lost 3.2 and 2.7 mg water, respectively, for

a mean mass of 22 and 19 mg [65]. This difference

seems related to size; however, this appeared not to be

the case with our G. p. gambiensis strains that had the

same size. Our results suggest that this capability to sur-

vive at higher temperatures might also vary among pop-

ulations of the same species. This observation supports

earlier findings that the water balance response to vari-

ation in temperature and rH in Glossina varies within

and among species, subgroups, and ecotypes, in terms of

both magnitude of effects and direction of change [29].

The variation between populations of the same species

in the ability to survive to higher temperatures is sup-

ported by the differences in habitat preferences observed

between these two populations [8, 43, 66, 67]; in

addition, at present, the BKF and SEN strains are sepa-

rated by a natural barrier preventing gene flow, and thus

evolve independently [10, 27, 43, 66, 67], with likely con-

sequences for behavior [68] and physiology between the

three strains that could explain the observed differences

in their ability to survive at high temperatures. From an

ecology or evolutionary point of view, distinguishing be-

tween strains on the basis of the survival at a given set

Fig. 4 Mean survival of the BKF, SEN, and SENbkf strains plotted
against the maximum temperature. The relative humidity was
maintained constant at 60 %

Table 6 First larviposition day, interlarval period, fecundity, mean pupal mass and emergence rate of adults under various
experimental conditions

Treatment (°C–%) First larviposition day Interlarval period (days) PPIF Mean mass of pupae (mg ± sd) Emergence (%)

BKF SEN SENbkf BKF SEN SENbkf BKF SEN SENbkf BKF SEN SENbkf BKF SEN SENbkf

25.1 ± 0.4–76.1 ± 8.0 21 20 19 9.3 8.0 10.0 3.2ab 2.7ab 2.1ab 21.6 ± 1.5a 21.0 ± 2.3a 19.4 ± 2.7ab 93.4 87.7 93.5

26.4 ± 0.2–55.2 ± 1.6 19 17 20 9.4 10.0 12.0 3.7ab 3.3ab 1.9ab 18.4 ± 2.8b 17.9 ± 3.2b 18.6 ± 1.8b 88.1 80.7 77.1

25.2 ± 0.5–47.7 ± 8.5 19 20 19 7.3 9.8 11.0 2.7a 1.8b 1.8b 21.3 ± 2.2a 20.7 ± 2.4a 18.9 ± 2.7b 94.9 89.5 89.0

26.0 ± 0.0–40.3 ± 0.7 20 19 19 8.0 11.6 9.3 3.4ab 2.5ab 2.7ab 20.7 ± 2.5a 20.4 ± 3.5a 19.3 ± 2.4ab 95.7 91.7 92.0

Abbreviation: PPIF pupae production per initial female at 56 days (8 weeks)

For the PPIF and mean mass of pupae, the values that have a common letter (a and b, amongst columns and rows) are not significantly different (P > 0.05)
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of temperatures could present some limits and some

other studies of thermal tolerance (e.g. critical thermal

maximum or heat knockdown time) should be con-

ducted to complement the survival assays presented

here. Therefore, the absence of significant differences in

survival between strains at a given temperature (e.g. at

26.4 °C) should be interpreted with caution, since a

three-day difference in survival is considered substantial.

The difference in establishment time of the three

strains suggests an adaptation to breeding conditions for

BKF dating back more than four decades [45, 47], while

SEN and SENbkf have been in culture for only five years

(since 2010) [19]. This hypothesis is supported by data

from the IPCL insectary, where the productivity of SEN

flies at 25 ± 1 °C and 75 ± 5 % rH after four years of es-

tablishment reached the same level than that of BKF for

fecundity but not for survival.

Genetically, the SENbkf strain contains 3 % of the nu-

clear genome of BKF and 97 % of the genome of SEN,

whereas its mitochondrial DNA is 100 % BKF (maternal

transmission). As for the relationship between the sur-

vival rate of females for the three strains and maximum

temperature (see Fig. 4), the intermediate survival ability

of SENbkf females at high temperatures might be related

to the influence of mitochondrial DNA transmitted by

the BKF strain. Further research is required to confirm

the validity of this hypothesis.

In view of the performance of the BKF strain with re-

spect to temperature variation, its use in the G. p. gam-

biensis eradication campaign in the Niayes area is

justified, as the environmental conditions prevailing in

the target area, i.e. 25–30 °C and 60–80 % rH [17] cor-

respond to the optimal conditions for survival and com-

petitiveness of this strain. This was confirmed in field

pilot trials where released BKF sterile males showed

good competitiveness in most ecosystems of the Niayes

(unpublished data). In addition, only colonies of this

strain were large enough to produce the weekly number

of required sterile males for release in the Niayes.

At 25–26 °C and with a rH ranging from 40 to 76 %,

we observed no effect of humidity on survival of the flies

regardless of the strain, indicating that the different hu-

midity conditions appeared to have no effect on the me-

tabolism of the flies. This might be due to the rather

small range of humidity conditions tested in our experi-

ment. These results, however, are in agreement with the

findings by other authors who observed that at 24 °CG.

f. fuscipes lost ~ 0.47 mg fat in 24 h at rH levels of 19–

88 % [63, 69] and Jackson [69] observed that at 25 °C

the fat loss in 24 h for G. palpalis, G. morsitans and G.

swynnertoni teneral males was comparable within a

range of 19–88 % rH. A predictive study using a physio-

logical and climate GIS database showed an effect of

moisture on the physiology of Glossina pupae but not

adults [70]. The lack of any effect of humidity on fly

physiology was observed in other insects. Fasting bed-

bugs, kept for various lengths of time at five different

temperatures, ranging from 8–37 °C, and at different rH

(i.e. 0, 30, 60 and 90 %), used the same amounts of food

reserves at each humidity level for a given temperature,

though more water evaporated from insects kept in dry

air than in humid air [71].

Our results indicate that at 26 °C, the maximum

temperature for the mass-rearing of BKF flies, the mean

survival of this strain was 50 days [45–47]. By compari-

son, a mean survival of 50 days corresponded to a

temperature of 25.6 and 24.9 °C for the SENbkf and

SEN strains, respectively. Considering that 25 ± 1 °C is

the optimal temperature for BKF mass-rearing [45–47],

those of SENbkf and SEN might be slightly lower; how-

ever, a study of the fecundity at temperatures lower than

25 °C is necessary to determine the optimal rearing con-

ditions for these strains. The optimal temperature for

the mass-rearing of the three strains was relatively simi-

lar since the difference was less than ± 1 °C. Neverthe-

less, preliminary data (from the insectaries of origin)

indicating that the mortality of SEN and SENbkf flies at

25 ± 1 °C and 75 ± 5 % rH was greater than that of BKF,

support the hypothesis that the difference in establish-

ment time of the three strains has resulted in differing

levels of adaptation to breeding conditions. The optimal

relative humidity for the BKF strain of 75 ± 5 % can also

be considered valid for the two other strains, since a

range from 40 to 76 % rH did not affect the survival and

the fecundity of the three strains.

Above 30 °C, the survival of flies was too low to assess

fecundity. Previous laboratory studies on G. f. fuscipes

showed that a constant temperature of 30 °C caused

sterility in females, with abnormal development of the

ovaries and embryos failing to hatch from the eggs [72],

similar to the the changes that occur when a tsetse fe-

male is deprived of Wigglesworthia [73]. In the same

way, G. pallidipes pupae kept at 31 °C resulted in non-

viable flies [74]. Below 30 °C, the only temperature

where the fecundity was assessed was 25–26 °C; there-

fore, the effect of temperatures between 26 and 30 °C

could not be evaluated and additional experiments are

needed.

The rH (40-76 % at 25–26 °C) had no effect on the

reproduction of the three G. p. gambiensis strains. The

same result was obtained with G. morsitans [64] and G.

f. fuscipes [63], where insemination rates and pupae pro-

duction were affected by temperature but not by

humidity.

Our data indicate that at 25–26 °C and 40-76 % rH fe-

male G. p. gambiensis produce their first larva at ~

19 days old. These results do not differ significantly from

those obtained in previous studies. Pollock [75] observed
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that the tsetse female (irrespective of the species) at 25 °

C produces her first larval on day 18 to 20 post-

emergence. According to Mellanby [72], the develop-

ment of the first G. f. fuscipes larva takes a minimum of

18 to 19 days at 24 °C, made up of a minimum of eight

days for oocyte maturation, three to four days for em-

bryonic development and seven days for larval growth in

the uterus, after which the mature larvae is deposited.

But at 21–23 °C ovulation in G. morsitans and G. swyn-

nertoni (morsitans group) was delayed to about the 12th

or 13th day [64, 76].

At 25–26 °C and 40–76 % rH, a mean interlarval

period of 8.5 days was observed for the BKF strain and

ten days for the SEN and SENbkf strains. These results

show that the interlarval period of BKF was shorter than

observed for other species, but the observations for the

SEN and SENbkf strains were in line with previous data

obtained under stable insectary conditions, i.e. an inter-

larval period of ten days at 26 °C was obtained for G.

palpalis palpalis [77], a mean of 9.9 days (range of nine

to 11 days) at 24 °C for G. f. fuscipes [72], an interlarval

period of 11 days at 24 °C for G. morsitans [64] and 13–

14 days at 24–26 °C for G. tachinoides [49]. In view of

the length of time that the BKF strain already spends in

under insectary rearing, the resultant selection has pro-

moted fecundity, as the BKF strain performed better

than the two other strains.

Models developed using field data to predict the first

larval and interlarval periods of G. pallidipes and G.

morsitans [78, 79] indicated that the first larval period

was slightly shorter for flies under field conditions as

compared with laboratory flies, but there was no differ-

ence for the subsequent interval periods [39]. The esti-

mated time to produce the first larva was between 14–

17 days post-emergence depending on the temperature,

i.e. at 25 °C the predicted time was 15.9 days [39, 80].

The difference between the first larval period under la-

boratory and field conditions might be due to the spe-

cific behavior of tsetse flies in the field, where they

minimize the effects of extreme temperatures by using

microenvironments, i.e. refuges when the temperatures

are high, and resting in direct sunshine at low tempera-

tures [79]. Previous findings have shown that in the field,

tsetse appear to live at temperatures 2 to 6 °C lower than

the room temperature (corresponding to the constant

temperature of the laboratory) [81]. For this reason, cau-

tion must be taken in the interpretation of results pre-

dicted from field experiments.

Conclusions

The survival and pupae production of G. p. gambiensis

flies appeared to be governed mainly by temperature,

and was unaffected by changing humidity within the ex-

plored range. The BKF strain survived at higher

temperatures better than the SEN and SENbkf strains

but the temperature limit of survival remained at about

32 °C for all strains.
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