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A long-wave evolution equation is derived using an asymptotic analysis, and the linear stability of a viscoelastic �lm �owing
along the direction of parallel grooves over a uniformly heated topography is studied. A numerical approach adopting spectral
collocation technique is used to demarcate the stable and unstable �ow regimes. 
e combined in�uence of thermocapillarity
and viscoelasticity on the �lms stability is analyzed. By accounting the bottom topography comprising longitudinal gutters, the
possibilities of regulating the �lm dynamics under iso- and nonisothermal conditions and/or optimizing design structure of an
apparatus for desirable �ow outcomes have been focussed.

1. Introduction

Falling �lms are relevant to a broad class of interfacial
instability problems over a wide range of length and time
scales in various technological setups since they o
er small
thermal resistance and large contact area at small speci�c �ow
rates.
is serves as an advantage inmany processes involving
cooling, condensation, absorption, and evaporation, thereby
regulating the transport of mass, momentum, and heat across
the liquid-gas and liquid-solid interfaces. For a detailed
review of falling �lm problems, refer toNepomnyashchy et al.
[1], Kalliadasis et al. [2], and the references therein.

Although many studies available in literature have
focused attention on Newtonian �uids, many �uids used in
industrial applications are rheologically complex and non-
Newtonian in nature. 
is has led to the generalization of
Navier-Stokes model to satisfy highly nonlinear constitutive
laws to arrive at complex partial di
erential equations, which
are one order higher than the Navier-Stokes equations [3–8].

Unlike Newtonian �uids, which respond virtually instan-
taneously to an imposed deformation rate, viscoelastic �u-
ids respond on a macroscopically large time scale, known
as the relaxation time. 
e viscoelastic �uids, a subclass of

microstructure �ows, display both elastic (for deformation
rates larger than the inverse relaxation time) and viscous (for
deformation rates smaller than the magnitude of the inverse
relaxation time) characteristics. 
e stress in this liquid is
neither directly proportional to the strain nor to the rate of
strain but displays a complex relationship [9]. A lot ofwork on
the �ow and heat transfer characteristics of non-Newtonian
�uids has also been done in order to control the quality
of the end product in many manufacturing and processing
industries ([10] and the references therein). 
is area of �uid
dynamics can simulate accurately many complex polymeric,
biotechnological, and tribological �uids and has attracted
special attention with the advent and growth of synthetic
material industries. It �nds applications in clothing, food,
and pharmaceutical industry, and in analyzing the lubrication
behavior of bearings, gears, and cams.


ere are various constitutive models which address the
elasticoviscous aspect of a viscoelastic �uid. 
e Walters-B
liquidmodel [11] can simulate accuratelymany complex poly-
meric, biotechnological, and tribological �uids and forms an
important basis for the manufacture of plastic engineering
equipments, contact lenses, and so forth. 
e mixture of
polymethyl methacrylate and pyridine at 25∘C containing
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30.5 g of polymer per liter behaves very close to this model.

e physical properties of such a �uid constitute its density� = 0.98 × 103 Kg/m3, limiting viscosity � = 0.79Ns/m2,
kinematic viscosity ] = 806 × 10−6Nsm/Kg, surface

tension � = 40 × 10−3N/m, and viscoelastic coe�cientΓ0 = 0.04Ns2/m2. Hydrodynamic stability studies for the
mixture of above polymer have been reported by Andersson
and Dahl [12], Sadiq and Usha [13], Lin and Chen [14], and
Sirwah and Zakaria [15] for thin �lms.

Chang [16] in his report categorized di
erent types of
waves while observing a falling �lm. He identi�ed interesting
regimes where the wave behavior changes depending upon
the magnitude of Reynolds number, Re. In the low-moderate
Reynolds number regime, long gravity-capillary waves dom-
inate. 
is region is interesting both from a practical point of
view (since many industrial equipments operate under this
condition) as well as from a theoretical point of consideration
(due to regular structures, it is possible to describe the aspects
of the �ow by using relatively simple models).

Tackling the complete set of mass, momentum, and
energy equations poses a formidable challenge. 
erefore,
with lubrication approximation at the forefront, dimension
reduction techniques that take advantage of thin �lm geom-
etry have been successfully developed in the majority of
theoretical work that has appeared to date. 
is assumption
neglects relatively unimportant terms while scaling complex
equations by considering the depth-length ratio to be small
and is an essential analytical tool in modeling thin �lm low-
Reynolds number �ows (a subregime of 1 < Re < 300).
Under this assumption, the physical variables are expanded
in terms of the small aspect ratio to yield a more tractable yet
highly nonlinear degenerate fourth-order PDE for the local
layer, which is still capable of retaining the dominant physics
[17]. For nonisothermal problems, some notable pieces of
research include Joo et al. [18], Miladinova et al. [19], Scheid
[20], and Sadiq et al. [21].

Fluid actuation and transport are core functionalities and
challenges inmany �uidic systems.
e shape and property of
the substrate (its curvature and/or �exibility, patterns and/or
obstacles) play an important role in the development of �ow
instabilities and a
ect the �lm dynamics and heat transfer. In
particular, the interplay between the physical surface and the
local �uid �ow a
ects the entire system, where the viscosity,
surface tension, thermocapillarity, and the local interface, for
instance decides the �owmechanism.A better understanding
of these properties and how they can be harnessed and
controlled is extremely important. 
eir impact in relation
to optimizing resources and manufacturing cost in the indu-
strial sector have yet to be fully realized, with their use in
relation to forming novel functional coatings for applications
in many engineering disciplines still at an early stage.


ere are several investigations on the �ow of a thin
�lm across a sinusoidal geometry for isothermal [22–30] and
non-isothermal problems [31–34]. Another direction of study
includes �ows along the grooves of corrugated geometries
[35–38]. Recently, Heining et al. [39] reported on the �ow
over di
erent three-dimensional periodic corrugations and

found that the interplay between the geometry of the topogra-
phy and the inertia of the �lm exhibits a rich variety of pattern
formation phenomena.

Literature on non-Newtonian �uids, their stability, and
dynamics on substrates with topography is not abundant.
For a power-law based non-Newtonian model, the e
ect of
substrate topography, inertia, and non-Newtonian rheology
was examined for a two-dimensional thin Carreau-Bird
model based liquid which has direct relevance in problems
connected to the early stages of coating process [40]. 
e
e
ect of local microtopography with steps, hills, and period-
icity on the steady �ow was considered by Mogilevskii and
Shkadov [41]. 
e e
ect of inertia and surface tension on
the �ow of a power-law �lm over an undulated surface has
been investigated by Heining and Aksel [30]. 
ey identi�ed
that the shear-thinning rheology of the �lm leads to possible
resonance. Usha and Uma [42] extended the study carried by
Tougou [43] to viscoelasticWalters-B liquid on awavy incline
and found the impact of the viscoelastic parameter on the
�lms stability and long waves generated. Using a convected
Maxwellmodel, Saprykin et al. [44] investigated the in�uence
of inertia and viscoelasticity on a �lm �owing on a step-
down topography. 
e e
ect of viscoelastic properties under
creeping �ow conditions was investigated by Pavlidis et al.
[45] considering a Phan-
ien and Tanner viscoelasticmodel
for �uid �owing on a horizontal trench. By incorporating an
asymptotic expansion of the upper-convectedMaxwellmodel
for elastic �uids, recently, Bouchut andBoyaval [46] proposed
a new model for gravity-driven free-surface �ows of shallow
viscoelastic �uids across a topography. An important feature
of their model is the convexity with respect to the physically
relevant pseudoconservative variables.

Shaqfeh et al. [47] assessed the stability of gravity driven
viscoelastic �ow of an Oldroyd-B model in a broad spec-
trum of dimensionless groups categorizing the �ow into
thick dilute, thin dilute and thick concentrated or melt
�lm regimes. In the present problem, the in�uence of non-
isothermal e
ects and bottom topography is considered on
a viscoelastic �uid’s stability. For this purpose, a Walters-
B liquid is considered to model viscoelastic e
ects. 
ough
this investigation does not cover the entire class of vis-
coelastic �ows (thin to thick �lms), yet it gives a qualita-
tive understanding and a �rst insight into the mechanism
occurring in thin �lm regime, where the surface-tension
forces become very important. Also, it forms as the �rst
study in modeling such �uids on a corrugated geometry
comprising longitudinal grooves. To cater non-isothermal
e
ects, a uniform temperature (larger than the constant
ambient air temperature) is prescribed on the bottom of the
topography, and a long-wave equation is derived.
e stability
of the primary �ow to in�nitesimal disturbances is discussed
under non-isothermal e
ects.

2. Problem Description

Figure 1 displays the geometry of the physical problem under
consideration. It is assumed that the �ow rate is high so that
the topography is inundated with nonvolatile �uid. 
e �ow
is oriented along the grooves in the positive �-direction,
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Figure 1: Schematic representation of the �ow of a viscoelastic �lm
over a topography comprising furrows and ridges.

and the geometry extends in�nitely along the �- and �-
directions. 
e bottom topography, �(�, �) = 	� cos(2
�/�)
undulates weakly along the �-axis such that �(�, �, 
) =�(�, �) + ℎ(�, �, 
) measures the total thickness. 
e param-
eters 	� and � represent the amplitude (the peak deviation of� from its center position) and the wavelength of a typical
periodic groove. 
e air above the liquid is passive such
that its temperature, �∞, and pressure, �∞, are constants
su�ciently far from the interface. A uniform temperature
distribution�� is prescribed at the bottom of the topography
assuming the substrate to be a perfect conductor of heat of
in�nite heat capacity. Boussinesq approximation is used to
describe the bulk movement of the liquid. In the framework
of this approximation, density (�), kinematic viscosity (]),
thermal conductivity (��) and thermal di
usivity (�) are
assumed constants [1, 20, 48]. 
e surface tension decreases
linearly as a function of temperature and is given by � =�∞ − �(� − �∞), where �∞ is the mean surface tension at
gas temperature and � = −��/�� is a positive constant as for
most common liquids.

Constitutive equations which result from a retarded-
motion expansion represent the correct constitutive equa-
tions for �ows in which the rate-of-strain tensor and its time
derivatives are small [49]. 
e second order �uid is derived
through a retardedmotion expansion and shows twodi
erent
normal stress functions [49] in simple shear �ows, being valid
for slow and weak �ows [50]. 
ough the shear thinning
seen in experiments on polymeric �uids is not described by
this model, yet it �nds usage in many applications, and it
also predicts most non-Newtonian e
ects qualitatively, if not
always quantitatively [51].

Dandapat and Samanta [52] assessed the constitutive
equations of the second order incompressible �uid [49]
framed on the postulate of gradually fading memory [53].
Such �uids show normal stress di
erences in the shear �ow
(which is a characteristic property of a viscoelastic �uid),
and the constitutive equation is applicable to the �ow of
dilute polymer solutions (e.g., polyethylene oxide in aqueous
solution (POLYOX), polyisobutylene in cetane), which are
only slightly viscoelastic andmay have a bearing on the study
of �uids with drag-reducing properties (Toms phenomenon).

Regarding the applicability of their model, if the disturbance
time scale is large compared with the characteristic time scale
(relaxation time) of the �uid, then the second order �uid
model is internally consistent with the stress-relaxing �uid
due to Oldroyd [3]. As pointed out by Porteous and Denn
[54], this would happen if the viscoelastic parameter is small.


e components of the symmetric Cauchy stress tensor,
T , in a Walters-B �uid are given by [55–57]

��� = −���� + 2∫∞
0

�(�)� ��∫	
−∞

�((	�−	)/
) ������� ������
 �(1)�
�
�,
(1)

where ��� is the stress tensor, � represents the isotropic

pressure,�(�)�� is the total viscosity of theMaxwell elements
whose relaxation time lies between � and ��, (��) represents
the coordinates of a �uid element at time 
�, (�) designates
the coordinates of the same �uid element at 
 (> 
�), ��� is
the metric tensor, and �(1)�� indicates the rate of strain tensor.
Neglecting ∫∞0 ���(�)��, � ≥ 2 for liquids with short

relaxation times, (1) reduces to a model involving only one
non-Newtonian parameter [12, 57]:

��� = −���� + 2���� − 2Γ0 �����
 , (2a)

�����
 = �����
 + �� ������� −
������ ��� −

������ ���, (2b)

where Γ0 = ∫∞0 ��(�)�� is the viscoelastic parameter exhibit-

ing low relaxation times, � = ∫∞0 �(�)�� is the limiting

dynamic viscosity at small rates of shear, �/�
 evaluates the
upper convected time derivative or Oldroyd derivative of a
tensor [58], and �� are the components of the velocity u =(�, V, �) in the �� direction (�, �,  ) of a �xed coordinate
system. Refer to Appendix A for the complete expressions of
the components of the stress tensor.

Since the model proposed by Dandapat and Samanta [52]
is for weakly viscoelastic �uids, it yields the same evolution
equation for the free surface which results by adopting (2a)-
(2b) [59]. 
is is true since !0 [52], the coe�cient of cross-
viscosity [60] de�ned by Dandapat and Samanta [52], is
ignored by assuming the �uid to be weakly elastic, which

occurs exactly by neglecting ∫∞0 ���(�)��, � ≥ 2.
Such an idealized model represents an approximation to

�rst order in elasticity [12] and is a valid approximation of
Walters-B liquid taking very short memory [61]. Barnes et al.
[62] have introduced a general canonical form of constitutive
equations for viscoelastic �uids. 
e rheological model given
by (2a) and (2b) has been recovered as a special case of
this general form and is classi�ed as a second-order model
according to their nomenclature. Also, the justi�cations
proposed by Dandapat and Samanta [52], Gupta [63] and
Dandapat and Gupta [64] qualify and validate (2a)-(2b).
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e equations governing the �ow are those for an
incompressible �uid such that the compressibility e
ects and
viscous heat generation are neglected in the heat equation:

��u�
 + �u ⋅ ∇u = ∇ ⋅ T + �F, (momentum balance) ,
∇ ⋅ u = 0, (continuity equation) ,

���
 + u ⋅ ∇� = �∇2�, (energy balance) ,
(3)

where F = (& sin!, 0, −& cos!) is the body force, & is
the standard gravity constant, and � is the temperature. To
complete the mathematical description of (3), appropriate
boundary conditions are prescribed at  = �(�, �) (bottom
topography) and  = �(�, �, 
) (interface location). 
ey are

u = 0, � = �� on  = � (�, �) ,
(no slip condition, uniform temperature distribution) (4)

n ⋅ T ⋅ n = −�∇ ⋅ n on  = � (�, �, 
) ,
(balance of normal stress at the interfacial surface) (5)

t� ⋅ T ⋅ n = t� ⋅ ∇� on  = � (�, �, 
) ,
(balance of shear stress at the interfacial surface) (6)

−��∇� ⋅ n = ' (� − �∞) on  = � (�, �, 
) ,
(Newton’s law of cooling at the free surface) (7)

� = ℎ	 + u ⋅ ∇� on  = � (�, �, 
) ,
(kinematic boundary condition at the free surface) . (8)

In (5)–(7) above, n = ∇( − �)/|∇( − �)| is the unit
outward normal at any point on the free surface, and t� and t�
are the unit tangential vectors such that n ⋅t� = 0, * = �, �.
e
heat exchange coe�cient between the liquid and the passive
air is described by '.

In order to nondimensionalize systems (3)–(8), the prob-
lem is related to the �ow of a falling �lm on an in�nitely
extending rigid plane [28, 38, 39]. For a stationary �ow of
uniform thickness ℎ0, the solution of the Navier-Stokes and
Fourier (expressing energy balance) equations is a parallel
�ow dependent only upon the cross-stream coordinate such
that viscosity balances gravity and the heat is propagated
by pure conduction. 
e primary �ow variables [65] are
(neglecting the capillary boundary layers at the side walls
[66])

� = �& sin!� ( ℎ0 −  22 ) , V = 0, � = 0,
� = �∞ + �& cos! (ℎ0 −  ) ,
� = �� − ' (�� − �∞)�� + 'ℎ0  .

(9)


e depth averaged velocity of the Nusselt �ow is de�ned

as �0 = (1/ℎ0) ∫ℎ00 �( )� = (�& sin!ℎ20)/3�, and it serves

to scale the streamwise component of the velocity, for which
the constant �ux is given by :0 = �0ℎ0. 
e Nusselt thickness
is considered as the characteristic length scale in the  -
direction. 
e characteristic wavelength on the free surface
is considered to be of the same order as the wavelength of
the periodic undulation and serves as a scale in the �- and�-directions. Mass balance condition serves to choose the
scales for the velocity components along the spanwise and

transverse directions. 
e pressure is scaled using ��20 and
the viscoelastic parameter [13] by �ℎ20. Lastly, the temperature
scale is chosen to allow the largest possible temperature
di
erence [21, 33]. In short, the scales can be summarized as

(�∗, �∗,  ∗, ℎ∗, �∗, �∗) = 1ℎ0 (;�, ;�,  , ℎ, �, �) ,

∗ = ;�0
ℎ0 , �∗ = � − �∞��20 ,

(�∗, V∗, ;�∗) = 1�0 (�, V, �) , �∗ = � − �∞�� − �∞ ,
Γ∗ = Γ0�ℎ20 , ; = ℎ0� ≪ 1.

(10)

A�er nondimensionalizing, the asterisks are dropped
from the scaled variables (cf. Appendix B for the complete
set of nondimensional equations). 
e set of dimension-
less parameters arising during the nondimensionalization
procedure is Re = ��0ℎ0/� (Reynolds number), Γ =Γ0/�ℎ20 (viscoelastic parameter), We = �∞/(��20 ℎ0) (Weber
number), Ca = �(�� − �∞)/�∞ (measures the ratio of
temperature dependent part of the surface tension over its
basic value; note that it is de�ned sometimes as the Capillary
number [18, 19]), Pr = ]/� (Prandtl number), Pe = Re Pr
(Péclet number),@ = �(��−�∞)/��0 (Marangoni number),
and Bi = 'ℎ0/�� (Biot number). Referring to Joo et al. [18]
and the references therein, the orders of magnitude assigned

to the dimensionless parameters are Re ≃ O(1), ;2We =B ≃ O(1), Ca ≃ O(;2), Γ ≃ O(1), Pr ≃ O(1), Pe ≃
O(1), @ ≃ O(1) and Bi ≃ O(1). Further, it is assumed
that C � = 	�/ℎ0 ≃ O(;) (	�/� ≃ O(;2), ℎ0/� = ;) orC � = 	�/ℎ0 ≃ O(1) (	�/� ≃ O(;), ℎ0/� = ;), where ; is the
small aspect ratio. Note that the assumptionC � ≃ O(;) allows
to construct a series solution analytically as mentioned later
[26, 30]. However, whenC � ≃ O(1), the base solution is found
through a numerical procedure [26, 30].


e physical variables �, V,�, �, and � are asymptotically
expanded in powers of the small parameter ; and solved
sequentially at each order [21, 67] using the symbolic com-
putation toolbox inMATLAB to obtain the long-wave model
(cf. Appendix B for the equations and solutions at O(1) and
O(;)):

ℎ	 + 3ℎ2ℎ�
+ ;{ − 5Re8 ��� (ℎ4ℎ	) − 27Re40 ��� (ℎ6ℎ�)

+ 32 Re Γ ��� (ℎ2ℎ	) + 152 Re Γ ��� (ℎ4ℎ�)
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+ ∇ ⋅ [B3 Re ℎ3∇∇2� − cot!ℎ3∇�
−@ℎ22 ∇( 11 + Biℎ)]} + O (;2) = 0.

(11)

It is to be noted that the above long-wave model is obtained
without estimating the time derivatives from the leading
order solutions as traditionally done [35, 36]. For small
Reynolds numbers, the long-wave model described by (11)
captures the dynamics e�ciently since the temperature and
velocity �elds are slaved to the kinematics of the free surface.

e second term in (11) describes wave propagation and
steepening e
ect. 
e remainder of the terms in (11) within
the curly braces decides the growth or decay of waves of
which the �rst two terms are due to the inertial contribution
and correspond to the destabilizing e
ects of the mean
shear �ow, the third and the fourth terms measure jointly
the viscoelastic e
ects, and the ��h term is responsible for
the e
ects of mean surface-tension. While the sixth term
accounts for the stabilizing e
ects of the hydrostatic pressure,
the seventh term is due to thermocapillarity and represents
the perturbation of the interface temperature induced by
variations of ℎ, when there is heat transfer to the gas phase.

3. Temporal Linear Stability and Results

It is assumed that the primary �ow, ℎ = M(�), is independent
of � and 
 and depends only upon the spanwise coordinate �.

e primary �ow satis�es the following ordinary di
erential
equation:

ReB3 M2 ( �4���4 + �4M��4 ) + ReBM�M�� ( �3���3 + �3M��3 )
− cot!M2 ( �2���2 + �2M��2 ) − 3cot!M�M�� ( ���� + �M�� )
+ @BiM
2(1 + BiM)2

�2M��2 + @Bi

(1 + BiM)3(
�M�� )2 = 0.

(12)

For C � ≪ 1 (a weak undulating topography), a closed
form expression for the thickness pro�le of the primary �ow
can be computed [26, 30, 37–39] by expanding M(�) = 1 +C �M1(�)+O(C2� ) such thatM1(�) = P1 sin(2
�)+P2 cos(2
�)
is periodic and represents the �rst order correction to the
primary �ow.
is assumption used in (12) yields P1 = 0 andP2 = −(P21/(P21 + P22)), where P21 = (2
)4(ReB/3) +(2
)2cot! and P22 = −(@Bi/2(1 + Bi)2). Since ; is small,
another alternative to construct a mathematical form for the
primary �ow would be to set M(�) = 1 + ;M1(�) + O(;2).

is ansatz, however, imposes a mathematical condition on
the Reynolds number, angle of inclination, wall amplitude
and theWeber number associated with the �ow at the leading
order. And at O(;), it involves solving a quartic auxiliary

equation associated with the di
erential equation for deter-
mining M1(�), which as a result yields complicated com-
plementary functions depending upon the nature of roots.

erefore, this approach is avoided here. Having known
the undisturbed thickness of the basic state, the time-
independent properties of the �uid like velocity, temperature,
and so forth can be evaluated at the free surface and averaged
over a typical groove [33] by referring to the leading and �rst
order solutions in Appendix B. 
is yields

�̃ = ∫1
0
(�0 + ;�1)RRRR�=�+ℎ�� = 32 + 34C2�P22, (13a)

�̃ = ∫1
0
(�0 + ;�1)RRRR�=�+ℎ�� = 0. (13b)


e above equations give a �rst insight on the �ow mech-
anism associated with the topography comprising parallel
grooves. From (13a), it is inferred that the averaged time-
independent stream velocity enhances (which would cause
the averaged �ow rate, :̃�, to increase) as the groove ampli-
tude increases, suggesting possible �ow destabilization. Also,
the temperature at the bottom topography is larger than the
averaged temperature at the free surface (cf. (B.2) and (13b),
and note that the temperature averaged on a groove at the
bottom substrate has the value 1). It is known that when
the interfacial �ow is driven by local changes in interfacial
tension due to heating of the substrate, the modi�cation of
the temperature at the free surface due to surface deforma-
tion triggers long-wave thermocapillary instability [68, 69],
sometimes leading to unwetted regions [70]. 
erefore, the
di
erence in temperature a
ects the surface tension and
causes the �uid to �ow from hotter region to colder regions,
thereby increasing the wave amplitude.

It should be remarked that contrary to the observations
in Gambaryan-Roisman and Stephan [35], Sadiq et al. [37],
and Sadiq [38], (13a) proposes possible �ow destabilization
on a patterned topography as the averaged �ow rate over a
typical groove increases. However, at this juncture, it is really
premature to speculate and conclude on this behavior of the
time-independent velocity on a grooved topography, given
the fact that (13a) and (13b) are obtained only for small C �.
Adopting a numerical solution of M(�) (as discussed later),
a detailed investigation on the equilibria would only reveal
the true picture of the basic state getting either stabilized or
destabilized. In this regard, a small harmonic disturbance (a
function of � times a sinusoid, which is a function of � and
) is imposed on the primary �ow thickness to investigate
the temporal stability and to see whether the disturbance
dies away in the course of time (stable �ow), persists as
a disturbance of similar magnitude (neutral stability) or
continues to grow in time leading to a di
erent laminar or
turbulent �ow (instability) in the form,

ℎ = M (�) + ST (�) ����+�	, (14)

where � = P� − *UP� is the temporal pulsation (eigenvalue)
such that U, P�, and P� are real numbers and represent the
wavenumber, the linear ampli�cation, and the linear wave
velocity, respectively (by �xing U to be real, the solution can
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oscillate but is not allowed to grow/decay in �). 
e absolute
value of the disturbance amplitude function ST(�) is small
such that max(|T(�)|) = O(1) and S ≪ 1. Substituting (14)
in (11), a linear ordinary di
erential equation of fourth order
in T(�) is found:
;3 ReBM3 �4T��4 + ;ReBM2 �M�� �3T��3

+ ; [ @BiM2
2(1 + BiM)2 − cot!M3 − 23 ReBU2M3] �2T��2

+ ; [ 2@Bi

(1 + BiM)3M
�M�� − 3cot!M2 (2�M�� + ����)

+ReBM2 (�3M��3 + �3���3) − ReBU2M2 �M�� ] �T��
+ ; [3; *UM2 + 2740U2 ReM6 − 152 Re ΓU2M4

+ cot!U2M3 + 13 ReBU4M3
− 6cot!M�M�� (�M�� + ����)
− 3cot!M2 (�2M��2 + �2���2)
+ 2ReBM�M�� (�3M��3 + �3���3)
+ ReBM2 (�4M��4 + �4���4)
− @BiU2M2
2(1 + BiM)2 +

@BiM
(1 + BiM)2

�2M��2
− @Bi2M2
(1 + BiM)3

�2M��2 + @Bi

(1 + BiM)3(
�M�� )2

− 3@Bi2M
(1 + BiM)4(

�M�� )2] T
= �(−1 − 3*;URe Γ2 M2 + 5*;URe8 M4) T,

(15)

provided that |��	| < (1/Bi|ST|)(1 + Bi|M|).
For the �ow on a planar wall, the terms contributing to

the real and imaginary parts of the complex eigenvalue � are
found as (M = 1, � = 0, and T is a constant)

P� = (;U2 [(65)Re+3Re Γ − cot!

+ @Bi

2(1 + Bi)2 −
ReB3 U2])

× [1 + ;2U2 (3Re Γ2 − 5Re8 )]−1,
(16a)

P� = 3 + ; [3Re Γ2 − 5Re8 ]P�. (16b)

For ; ≪ 1, the above result reduces to the asymptotic
analysis result of the Orr-Sommerfeld system considered in
Sadiq et al. [21] for a Newtonian �uid, however on a rigid
impermeable plane. 
e condition for the surface wave
instability (P� > 0) from (16a) becomes

Re > cot! − (@Bi/2(1 + Bi)2)
6/5 + 3Γ − U2 (B/3) , (17)

which shows that the critical Reynolds number decreases
when the viscoelastic e
ect increases and also when the ther-
mocapillary e
ect increases, indicating �ow destabilization.
However, when B increases the critical Reynolds number
increases implying stabilization of the �ow. Also, note that
ignoring surface tension and heating e
ects at the leading
order for a Newtonian �lm, the well-known hydrodynamic
instability condition Re > (5/6)cot! is recovered, which
shows that a vertically falling �lm is always unstable.

When T is a function of � and the �ow is on a planar
wall, (15) becomes a fourth-order linear di
erential equation
with constant coe�cients, which can be straightforwardly
solved. On a topographical substrate when Marangoni and
surface-tension e
ects are neglected, (15) reduces to the

form �(�)(�2T/��2) + :(�)T = 0. For an eigenvalue �,
the eigenfunction T could be explicitly solved using a series
solution technique for the above second-order di
erential
equation at ordinary points � ̸= (1/2
)cos−1(1/C �).

Since the coe�cients of (15) are periodic with period 1,
according to Floquet theory, T can be expressed in the form

[71] T(�) = Z(�)����, where Z(�) has period 1. 
e parameter[ is taken real by neglecting the exponential growth of
disturbances along the spanwise direction. Together with the
periodic boundary conditions for Z(�), when the topography
is uneven, the eigenvalue problem (15) can be solved numer-
ically to determine P�(U, [) and P�(U, [). Also, note that
(15) remains invariant under the transformation � → −�,
suggesting that (15) is symmetric about the (�,  ) plane
(remark that (11) is actually symmetric about this plane), and
hence, one can concentrate only in the region� ∈ [0, 1/2] and
demand �T/�� = 0, �3T/��3 = 0 at the end points. Another
alternative would be the application of symmetry boundary
conditions along � = 0 and periodic boundary conditions at
the end points of a typical groove. However, in the rest of the
analysis, only periodic conditions are assumed.

In order to solve the linear stability problem (15),
a spectral collocationmethod is used by considering periodic
boundary conditions.
e interval [0, 1] in which the bottom
topography � = C � cos(2
�) is de�ned and periodic in� is mapped onto [−1, 1] using the linear transformation` = 2�−1.
e collocation points �̀ in the interval [−1, 1] are



Chinese Journal of Engineering 7

distributed according to the cosine law (where� is a positive
even integer):

�̀ = cos(a
� ) , a = 0, 1, 2, . . . , � − 1,�. (18)


e derivatives �/�` are replaced by amatrixb of dimension(0 : �, 0 : �), whose elements are

b (d, e) = f
(−1)
+�f� ( 
̀ − �̀) , 0 ≤ d, e ≤ �, d ̸= e, (19a)

b (d, d) = − 
̀2 (1 − `2
 ) , 1 ≤ d ≤ � − 1, (19b)

b (0, 0) = −b (�,�) = 2�2 + 16 , (19c)

where 
̀, �̀ are distributed according to the cosine law (18).
Further, f0 = f� = 2, f� = 1, and 1 ≤ e ≤ � − 1. 
e
vector obtained by multiplying T with the matrix b is the
discrete approximation of �T/�`. Higher order derivatives
are approximated and obtained by repeated multiplication by
the matrix b. For the cosine law based on the odd values
of � and for the theoretical foundation for approximating
the derivatives through successive matrixmultiplications, the
readers are advised to refer to the standard literature on
spectral methods [72, 73].

Instead of choosing a particular �uid and analyzing its
stability (which has only a limited scope), the parameters are
changed by varying the components of P = (!, C �, Re,B, Γ,@, and Bi) to analyze the equilibria. However, following Joo
et al. [18] and Miladinova et al. [19], ; = 0.2 is �xed. Also,
while varying the parameters such as Re and Bi, it is ensured
that these parameters do not take unrealistic values. For
instance, the long-wave equation on a planar surface displays
�nite-time blow-up behavior when the Reynolds number
exceeds a particular value [20, 74], and for liquid �lms in
contact with gases in many realistic experimental situations,
Biot number is usually small [20]. Further, as the rheological
model used in the study is assumed to be realistic only for
weakly elastic �uids, the resulting �ow should be considered
as a perturbation of a Newtonian viscous �ow, and therefore,
small values of Γ are chosen. Lastly, appreciable surface-
tension e
ect is included bearing in mind the thinness of the
�lm.

In the numerical calculations performed, the maximal
values of P� correspond to [ = 0, so that the most unstable
modes are those for which Z(�) is periodic. 
erefore, the
dependence of P� on U alone is considered from this point
onwards. Note that the numerically generated solution of
(12) was considered in the study for plotting all the �gures
presented here. 
e reason for doing this is twofold: (i)
the accuracy of M(�) theoretically constructed using the
imposition C � ≪ 1 can be checked and (ii) solutions at C � ∼
O(1) can be computed. 
is was accounted by integrating
(12) numerically by approximating the derivatives using the
spectral collocation technique and then solving the resulting
nonlinear algebraic system usingNewton’smethod. However,
an initial condition is required to initiate integration. For this

purpose, the evaluated analytical expression of the primary
�ow was considered as the initial condition, and periodic
conditions were chosen as boundary conditions. Figure 2
displays the free surface obtained through approximated ana-
lytical and numerical solutions ofM(�). It is observed that the
numerical solution ofM(�) shows a largest discrepancy of 8%
from the analytical solution.
is reduces further either when
the magnitude of the Weber number increases or when the
topography is more inclined, leading to agreement between
the numerical and analytical values of i(�), as shown in
Figure 2. Interestingly, D’Alessio et al. [33] also reported
on the behavior of free surface approaching unity as the
magnitude of surface tension increases (cf. Figures 4 and 23
in their research paper). Finally, note that in order to ensure
the accuracy of the numerical results yielded by the spectral
method, the derivatives were approximated using a central
di
erence scheme of second-order accuracy and solved (only
the numerical results obtained through spectral method are
however presented in this paper). 
e numerical results
ensuing due to these two di
erent procedures agreed with
each other. For this purpose, � ≥ 40 was considered in the
spectral technique, and � ≥ 200 was chosen to implement
the �nite di
erence scheme.

Stability characteristics of Newtonian and non-
Newtonian isothermal layers are examined �rst. It is known
that the �ow of an isothermal liquid �lm with a smooth
free surface down a vertical plane is unstable at all Reynolds
numbers [75]. Also, since the amplitude of the long waves on
a vertically falling �lm is larger than that along an inclined
substrate case [37, 38], in the rest of the investigation,! = 
/2 is set.

It is ascertained from the numerical behavior of the
linear ampli�cation curves that the inertial force increases
the instability threshold for Newtonian �lms falling along
parallel longitudinal grooves (Figure 3). For weakly undu-
lating topography at small Reynolds numbers, the grooves
aligned parallel to the �ow direction decrease the growth
rate leading to waves with small amplitude, and reduces the
range of unstable wavenumbers in relation to the �ow on
a �at substrate. As the Reynolds number increases, there
exists a certain wavenumber below which the growth rate
for the �ow along grooves is larger than that along a planar
substrate, and such a trend changes beyond this wavenumber
(Figure 3(b) (i) and Figure 3(c) (i)). Take a note on the
maximum amplitude pro�les presented in Sadiq et al. [37]
and Sadiq [38], where Mmax|��>0 > Mmax|��=0 for a short

period of time before this behavior changes. 
e probable
explanation to this behavior can be gathered from (13a),
which suggests increase in average velocity at the free surface
on a typical groove. 
erefore, when a small disturbance is
imposed on the primary �ow, the grooves tend to increase the
growth rate initially. When the bottom undulations increase,
the numerical investigation exhibits interesting behavior on
the �lms stability. 
ere are instances at which the maximal
growth rate corresponding to a large Weber number is larger
than that related to a small Weber number; however, the
range of unstable wavenumbers remains smaller than the case
corresponding to small Weber numbers (Figure 3(b) (ii)).
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Figure 2: Free surface pro�les corresponding to the primary �ow on an uneven substrate with C � = 0.5, Re = 5, @ = 5, and Bi = 0.1: (a)
cot! = 2,B = 1; (b) cot! = 2,B = 10, and (c) cot! = 0,B = 1.

For a �xed moderate groove amplitude, when the Weber
number increases, the �ow destabilizes at small Reynolds
numbers (Figure 3(a) (ii) and Figure 3(b) (iii)) and stabi-
lizes when the magnitude of the inertial force increases
(Figure 3(c) (iii)). Pointing out on the observations reported
through direct [27, 28, 33] and indirect problems [76] for
the �ow across wavy undulations on an inclined topogra-
phy (where the critical Reynolds number decreased on an
undulating topography when the e
ect of surface tension is
appreciable), here, at �xed Re and C �, the variation in We
shows either destabilizing or stabilizing tendency on the �ow.

When the non-Newtonian e
ects are included, the
in�nitesimal disturbance to the primary �ow leads the vis-
coelastic �lm to destabilize in relation to the Newtonian �lm.

e sketch in Figure 4 displays interesting trends associated
with the growth rate curves of isothermal Newtonian and
viscoelastic layers on a vertical substrate, when there is a
pronounced inertial e
ect. At Re = 5, the numerical results of

the stability analysis predict decrement in the value of growth
rate when the surface-tension e
ect increases (compare the
curves in each column in Figure 4). Analogous to the New-
tonian �ow, the growth rate curves corresponding to the vis-
coelastic �lm on a grooved topography show increasing and
decreasing behavior before and a�er a certainwavenumber in
connection to the �ow on a �at substrate. However, at large
Weber numbers, when the viscoelastic parameter increases,
the growth rate and the window of unstable wavenumbers
for the �ow on a topographical substrate are larger than the
case when C � = 0. For example, referring to Figure 4(c)
(ii) and Figure 4(c) (iii), it is seen that C � = 0.4 yields
larger growth rate values than C � = 0, and the range of
unstable wavenumbers in Figure 4(c) (ii) corresponding toC � = 0 (unstable U ∈ [0, 0.933]) is smaller than that forC � = 0.4 (U ∈ [0, 0.9445]). For Figure 4(c) (iii), unstableU for C � = 0 lies in the interval [0, 0.664], and that forC � = 0.4 lies in [0, 0.6747]. But when the amplitude of
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Figure 3: Variation of growth rate with wavenumber for a vertically falling Newtonian isothermal �lm: (a) Re = 0.5, (b) Re = 1 and (c)
Re = 5; (1) B = 1, (2) B = 5, and (3) B = 10. In a(i)–c(i), solid lines representC � = 0, and broken lines are the results for C � = 0.4, and (ii)
and (iii) are for C � = 0.7 and C � = 0.9, respectively.

the undulating groove becomes larger, the growth rate curves
and the range of unstable wavenumbers start decreasing (cf.
curve 4 in Figure 4(c) (ii) and Figure 4(c) (iii)). See also
Figure 11 presented later displaying the above characteristics
on a heated uneven substrate. Figure 5 shows the dispersion
curves for linear growth rate of a viscoelastic �lm at small
Reynolds numbers. Just as in the case of a Newtonian
�lm, at �xed moderate groove amplitudes, the topographical
substrate destabilizes the small Reynolds number viscoelastic
�ow as the magnitude of the surface-tension e
ect increases
(Figure 5 (ii), (iii)). As a note from the numerical study
carried, it should be mentioned that when a value as high
as Γ = 1 was considered (such a value may be beyond
the realistic range of weakly elastic �uids), the longitudinal
grooves destabilized the �ow completely.

To substantiate the information availed from Figures 3, 4,
and 5, neutral stability curves are presented.While the neutral
stability curves in Figure 6 clearly display the destabilizing
nature of the periodic bottom undulations at small Reynolds

and large Weber numbers, Figure 7 distinctly shows the
instability at small C � when the viscoelastic e
ects increase
at Re = 5, as already discussed in relation to Figure 4.

In Figure 8, the phase velocity curves varying with U are
displayed. 
e phase speed value is 3 for the �ow on a planar
substrate initially (this agrees with the theoretical prediction
suggested by (16b) at ; ≪ 1). However, the nonlinear nature
of the phase velocity curves can be attributed due to the gross
e
ect of all the dimensionless parameters involved in the
problem without truncating or approximating them at any
level; for example, see (16b). 
e linear wave velocity curves
�rst decrease up to a certain wavenumber and then increase
beyond it. It is seen that the phase velocity decreases as the
viscoelastic parameter increases. 
is fact can be con�rmed
by referring to the �owover a �at substrate (cf. (16b)), where it
is observed thatwhenP� > 0,P�would increase as a function
of Γ only when Γ > 5/12. Otherwise, despite P� > 0, P�
can decrease when Γ increases provided that 0 ≤ Γ ≤ 5/12.
Only numerical calculations reveal the in�uence of an uneven
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Figure 4: Dispersion of linear waves for isothermal Newtonian and viscoelastic �lms, temporal growth rate at Re = 5, (a) Γ = 0, (b) Γ = 0.02
and (c) Γ = 0.06; (1) C � = 0, (2) C � = 0.4, (3) C � = 0.7, and (4) C � = 0.9; (i)B = 1, (ii)B = 5, and (iii)B = 10.

geometry on the wave velocity. Computations show that the
phase velocity is larger for the case of a �ow on a grooved
topography than on a planar substrate.

For the case of a topographical substrate subjected to
uniform heating, D’Alessio et al. [33] reported on very inter-
esting phenomena associated with Marangoni e
ect. 
eir
study witnessed that thermocapillarity can either stabilize
or destabilize the �ow depending upon the strength of the
Marangoni number and can also lead to a reversal in �ow
stability. Figure 9 shows the response of thermocapillary
e
ect on Newtonian and viscoelastic �lms over a �at and
uneven topography. At low Reynolds number, the amplitude
of the grooves decides the instability mechanism depending
upon the strength of heating. For small groove amplitudes
and for a �xedWeber number, increase inMarangoni number
leads to �lm destabilization. Apart from the already observed
behavior of �ow destabilization at moderate reasonable C �
with increase in Weber number, it is seen that increase in
Marangoni e
ect can promote stability at large Weber num-
bers (cf. Figure 9(c)). Such an e
ect is also observed when

the Reynolds number increases (�gures are not included
here in order to avoid repetition). Observe that in the recent
research report of D’Alessio et al. [33], they have identi�ed
on a semiinclined plane (cf. Figure 8 in their paper) that
for a given groove measure with increase in Marangoni
number, the critical Reynolds number increases leading to
�lm stabilization, provided the surface-tension e
ect is large.
When the viscoelastic e
ects are included and when the
Reynolds number associated with the �ow is very small, the
�lm tends to destabilize in the absence of Marangoni e
ect.
However, at C � = 0.7 and for pronounced surface-tension
e
ects, increase in heating corresponds to �ow stabilization
(in Figure 9(d), compare curves 3 with 4 and 5 with 6). 
e
in�uence ofMarangoni stress on the stability threshold at low
Reynolds number is presented by means of Figure 10, which
shows improved stability at large Weber numbers at certain
regions ofC �. However, it is also inferred from the �gure that
asC � increases, the trend changes, and once againMarangoni
stresses start destabilizing the �ow. In conjunction with the
results displayed in Figure 4(c) (ii), Figure 11 reveals �lm
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Figure 5: Variation of growth rate with wavenumber for a vertically falling viscoelastic isothermal �lmwith Γ = 0.06 and Re = 0.5, (1) B = 1,(2) B = 5, and (3) B = 10. In (i), solid lines represent C � = 0, and broken lines are the results for C � = 0.4, and (ii) and (iii) are for C � = 0.7
and C � = 0.9, respectively.

destabilization at Re = 5when the viscoelastic e
ects increase
on a grooved topography (cf. curves for C � = 0 and 0.4 in
Figure 11). 
e e
ect of thermocapillarity in this case is to
increase the growth rate. However, at moderate C � = 0.9
increase in heating stabilizes the �ow, similar to the case
discussed in Figure 9(d).

Figure 12 presents linear ampli�cation curves at Re = 5
for di
erent values of Biot number for both Newtonian and
non-Newtonian liquids. When the rate of heat transfer from
the liquid to the ambient gas phase increases, the �ow tends

to destabilize (Figures 12(a) and 12(b)). For a non-Newtonian
�lm on a planar substrate with increase in the magnitude
of Bi, the growth rate curves dominate the Newtonian case
causing more �ow destabilization (Figure 12(a)). On a sub-
strate with topography, the groove amplitude plays a crucial
role in deciding �lms stability. Note that increase in the value
of viscoelastic parameter for a �ow on a topography for
which C � = 0.4 causes �ow destabilization compared to the
planar case at small values of Bi as inferred from the curves
4 in Figures 12(a) and 12(b) for which the range of unstable
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Figure 6: Stability chart in U−C � plane for a vertically falling isothermal �lm: (a) Γ = 0, (b) Γ = 0.06; (i) Re = 0.5, (ii) Re = 1, and (1) B = 1,(2) B = 5, and (3) B = 10 10; S-Stable region, US-Unstable region.

wavenumbers, respectively is [0, 0.984] and [0, 0.972], despite
the respective maximal growth rates being P�max

= 0.27
and P�max

= 0.303. However, when the heat transfer rate
increases, the growth rate curves over a topography with
small amplitude increase up to a certain wavenumber in
relation to the growth rate curve over a �at substrate, and this
trend changes beyond such a wavenumber causing reversal
in stability (cf. curves 6(a) and 6(b) in Figure 12(d), where
these curves correspond to curve 6 from Figures 12(a) and
12(b), resp.). At moderate values of groove amplitude, it
was already observed that the Marangoni e
ect can stabilize
the �ow mechanism. 
is stabilizing mechanism enhances
further when the heat transfer rate increases (Figure 12(c)).
When the Reynolds number corresponding to the �ow is
small and whenB and@ are large, increase in Biot number
stabilizes the �ow con�guration as seen in Figure 13 (notice
that the stabilization process corresponding to increased
thermocapillary e
ect is also seen).


e present investigation, although valid only at the
region where the viscous forces dominate inertia due to long-
wave modeling, has revealed interesting results associated
with the linear stability. 
e results showed the dramatic
impact of the bottom topography on the �lms stability in
conjunction with the force of surface-tension andMarangoni
stresses. 
e analytical expansion of the streamwise velocity
at the free surface averaged over a typical bottom undulation
does reveal only its increasing tendency contributing towards
�ow destabilization, but the numerical investigation on the
�lms stability exposes the additional e
ects involved in
the problem. A close-up theoretical investigation can be
performed by referring to Figure 2 to get an insight into the
physical mechanism involved. In this �gure, it is observed
that the free surface �attens up at  = 1 for a large value
of B and a small value of bottom amplitude. Using this fact
and referring to Appendix B, the leading order solutions can
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Figure 7: Neutral stability curves of an isothermal �lm at Re = 5 and ! = 90∘: (a) B = 5, (b) B = 10, and (1) Γ = 0, (2) Γ = 0.02, and(3) Γ = 0.06.
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be obtained. For the streamwise �ow, amongst others, the
equations

�0�� + 3 = 0, �0 = 0 on  = � (�, �) ,
�0� = 0 on  = 1 (20)

lead to

�0 (�,  ) = 3 ( − �) + 32 (�2 −  2) . (21)

An integration of (21) yields the base �ow rate as

:̃ = ∫1
�
�0 (�,  ) � = (1 − �)3 (22)

and the averaged �ow rate as

:̃� = ∫1
0
:̃�� = 1 + 3C2�2 , (23)

indicating that for large values of surface tension force the
averaged value of the �ow rate increases leading to �ow
destabilization.
eundisturbed thickness being a function of
the spanwise variable, when perturbed along the �-direction,
leads to an eigenvalue problem comprising terms arising as
a consequence of streamwise perturbation. 
e net e
ect of
these terms with the aid of numerical approach shows that
both �ow stabilization and destabilization are possible in
various parametric regimes.

4. Concluding Remarks and Objective


e linear stability of a thin Walters-B �uid due to the
linear variation of the surface-tension along a liquid interface
induced by temperature gradients along the liquid layer was
examined on a topography comprising sinusoidal longitudi-
nal grooves. 
e nontrivial eigenvalue problem was numeri-
cally solved using a Chebyshev spectral collocation technique
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Figure 9: 
e growth rate of the amplitudes at Re = 0.5 and Bi = 0.1 on a vertically held substrate. 
e curves in (a), (b), and (c) correspond
to Newtonian �lms. In (d), the odd numbers represent@ = 0, and the even numbers are for@ = 10. Also, the solid lines in (d) are for Γ = 0,
the broken lines are for Γ = 0.02, and the broken-dotted lines are for Γ = 0.06. Note that although Bi = 0.1 is taken, in case of @ = 0, it
corresponds to an isothermal problem, and the e
ect of Bi is ignored.

and the results were compared with those occurring from a
central di
erence scheme of second order accuracy to ensure
numerical correctness.

Numerical investigation of the eigenvalue problem cor-
responding to a falling �lm on a vertically held substrate
revealed interesting results. In principle, when the viscous
e
ects dominate the inertial forces, the �ow tends to stabilize

the system on a longitudinal groove topography, provided
the surface-tension e
ects are weak. However, when the
magnitude of the surface-tension force increases, interesting
trends were exhibited by the stability curves. Some of the
interesting key observations in the study can be enlisted
as follows: (i) increased surface-tension e
ects contribute
towards �ow destabilization at low-Reynolds number as



Chinese Journal of Engineering 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

S

k

A l

1

1

2

2

US

Figure 10: In�uence of Marangoni stress on the neutral stability
curves at Re = 0.5 and Bi = 0.1 on a vertically held substrate:(1) B = 5 and (2) B = 10. Broken lines are for @ = 0, and the
solid lines represent@ = 10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.01

0

0.05

0.1

0.15

0.2

0.25

0.3
0.31

k

C
R

M = 0

W = 5

Γ = 0.06
A l = 0.4

M = 0
W = 5
Γ = 0.06
A l = 0

M = 0

W = 5

Γ = 0.06
A l = 0.9

M = 5
W = 5
Γ = 0.06
A l = 0

M = 5
W = 5
Γ = 0.06
A l = 0.4

M = 5
W = 5
Γ = 0.06
A l = 0.9

0.95

Figure 11: Growth rate as a function of wavenumber at Re = 5 and
Bi = 0.1.

the amplitude of the bottom undulations increase (ii)
Marangoni stresses can lead the system towards �ow stabi-
lization for certain increasing range over C �, provided the
strength of theWeber number is appreciable, (iii) viscoelastic
e
ects destabilize the system compared to a Newtonian
�ow, but the structured topography tends to stabilize the
�ow in relation to the �ow on a planar substrate for weak
viscoelastic e
ects, (iv) increase in viscoelasticity promotes
instability for small groove amplitudes when the Weber and
Reynolds number magnitude increases and (v) increase in
heat transport rate at large Weber numbers causes �ow
stabilization at low-Reynolds numbers.

Calculations were performed through numerical
approach to analyze the e
ect of perturbation on the

undisturbed state on a longitudinal grooved topography.

eoretically, it was also found that the average �ow rate
increases when the surface-tension force increases at small
groove amplitudes. Although the above facts are �ndings
based on a numerical linear stability study, such a behavior
is yet to be con�rmed through laboratory investigations.
However, the latest research article by D’Alessio et al. [33]
reported strikingly on similar characteristics for the �ow of
a Newtonian �lm but across the undulations over an inclined
topography.

It is not only with a fundamental research point of interest
but also due to bene�ts gained through peer research that the
thin �lm community intensively and actively strives to shed
light on understanding intricate and complex mechanisms
involved in falling �lm problems and �ll up unknown
gaps. It should be remarked that Mazouchi and Homsy
[77] compared the solution to two dimensional Stokes �ow
to their earlier thin-�lm based solution. 
is comparison
indicated that the thin-�lm hypothesis remains valid even in
the presence of steep topographic variation. In this regard,
theoretical understanding and modeling of �ows and defor-
mation in Newtonian/non-Newtonian �uids on small scales
on a patterned topography assuming the �lm to be thinwould
help in the design and fabrication of small scale structures
over the topography to regulate heat and mass transfer
in so� matter with smart and advanced functionalities to
suppress instabilities and in preventing rupture mechanism.
In addition, such studies may help in understanding the
unwanted in�uence of surface irregularities, which result
from a particular stage in a manufacturing process thereby
a
ecting the �ow mechanism.

Walters-B �uid �nds its usage in medicinal diagnosis and
clinical applications. For instance, Nadeem et al. [78] have
mentioned that viscoelastic �uid can easily �ow in intes-
tine because elastic materials strain instantaneously when
stretched and just as quickly return to their original state
once the stress is removed and that the Walters-B model is
quite close to our real life system. 
e present study may
serve as a part of the basis to study the peristaltic �ow of
Walters-B model in asymmetrical channels or tubes with
geometries inside. Also, Walters-B type �nds relevance and
importance [60] in geophysical �uid dynamics, chemical
technology, and petroleum industries. An implication of the
study could be possibly in the product quality and patterning
of the substrates, which require multilayer coating where
one of the purposes of the bottom layer is to planarize the
topography, that is, to smooth out the uneven topography.
And a nonuniform coating leads to low quality products or
to manufacturing failures. Pavlidis et al. [45] reported on
the steady viscoelastic �lm �ow over 2D topography with
the prime objective to analyze the e
ect of the viscoelastic
properties of polymeric solutions in spreading over and
planarizing various topographical features, especially during
spin-coating. Such studies are interesting and could be
extended for topographies with longitudinal geometries for
second-order �uids with or without invoking lubrication
approximation.

Mathematical models obtained by combining a system-
atic gradient expansion with weighted residual techniques
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Figure 12: Linear ampli�cation rate: (1) P(
/2, C �, 5, 5, 0, 0, 0), (2) P(
/2, C �, 5, 5, 0.06, 0, 0), (3) P(
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using polynomials as test functions may possibly shed more
light on the stability thresholds beyond the low-Reynolds
number regime [20, 79]. Such a study has been accomplished
by Amatousse et al. [80] to study traveling waves on falling
Walters-B viscoelastic �uid. As a future objective, a Galerkin
strategy will be employed to obtain a system of equations
coupling the �lm thickness and �ow rates at various orders
to investigate the stability [20, 38, 79, 80]. Also, it would be
interesting to investigate the combined e
ect of nonuniform
heating and the substrate topography on the equilibria of a
�lm, for the case when the �ow rate is high and when the
topography is inundated. Of particular interest would also
be to analyze the phenomena in case of a partially �lled
topography occurring due to low �ow rate, where the peaks
of the topography are exposed and remain dry. Another
direction of study could be to use an Oldroyd-B model and
investigate the stability if the nonlinearities inherent in more
realistic constitutive equations become important [47]. Such
studies will be addressed in future investigations.

Appendices

A. Stress Tensor Components


e expressions for the components of the stress tensor T in
the explicit form are

��� = −� + 2��� − 2Γ0
× [��	 + ���� + V��� + ���� − 2�2� − �2�

−�2� − ��V� − ����] ,
��� = −� + 2�V� − 2Γ0

× [V�	 + �V�� + VV�� + �V�� − V
2
� − 2V2�

−V2� − ��V� − V���] ,
��� = −� + 2��� − 2Γ0

× [��	 + ���� + V��� + ���� − �2� − �2�
−2�2� − ���� − V���] ,

��� = ��� = � (�� + V�) − Γ0
× [��	 + V�	 + � (��� + V��) + V (��� + V��)

+ � (��� + V��) − 3��V� − 3��V�
−2��V� − ���� − V�V� − V��� − ����] ,

��� = ��� = � (�� + ��) − Γ0
× [��	 + ��	 + � (��� + ���) + V (��� + ���)

+ � (��� + ���) − 3���� − 3����
− 2���� − ���� − ���� − V��� − ��V�] ,

��� = ��� = � (V� + ��) − Γ0

× [V�	 + ��	 + � (V�� + ���) + V (V�� + ���)
+ � (V�� + ���) − 3V��� − 2V���
− 2V��� − ���� − ���� − ��V�
−V�V� − V���] .

(A.1)

B. Dimensionless Equations and Solutions at
the Leading and First Order


e nondimensional equations accurate up to O(;) are given
by

�� + V� + �� = 0,
;Re (�	 + ��� + V�� + ���)

= 3 − ;Re�� + ��� + ;Re Γ
× (2����� + 2V���� + 2����� − ���	

+ ����� + ��V�� + ����� − �����
−V���� − �����) ,

;Re (V	 + �V� + VV� + �V�)
= −;Re�� + V�� + ;Re Γ
× (2��V�� + 2V�V�� + 2��V�� − V��	

+ V���� + V�V�� + V���� − �V���
−VV��� − �V���) ,
;��� = 3cot! + Re��,

��� = ;Pe (�	 + ��� + V�� + ���) .

(B.1)


e corresponding boundary conditions on  = �(�, �) are
� = 0, V = 0, � = 0, � = 1, (B.2)

and those on  = �(�, �, 
) are
ℎ	 + ��� + V�� = �,

�� + Bi� = 0,
� + 2;

Re
(���� + ��V� − ��)

= − (;2B�) (1 − Ca�) (��� + ���) = 0,
�� + ;@(�� + ����) = ;Re Γ

× (2���2� + 2����V� + ��	 + ���� + V���
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+ ���� −3���� − ���� − ��V�) ,
V� + ;@(�� + ����) = ;Re Γ

× (2��V2� + 2����V� + V�	 + �V�� + VV��

+ �V�� −3V��� − V��� − V�V�) .
(B.3)

Equations and BC’s at O(1) are

�0�� + 3 = 0, V0�� = 0, Re�0� + 3cot! = 0, (B.4a)

�0�� = 0, �0� + V0� + �0� = 0, (B.4b)

�0 = V0 = �0 = 0, �0 = 1 on  = � (�, �) , (B.4c)

�0� = 0, V0� = 0, �0 = −;2We (��� + ���)
on  = � (�, �, 
) , (B.4d)

�0� + Bi�0 = 0 on  = � (�, �, 
) . (B.4e)


e solutions are

�0 = 32 (�2 −  2) + 3� ( − �) , (B.5a)

V0 = 0, (B.5b)

�0 = 3��2 ( − �)2 + 3 ( − �) ℎ��, (B.5c)

�0 = 3cot!
Re

(� −  ) − (;2We) (��� + ���) , (B.5d)

�0 = 1 + Bi (� −  )
1 + Biℎ . (B.5e)

Equations and BC’s at O(;) are

Re (�0	 + �0�0� + V0�0� + �0�0�)
= −Re�0� + �1�� + Re Γ
× (2�0��0�� + 2V0��0�� + 2�0��0�� − �0��	

+ �0��0�� + �0�V0�� + �0��0�� − �0�0���
−V0�0��� − �0�0���)

(B.6a)

Re (V0	 + �0V0� + V0V0� + �0V0�)

= −Re�0� + V1�� + Re Γ
× (2�0�V0�� + 2V0�V0�� + 2�0�V0�� − V0��	

+ V0��0�� + V0�V0�� + V0��0��
−�0V0��� − V0V0��� − �0V0���) ,

(B.6b)

Re�1� − �0�� = 0, (B.6c)

Pe (�0	 + �0�0� + V0�0� + �0�0�) = �1��, (B.6d)

�1� + V1� + �1� = 0, (B.6e)

�1 = V1 = �1 = 0, �1 = 0 on  = � (�, �) , (B.6f)

Re�1 = 2 (�0� − �0��� − V0���) on  = � (�, �, 
) ,
(B.6g)

�1� +@(�0� + ���0�) = Re Γ
× (2�20��� + 2�0�V0��� + �0�	 + �0�0��

+ V0�0�� + �0�0�� − 3�0��0�
−�0��0� − �0�V0�) on  = � (�, �, 
) ,

(B.6h)

V1� +@(�0� + ���0�) = Re Γ
× (2V20��� + 2�0�V0��� + V0�	 + �0V0��

+ V0V0�� + �0V0�� − 3V0��0�
−V0��0� − V0�V0�) on  = � (�, �, 
) ,

(B.6i)

�1� + Bi�1 = 0 on  = � (�, �, 
) . (B.6j)


e solutions are

�1 = Re8 (� −  − ℎ)
× { [−4(� −  )2 + 8ℎ (� −  + ℎ)] ℎ	

+ [9� ℎ (2ℎ +  − �) + 3�ℎ (�2 + 3ℎ2 − 3�ℎ)
−3ℎ ( 2 + 3 ℎ + 3ℎ2) − 3�ℎ + 9ℎ4] ℎ�}

+ 32 Re Γ ( − � + ℎ) (3ℎ� (�ℎ −  ℎ + 3ℎ2) + 2ℎ	)
+ @Biℎ�(1 + Biℎ)2 ( − � + ℎ)
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+ (3cot!��2 − (;2We)Re
2 (���� + ����))

× (( − �)2 − ℎ2) ,
(B.7a)

V1 = −12 ((;2We)Re (���� + ����) − 3cot!��)
× (( − �)2 − ℎ2) + @Biℎ�

(1 + Biℎ)2 ( − � + ℎ) ,
(B.7b)

�1 = ∫ (�1� + V1�) � , (B.7c)

�1 = − 3
Re

( − �)�� − 6
Re

ℎℎ�, (B.7d)

�1 = − 1120 BiPeℎ	(1 + Biℎ)3
× {(−60 2ℎ2 + 40�ℎ3 + 20�3ℎ − 40 ℎ3

− 60�2ℎ2 − 20 3ℎ − 60 �2ℎ
+120 �ℎ2 + 60 2�ℎ)Bi2

+ (−60 2ℎ + 60 2� − 60�2ℎ − 20 3
+ 40ℎ3 + 20�3 + 120 �ℎ
−60 �2)Bi} − 1120 BiPeℎ�(1 + Biℎ)3

× {(−90 3ℎ3 − 270 �2ℎ3+45 �4ℎ+270 2ℎ3�
+ 90�3ℎ3 − 180 2ℎ4 − 99 ℎ5 − 90 2�3ℎ
− 180�2ℎ4 + 9 5ℎ − 9�5ℎ + 360 �ℎ4
+99�ℎ5 − 45 4�ℎ + 90 3�2ℎ)Bi2

+ (60� 3ℎ − 270 2ℎ3 − 15�4ℎ − 45 ℎ4
− 150 3ℎ2 + 450 2ℎ2� + 9 5 − 9�5
+ 99ℎ5 + 45�ℎ4 − 450 �2ℎ2 + 90 3�2
+ 150�3ℎ2−90 2�2ℎ−270�2ℎ3−90 2�3
+ 540 �ℎ3 − 15 4ℎ − 45 4� + 45 �4
+60 �3ℎ)Bi + 180 �ℎ2 + 60�3ℎ

− 180 �2ℎ + 180 2�ℎ − 90�2ℎ2 + 60� 3

+ 45ℎ4 + 60 �3 − 90 2ℎ2 − 90 2�2
− 15 4 − 15�4 − 60 3ℎ} .

(B.7e)
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