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Abstract
Background: Comparative genomic data among organisms allow the reconstruction of their
phylogenies and evolutionary time scales. Molecular timings have been recently used to suggest that
environmental global change have shaped the evolutionary history of diverse terrestrial organisms.
Living xenarthrans (armadillos, anteaters and sloths) constitute an ideal model for studying the
influence of past environmental changes on species diversification. Indeed, extant xenarthran
species are relicts from an evolutionary radiation enhanced by their isolation in South America
during the Tertiary era, a period for which major climate variations and tectonic events are
relatively well documented.

Results: We applied a Bayesian approach to three nuclear genes in order to relax the molecular
clock assumption while accounting for differences in evolutionary dynamics among genes and
incorporating paleontological uncertainties. We obtained a molecular time scale for the evolution
of extant xenarthrans and other placental mammals. Divergence time estimates provide substantial
evidence for contemporaneous diversification events among independent xenarthran lineages. This
correlated pattern of diversification might possibly relate to major environmental changes that
occurred in South America during the Cenozoic.

Conclusions: The observed synchronicity between planetary and biological events suggests that
global change played a crucial role in shaping the evolutionary history of extant xenarthrans. Our
findings open ways to test this hypothesis further in other South American mammalian endemics
like hystricognath rodents, platyrrhine primates, and didelphid marsupials.

Background
Paleobiological studies aim at assessing the influence of
past environmental changes on the evolutionary history

of organisms. To be reliable these macroevolutionary
studies must consider groups possessing a high quality
fossil record coupled with a well documented history of
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past environmental changes encompassing geological,
ecological, climatic and biogeographical events [1]. Infer-
ring the impact of these historical events on the evolution
of faunas is particularly difficult in cases where dispersal
occurred repeatedly between biogeographic areas. For this
reason, islands have for long attracted particular interest
by acting as natural laboratories for the study of evolution
[2]. Owing to its "splendid isolation" from other conti-
nental land masses for a great part of the Tertiary era [3],
South America offers a special case of continental island-
like evolution with its very peculiar mammalian fauna
composed of an initial nucleus of autochthonous taxa
subsequently enriched by few successive waves of success-
ful immigrants.

Numerous studies have attempted to relate the evolution-
ary history of mammalian fossil faunas in South America
with well documented environmental changes [4-6].
However, these studies primarily rely on the quality of the
paleontological record which is by essence incomplete.
Since the seminal paper of Patterson and Pascual [7] sev-
eral advances have been made on the understanding of
the fossil record from this Southern hemisphere continent
[8]. This includes the discovery of additional fossil sites
from the previously poorly sampled Tropical zone and
new faunal horizons from key ages filling gaps in the
stratigraphic sequence. These advances coupled with
progress from multidisciplinary studies encompassing
tectonic [9], isotopic [10] and radiochemical dating [11]
evidences have shed new light on the biotic and environ-
mental history of South America.

Armadillos, anteaters, and sloths belong to Xenarthra and
represent the only placental group with living representa-
tives from the initial South American mammalian stock
[7]. Owing to their longstanding evolutionary history on
this island continent, xenarthrans constitute a promising
model for studying the influence of past environmental
changes on living organisms. Indeed, the earliest records
of Xenarthra in the Paleocene, about 58 million years ago
(Mya) [12,13] already show the morphological features
proper to the group (homodonty with simple hypsodont
teeth lacking enamel) and possess armadillo-like carapace
scutes, suggesting that the group likely originated earlier
during the Paleocene or even possibly during the Late Cre-
taceous [14]. Xenarthra subsequently underwent an
impressive Tertiary radiation which led to a great diversity
of fossil forms [7]. This diversification was promoted by
the South America's isolation from other continental
masses at that time. Indeed, South America separated
completely from Africa in the Late Cretaceous (80–65
Mya) although it maintained some connections with Ant-
arctica until ca. 36 Mya [15]. Its late Tertiary reconnection
with North America via the Isthmus of Panama (3.0–2.5
Mya) led to the Great American Biotic Interchange [16].

During this period of isolation, xenarthrans were one of
the dominant groups of placental mammals in the succes-
sive South American faunas. They occupied a wide range
of ecological niches with fossorial, terrestrial and semi-
arboreal taxa, gigantic forms such as armoured glypto-
donts and ground sloths [17], and sloths even extending
their adaptations to the aquatic environment [18]. The
late arrival of North American immigrants seems to have
only slightly affected xenarthrans and giant terrestrial
forms noteworthy became successful southern invaders of
Central and North America [16]. Nevertheless, a great part
of the xenarthran diversity disappeared with the dramatic
extinctions that took place at the end of the Pleistocene
[7] and essentially affected the largest forms [19]. This
massive and global extinction event left only 30 living
xenarthran species whose paleontological origins and
phylogenetic relationships are very difficult to decipher
from the available fossil record [7], although progresses
have recently been made for understanding the origin of
some groups of living armadillos [20].

Molecular phylogenetics is now providing a new tool to
complement paleontological and geological studies by
allowing to reconstruct both the phylogenetic relation-
ships of living species and the timing of their diversifica-
tion [21]. Indeed, it is likely that global environmental
changes left their footprints in the DNA of living organ-
isms from which the evolutionary history can be reliably
inferred [22]. Furthermore, there is at present accumulat-
ing molecular evidence that past environmental changes
have shaped the evolution of diverse terrestrial organisms
such as frogs [23], squirrels [24], eulipotyphlan mammals
[25] and elephant-shrews [26]. A robust molecular picture
of living xenarthran phylogenetic relationships have been
recently established [27,28] and estimates of their diver-
gence dates have already been used to test biogeographic
hypotheses [29]. However, the recent development of
improved molecular dating methods offers new possibili-
ties in estimating divergence times and allows to go one
step forward [21].

Recent methodological advances in molecular dating
have aimed at relaxing the assumption of the global
molecular clock [30] by modelling the variation of the
evolutionary rate along the phylogenetic tree [31-35].
Among these newly developed methods, the Bayesian
relaxed molecular clock approach of Thorne et al. [32]
appears particularly promising. Indeed, it allows the cal-
culation of divergence time estimates in the presence of
rate variation among lineages coupled with the possibility
of incorporating multiple paleontological constraints
used as priors [36]. This method has already been success-
fully used to address long standing questions such as the
age of the ancestor of the HIV-1 pandemic strain [37] and
the diversification of placental mammals in relation to the
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Cretaceous/Tertiary (K/T) boundary [38-40]. By providing
new molecular time scales, the application of the Bayesian
relaxed clock has also revealed unsuspected biogeo-
graphic patterns in frogs [23] and unravelled the origins of
the Malagasy mammalian fauna [41]. These method are
nonetheless still in their infancy and robustness of their
assumptions to potential sources of errors has to be tested
further [34,42]. However, a significant advance has
recently been made with the implementation of the Baye-
sian method to allow the analysis of genomic data sets by
accounting for differences in evolutionary dynamics
among genes [43]. Here, we showed that divergence dates
within xenarthrans can be accurately inferred by this
method and used to unveil the influence of Tertiary envi-
ronmental changes on the diversification of these South
American endemics.

Results and discussion
Evolutionary rate variations and molecular dating 
methods
The molecular clock hypothesis is rejected for the com-
bined DNA data set by a likelihood ratio test under the
F84 + Γ8 model [44]: δ = 2 x (lnL UNCONSTRAINED - lnL

CLOCK) = 2 x [-87,895.39 - (-89,379.09)] = 2967.40; d.f. =
48; P < 0.0001. This reveals that extensive rate variation
occurs among lineages, with fast evolving taxa like Tonatia
(Laurasiatheria), murid rodents (Euarchontoglires) and
Procavia (Afrotheria), and slow evolving ones like xenar-
thrans (Xenarthra), perissodactyls (Laurasiatheria), and
Dugong and Elephas (Afrotheria) distributed all over the
tree. The existence of such an extensive rate variation
among lineages precludes the application of the linear-
ized tree method [45] whose estimates can be highly
biased when the molecular clock does not hold [46].
Thus, the use of a relaxed molecular clock approach
designed to accommodate rate variation is preferable for
estimating divergence ages with this data set.

The molecular clock assumption can be relaxed in some
ways by defining sub-groups in the tree that evolve locally
clocklike and estimating divergence dates within a likeli-
hood framework [47,48]. Despite a definitive improve-
ment in estimating divergence dates in the case of rate
heterogeneity, these methods present some practical limi-
tations pertaining to the arbitrary set up of local clocks
and the use of a single calibration point [46,49]. The man-
agement of simultaneous calibration points recently
introduced in the local clock method appears nevertheless
promising [50]. Another class of methods has attained at
modelling the evolutionary rate variation along the tree.
The semi-parametric rate smoothing method implements
a stochastic model of rate change based on the hypothesis
of rate autocorrelation between adjacent branches [31,35]
whereas others attempt to model rate variation across the
tree in a Bayesian framework [32-34,36,43]. Here, we

used a Bayesian relaxed molecular clock method first
introduced by Thorne et al. [32] that explicitly accounts
for (i) paleontological uncertainty on calibration points
by estimating the posterior distribution of rates and diver-
gence times from prior distributions on rates and paleon-
tological constraints [36], and (ii) contrasted patterns of
evolutionary rate among genomic loci [43] as this has
been shown to be the case for our data set [27].

Basal placental mammal divergences and the K/T 
boundary
Our dataset comprising 47 placental mammals allowed us
to estimate divergence dates for the major placental clades
in relation to the Cretaceous/Tertiary boundary (K/T).
Indeed, there has been considerable debate [51,52] on the
impact of this massive extinction event on early placental
mammal lineages [53]. A recent molecular study by
Springer et al. [40] using the same Bayesian dating
method and calibration points – but for a longer data set
– found support for the Long Fuse model of Archibald and
Deutschman [54] by placing almost all interordinal diver-
gences in the Late Cretaceous. The results we obtained in
estimating the age of the Most Recent Common Ancestors
(MRCAs) of seven basal placental clades using different
data partitions of our nuclear data set are recapitulated in
Table 1. It is noteworthy than the partitions dominated by
1st and 2nd codon positions (ABV 1+2 and A2BV2) gener-
ally yielded slightly more recent dates than the complete
data set, a behaviour also noticed by Springer et al. [40] on
nuclear exons. Nevertheless, irrespective of the data parti-
tion, all estimates obtained for the MRCAs of basal pla-
cental clades fell within the Late Cretaceous (Table 1). As
there is only slight differences between the results
obtained from the three different partition schemes, we
will here focus on the results obtained from the longest
dataset.

The chronogram obtained on the complete placental data
set is presented in Figure 1. Based on this data set, the
mean posterior age for the placental crown group, corre-
sponding to the early emergence of Afrotheria, is esti-
mated to be in the Early Cretaceous at 107 ± 6 Mya (95%
Credibility Interval: 97–119 Mya). This early split was
quickly followed by the divergence between Xenarthra
and the remaining placentals at the end of the Early Cre-
taceous 103 ± 5 Mya (94–113). All four major placental
clades have their last common ancestors in the Late Creta-
ceous (Figure 1) at respectively: 82 ± 6 Mya for Afrotheria
(71–95), 65 ± 5 Mya for Xenarthra (55–75), 89 ± 4 Mya
for Euarchontoglires (81–100), and 83 ± 3 Mya for Laura-
siatheria (78–90). The divergence between Euarchontog-
lires and Laurasiatheria is estimated to have occurred at 94
± 4 Mya (87–103). On the whole, our mean posterior esti-
mates of basal placental divergence dates are fully com-
patible with those obtained by Springer et al. [40] on a
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similar set of characters (i.e. nuclear exons) and using the
same priors on calibration points. The main placental
divergences appear to have occurred in the Cretaceous
(Figure 1) as previously proposed by other studies [55,56]
based on the results from the quartet dating approach [47]
or by using the Bayesian relaxed molecular clock
approach on complete mitochondrial genomes [38,39]
and concatenated nuclear DNA sequences [25,40]. The
good agreement between these studies in obtaining Creta-
ceous dates for basal placental divergences seems to vali-
date the occurrence of a massive survival of modern
placental lineages across the K/T boundary [40]. However,
more paleontological data on the degree of morphologi-
cal and ecological specialization of early placental line-
ages are required to distinguish further between
alternative models of diversification [53]. In that respect,
the recent discovery of the very well conserved eutherian
fossil Eomaia in the cretaceous of China (125 Mya) is
encouraging [57].

Another insight from our results is the fact that the pale-
ontological constraint put on the paenungulate MRCA
(Figure 1) appears to represent a large underestimate of

the actual divergence time for this group (Table 1). In fact,
the mean posterior estimate for this node a priori con-
strained at a minimum of 54 Mya was 69 ± 6 Mya (59–
81). This suggests that the earliest proboscidean fossil [58]
is far from representing the earliest Paenungulate and that
older fossils belonging to this group remain to be found.
This situation might be extended to the African clade
(Afrotheria) as a whole since its fossil record remains
poorly known despite the recent discovery of a spectacular
Oligocene fauna [59]. The assessment of the relative relia-
bility of independent paleontological constraints repre-
sents a point that certainly needs more scrutiny in
molecular clock analyses since it might have a strong
impact on the results [46]. The use of the more precise and
reliable calibration constraints is indeed advocated to be
of outmost importance in the application of Bayesian
molecular clock methods [43]. By allowing to reciprocally
estimate the posterior age of different nodes for which
paleontological constraint are available, the Bayesian
molecular clock method might help to identify unreliable
calibration points and groups for which older fossils are
likely to be found.

Table 1: Mean Bayesian posterior estimates for basal placental and xenarthran divergence dates, and calibration points using different 
gene partitions. Molecular datings were calculated with MULTIDIVTIME 43 using the following gene partitions of the nuclear genes 
(ADRA2B, BRCA1, and VWF): ABV (1+2) = 1st and 2nd codon positions of the three genes (3421 sites); A2BV2 = 1 st and 2nd codon positions 
of VWF and ADRA2B plus all codon positions of BRCA1 (4350 sites); and ABV (1+2+3) = all codon positions of the three genes (5130 sites). 
Standard deviations (SD) and 95% credibility intervals (CredI) are indicated. Nodes are named and numbered as in Figures.

ABV (1+2) A2BV2 ABV (1+2+3)

Date ± SD (95% CredI) Date ± SD (95% CredI) Date ± SD (95% CredI)

Placentalia 102 ± 6 (91 – 114) 102 ± 6 (92 – 115) 107 ± 6 (97 – 119)
Xenarthra + Boreoeutheria 99 ± 6 (89 – 111) 99 ± 5 (90 – 111) 103 ± 5 (94 – 113)

Boreoeutheria 90 ± 5 (82 – 99) 90 ± 4 (83 – 100) 94 ± 4 (87 – 103)
Afrotheria 80 ± 6 (69 – 92) 79 ± 6 (69 – 92) 82 ± 6 (71 – 95)

Euarchontoglires 85 ± 5 (77 – 94) 85 ± 4 (77 – 94) 89 ± 4 (81 – 100)
Laurasiatheria 81 ± 4 (74 – 88) 81 ± 3 (75 – 88) 83 ± 3 (78 – 90)

PAE (>54) 69 ± 6 (58 – 81) 68 ± 6 (58 – 80) 69 ± 6 (59 – 81)
MUR (>12) 15 ± 2 (12 – 20) 15 ± 2 (12 – 21) 15 ± 2 (12 – 19)

MEG (43 – 60) 58 ± 1 (55 – 60) 59 ± 1 (56 – 60) 59 ± 1 (57 – 60)
PER (54 – 58) 56 ± 1 (54 – 58) 56 ± 1 (54 – 58) 56 ± 1 (54 – 58)

ART (<65) 63 ± 2 (59 – 65) 62 ± 2 (59 – 65) 62 ± 2 (59 – 65)
1. Euphractus / Zaedyus 5 ± 2 (2 – 8) 5 ± 1 (3 – 9) 6 ± 1 (3 – 9)

2. Euphractinae 5 ± 2 (3 – 9) 6 ± 2 (3 – 9) 6 ± 1 (4 – 9)
3. D. novemcinctus / D. kappleri 6 ± 2 (3 – 10) 7 ± 2 (4 – 12) 7 ± 2 (5 – 11)
4. Myrmecophaga / Tamandua 11 ± 2 (7 – 16) 10 ± 2 (6 – 14) 10 ± 2 (7 – 14)

5. Cabassous / Tolypeutes 15 ± 3 (10 – 22) 18 ± 3 (12 – 25) 20 ± 3 (15 – 27)
6. Bradypus / Choloepus 22 ± 4 (15 – 30) 23 ± 4 (16 – 31) 21 ± 3 (15 – 28)

7. Tolypeutinae 17 ± 3 (11 – 25) 20 ± 4 (14 – 27) 22 ± 3 (16 – 29)
8. Tolypeutinae / Euphractinae 27 ± 4 (19 – 37) 29 ± 4 (21 – 39) 33 ± 4 (25 – 42)

9. Myrmecophagidae 41 ± 5 (31 – 53) 43 ± 5 (33 – 53) 40 ± 4 (32 – 49)
10. Dasypodidae 35 ± 5 (26 – 46) 39 ± 5 (29 – 49) 40 ± 5 (31 – 49)

11. Pilosa 56 ± 6 (46 – 68) 58 ± 5 (48 – 69) 55 ± 5 (46 – 65)
12. Xenarthra 64 ± 6 (53 – 76) 68 ± 5 (58 – 79) 65 ± 5 (55 – 75)
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Molecular dating of basal placental divergences and the Cretaceous/Tertiary boundaryFigure 1
Molecular dating of basal placental divergences and the Cretaceous/Tertiary boundary. Chronogram with branch 
lengths proportional to time units obtained from the partitioned analysis of the complete ADRA2B + BRCA1 + VWF (codon 
positions 1+2+3) placental nucleotide dataset (5130 sites). The geological timescale for the Cretaceous and Tertiary eras is 
superimposed (Paleo. = Paleocene; Oligo. = Oligocene; P. = Pliocene). The thick horizontal dashed line marks the Cretaceous/
Tertiary boundary (K/T) at 65 Mya. The grey shaded area representing the Late Cretaceous era illustrates the fact that the 
major placental divergences occurred within this time window. The names of basal placental clades (yellow diamonds) and cal-
ibration nodes (red stars) referring to Table 1 are indicated (PAE: PAEnungulata, MUR: MURidae, MEG: MEGachiroptera, PER: 
PERissodactyla, ART: CetARTiodactyla, and CET: CETacea). The xenarthran subtree is highlighted in bold and numbering of 
nodes refers to Table 1.
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A molecular timescale for xenarthran evolution
The age of the xenarthran crown group estimated by the
Bayesian method in the present study (65 ± 5 Mya; 55–
75) is consistent with previous results obtained from a
local molecular clock approach [48] on the VWF alone
suggesting a 59 to 76 million years (Myr) interval [29].
Xenarthra thus appears to be the major placental clade
with the youngest MRCA, but also with the longest ances-
tral lineage (Figure 1). The first appearance of xenarthrans
in the fossil record is materialized by the occurrence of the
earliest armadillo scutes in the late Paleocene (ca. 58 Mya)
of Brazil [13,15]. Therefore, our results are compatible
with the age assumed for the xenarthran diversification,
but suggest the existence of a xenarthran "ghost" lineage
that left no fossil traces for almost 50 Myr since their pur-
ported origin estimated here around 105 Mya. This obser-
vation concurs with the fact that the origin of xenarthrans
still constitutes a paleontological and biogeographic
enigma [16,60]. Only the discovery of new fossils – pre-
sumably of Cretaceous age according to our estimates –
might help to solve this mystery.

The results obtained for the timing of the xenarthran
diversification by the relaxed molecular clock approach
are recapitulated in Table 1. Following the early split
between Cingulata (armadillos) and Pilosa around 65
Mya at the end of the Cretaceous, anteaters and sloths sep-
arated at the transition between Paleocene and Eocene
some 55 Mya (46–65). Within anteaters the lineage lead-
ing to the pygmy anteater (Cyclopes) emerged in the Mid-
dle Eocene around 40 Mya (32–49), whereas the
Tamandua and Myrmecophaga lineages diverged 30 Myr
later in the Late Miocene at 10 Mya (7–14). The oldest
undoubted fossil of anteaters comes from the Colhuehua-
pian (ca. 20 Mya) South American Land Mammal Age
(SALMA) and they are well known since the Santacrucian
SALMA (ca. 16 Mya). Our estimates, matching those
obtained in Delsuc et al. [29], suggest a long evolution of
anteaters prior to the Colhuehuapian SALMA, and con-
firm the incompleteness of the early fossil record of ant-
eaters. The molecular estimates also emphasize the
relative antiquity of the pygmy anteater lineage whose
only living representative (Cyclopes didactylus) is morpho-
logically very divergent from the other two genera [61].
The considerable evolutionary divergence of the pygmy
anteater might be more efficiently reflected in the taxon-
omy by placing it in its own family as advocated by Barros
et al. [62].

The Bayesian method estimates the separation between
the two modern sloth lineages at 21 Mya (15–28).
Unknown as fossils [7], the extant genera of two-toed
(Choloepus) and three-toed sloths (Bradypus) were once
placed into two distinct families (respectively Megalony-
chidae and Bradypodidae) on the basis of their numerous

morphological differences and a presumably diphyletic
origin [63]. Recent cladistic analyses based on cranioden-
tal evidence, including the living forms and the three tra-
ditionally recognized families of fossil sloths
(Megatheriidae, Megalonychidae and Mylodontidae),
placed Bradypus as the sister-taxon of all remaining sloths
and Choloepus with the extinct Megalonychidae [64]. The
oldest known sloths come from the Eocene of Patagonia
and Antarctica but they cannot be precisely assigned to
any of the recognized lineages [65]. Our fairly ancient esti-
mation confirms the considerable divergence between the
two modern sloth genera bringing support for a taxo-
nomic distinction at a high rank.

The almost complete generic sampling among armadillos
(all living genera but the fairy armadillos Chlamyphorus)
allows for the first time an adequate estimation of the
divergence dates within this poorly known group of pla-
cental mammals. The early emergence of Dasypodinae –
including the living long-nosed armadillos (Dasypodini)
and the fossil Stegotheriini [13,66] – within armadillos is
estimated to have occurred during the Middle Eocene
around 40 Mya (31–49). If the plesiomorphic Astegother-
iini are removed from the Dasypodinae (see [13]), this
estimation is consistent with the paleontological evidence
that suggests an early divergence of this group from other
lineages containing living representatives [66]. The two
divergent living species of long-nosed armadillos studied
(Dasypus novemcinctus and D. kappleri) would have sepa-
rated at 7 Mya (5–11) in the Late Miocene. This is an inter-
esting result that obliges paleontologists to review the
fossil evidence and could also be significant in the taxon-
omy of the living species. The earliest and most primitive
Dasypodini (Anadasypus hondanus) comes from the mid-
dle Miocene Laventan SALMA (ca. 13 Myr) in Colombia
[20]. That means that the origin and radiation of the Dasy-
pus genus must have occurred very soon after the emer-
gence of the group and paleontologists should expect to
find Dasypus remains at any stratigraphic level younger
than the Late Miocene. However, the hard evidence of Pre-
Pleistocene record is very weak. The oldest undoubted fos-
sil record of the genus comes from the Late Pleistocene,
around 0.8 Mya [67]. This fossil evidence would suggest
that the separation between D. novemcincus and D. kappleri
should be much younger than proposed here, during the
Pleistocene or even the Holocene. However, this can be
very easily a matter of the paleontological record.
Although the early existence of Dasypodinae is recorded
in Patagonia, the origin and evolution of the Dasypodini
seems to have happened mostly in Northern South Amer-
ica [20], where the paleontological exposures of appropri-
ate age are not as spectacular as in Southern South
America.
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The split between the two remaining armadillo sub-fami-
lies Tolypeutinae (Tolypeutes, Cabassous, and Priodontes)
and Euphractinae (Euphractus, Chaetophractus, and
Zaedyus) took place about 33 Mya (25–42). The respective
diversifications of these two subfamilies appear to have
happened in relatively short time periods between 20–22
Mya for Tolypeutinae and 6–7 Mya for Euphractinae
(Table 1; Figures 2,3). The evolution of the Tolypeutinae
seems to parallel that of the Dasypodini [20]. This is par-
ticularly evident for the Tolypeutini, including the earliest
known Pedrolypeutes praecursor from the Middle Miocene
Laventan SALMA in Colombia, and the genus Tolypeutes,
known since the Pleistocene of the pampean region. The
fossil record of the giant armadillo (Priodontes) and
naked-tailed armadillos (Cabassous) is virtually unknown,
but the present distribution clearly suggests a Northern
South American history as for the Tolypeutini and Dasy-
podini. On the other hand, the evolution of the euphrac-
tines is more related to Southern South America. The early
history of Euphractini is recorded in Patagonia since the
Deseadan SALMA (30–25 Mya) with Prozaedyus a fossil
form that clearly resembles the living members of the
group. However, Carlini and Scillato-Yané [68] proposed
that the Late Miocene-Pliocene euphractines represent an
independent radiation in temperate to warm environ-
ments of central and northern Argentina from that of the
living genera.

These results confirm the fact that living Dasypodidae
contains quite divergent taxa grouped into subfamilies of
fairly ancient origins [29]. This suggests that the still
unclear paleontological roots of these groups have to be
searched deeper than previously thought [7]. The rela-
tively younger dates obtained within armadillos in Delsuc
et al. [29] might be explained by an effect of reduced taxon
sampling since only three genera (Dasypus, Cabassous and
Chaetophractus) were previously considered. The ancient
dates obtained for the origin of each of the three arma-
dillo subfamilies are coherent with their distinctive mor-
phologies [69] and marked differences observed in the
structure of their spermatozoa [70].

Xenarthran diversification and paleoenvironnemental 
changes
In the light of these results, it is striking to note that some
diversification events within Xenarthra seem to be syn-
chronous. This synchronicity among independent xenar-
thran lineages is illustrated by the correspondence
between the distributions of posterior divergence time
estimates sampled during Markov Chain Monte Carlo
(MCMC) runs presented in Figure 2. Indeed, the separa-
tion of the Cyclopes lineage from other anteaters is per-
fectly correlated with the separation of the Dasypus lineage
from other armadillos around 40 Mya in the Middle
Eocene. The quasi perfect correspondence between these

two speciation events is well illustrated by looking at the
posterior distribution of the differences between the ages
estimated for these nodes which is centred around 0 (Fig-
ure 2A). Similarly, the diversification of the armadillo
subfamily Tolypeutinae (Priodontes, Cabassous and
Tolypeutes) relates to the separation between the two mod-
ern sloths genera around 21–22 Mya in the Early Miocene
(Figure 2B). And finally, the recent diversification of the
subfamily Euphractinae (Chaetophractus, Euphractus and
Zaedyus) also matches well with the separation between
the two living species of the genus Dasypus here included
at 6–7 Mya in the late Miocene (Figure 2C). Such a corre-
lated history between independent lineages is unlikely to
have occurred by chance alone and suggests a role for
external factors in shaping the evolutionary history of liv-
ing xenarthrans.

The influence of environmental changes that occurred
during the Cenozoic of South America on the evolution of
its endemic fauna has long been studied from the paleo-
biogeographical point of view [7]. Indeed, this era was
characterized by drastic climatic variations associated
with changes in sea levels [71], major biotic modifications
[4] and tectonic phases of Andean uplift [5]. Moreover,
recent spectacular advances have greatly improved the
understanding of the fossil record of South America [8].
These advances from multidisciplinary studies on tecton-
ics [9], stable isotopes [10] and biostratigraphy and geo-
chronology [11] have clarified the biotic and
environmental history of South America during the Ceno-
zoic. The making up of this integrated framework has ren-
dered possible to retrace and identify general evolutionary
patterns for terrestrial communities such as mammalian
herbivores [6]. Until recently, there has been only limited
efforts to incorporate the results of molecular studies into
this multidisciplinary canvas [22]. However, some recent
surveys have provided substantial evidence that past envi-
ronmental changes may have significantly influenced the
evolutionary history of mammalian groups at a large scale
[24-26].

As the only South American endemic group of placental
mammals whose evolutionary history encompasses all
the Cenozoic, Xenarthra represents a good candidate to
test the hypothesis that global environmental changes
have influenced the diversification of the endemic fauna.
Interpreting our results in the context of relatively well
documented environmental variables like Andean tec-
tonic crises, changes in ocean level, and temperature vari-
ations sheds light on the peculiar diversification pattern
revealed by our molecular dating analyses. Indeed, each of
the three correlated diversification events identified
among independent xenarthran lineages appears to fol-
low periods of major environmental changes (Figure 3).
More specifically, these events seem to be slightly poste-
Page 7 of 13
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Synchronicity of diversification events among independent xenarthran lineagesFigure 2
Synchronicity of diversification events among independent xenarthran lineages. The histograms represent the dis-
tributions of 10,000 posterior divergence time estimates sampled during the MCMC analysis of the complete ADRA2B + BRCA1 
+ VWF (codon positions 1+2+3) placental dataset (5130 sites). A. First split within anteaters (node 9) versus first split within 
armadillos (node 10). The smaller histogram (top right) shows the posterior distribution of the difference between the ages 
estimated for these nodes (node 10 – node 9). B. Split between three-toed and two-toed sloths (node 6) versus diversification 
of tolypeutine armadillos (nodes 5 and 7). C. Split between the two divergent species of long-nosed armadillos (node 3) versus 
diversification of euphractine armadillos (nodes 1 and 2). Numbering of nodes refers to Table 1 and Figures 1 and 3.
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Molecular timing of the xenarthran radiation and Tertiary major environmental changes in South AmericaFigure 3
Molecular timing of the xenarthran radiation and Tertiary major environmental changes in South America. 
Phylogenetic relationships and divergence times are represented by a chronogram, whose branch lengths are proportional to 
time units, obtained from the partitioned analysis of the complete ADRA2B + BRCA1 + VWF (codon positions 1+2+3) placental 
dataset (5130 sites). Confidence limits on divergence time estimates are represented by rectangles at nodes corresponding to 
± one standard deviation (see Table 1). Tertiary Epoch boundaries follow the 1999 geologic timescale of the Geological Society 
of America [77]. The Cretaceous/Tertiary transition (K/T) is represented by a vertical dashed bar at 65 Mya. Major Andean 
tectonic crises 5 are represented by grey shaded areas. Eustatic curves of sea level are from [71]. The ocean temperature 
curve (in red) is based on the high-resolution deep-sea oxygen isotope record (δO18) [72]. Node numbering refers to Table 1.
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rior to the major phases of Andean uplift defined as "tec-
tonic crises" by Marshall and Sempere [5]. First, the
codiversification of Myrmecophagidae and Dasypodidae
in the Middle Eocene occurred just after the large Incaic
uplift episode (Figure 3). The estimated date of ca. 40 Mya
for these synchronous diversification events matches up
with a well dated pulse of this deformation episode in the
Andes of Peru estimated at ca. 43 Mya [5]. Second, the
simultaneous diversification of modern sloth lineages
and the proposed radiation of Tolypeutinae in the middle
of the Early Miocene correlates with the end of the first
major Bolivian crisis (Figure 3). This diastrophic event
that occurred during the Late Oligocene-Early Miocene
interval was an intense deformational and magmatic epi-
sode widespread along the Andes [9]. The intensity of this
crisis is seen as a turning point in Andean tectonics
because the Andes became at that time the principal relief
of the West coast of South America creating a rain shadow
that significantly influenced South American climates [5].
This period is also notably marked by a thermal optimum
followed by a brief but deep glacial maximum [72] and
sharp marine regressions [71]. This leads to a major shift
in South American mammalian fossil communities with
the beginning of the Miocene radiation of ground sloths
for example [7]. Third, both the radiation of living
euphractine armadillos and the separation between long-
nosed armadillos correspond with the latest phases of the
second major Bolivian tectonic crisis marked by a signifi-
cant increase in Andes height (Figure 3). This period
marks a stage of general cooling with the formation of the
Antarctic ice sheet [72] resulting in a global drying of the
Patagonian region and the formation of the Argentinean
pampas in the Late Miocene [7]. This major shift in vege-
tation with the beginning of the predominance of savan-
nas and grasslands was recorded in isotopic studies in the
form of an elevation of the C4/C3 ratio [10]. The fact that
euphractine armadillos represent a zoogeographically
well defined group that occupies the pampas and savan-
nas of Southern South America [69] adds credit to the idea
that this major environmental change created ecological
opportunities that triggered the diversification of this sub-
family. The evolutionary history of extant xenarthrans
also appears to have been influenced by the major envi-
ronmental changes that marked the transition between
the Eocene and Oligocene epochs with the split at this
time between Tolypeutine and Euphractine armadillos
(Figure 3). This period corresponds to a glacial optimum
with the first formation of a concrete Antarctic ice sheet
and the creation of the circum-Antarctic oceanic current
that changed the atmospheric circulation and induced a
drastic general cooling [72]. This marked the passage from
warm, humid, tropical-temperate forest environments to
much more arid and dryer habitats dominated by savan-
nas and grasslands [4] prompting the diversification of
mammalian herbivore communities [6].

Overall, our results are consistent with the hypothesis of a
major influence of global environmental change on the
evolution of xenarthrans. This process appears to have
been apparently mainly driven by the consequences of
Andean tectonics as suggested by Marshall and Sempere
[5] even if the causal link between climate change and the
rise of the Andes might be more complicated than previ-
ously though [73]. These authors argued as a working
hypothesis that geological and tectonic processes might
have played a key role in restructuring the mammalian
communities by drastically remodelling the South
American environments and climates. Some groups have
consequently been driven to extinction and new ecologi-
cal opportunities have been provided for others to diver-
sify. In particular, the finding that the two radiation events
identified within armadillos [28] appear to follow two
major tectonic crises is consistent with Marshall and Sem-
pere's hypothesis and suggests that other living members
of South American endemic groups might also have
recorded these events in their genomes.

Conclusions
We have used a Bayesian relaxed molecular clock
approach explicitly taking into account paleontological
uncertainty and contrasted evolutionary dynamics
between genomic loci to obtain divergence time estimates
for living xenarthrans. We proposed a time scale for the
diversification of this major placental clade with a sparse
fossil record, based on the analysis of three nuclear genes
for 50 mammals. This molecular timescale put in relation
with well documented environmental changes that
occurred during the Cenozoic of South America revealed
the crucial influence that global change – possibly
induced by Andean tectonic processes – might have
played on the evolutionary history of these peculiar
mammals. It is finally suggested that these major paleoen-
vironmental changes may also have left their footprints in
the genomes of other South American endemic mamma-
lian taxa. This hypothesis has yet to be tested in hystricog-
nath rodents, platyrrhine monkeys or didelphid
marsupials for example.

Methods
Data sets and topology
The original data set we use here is the one obtained by
Delsuc et al. [27] consisting of 50 mammalian taxa for the
three nuclear genes α2B adrenergic receptor (ADRA2B),
breast cancer susceptibility exon 11 (BRCA1), and von
Willebrand factor exon 28 (VWF). The complete align-
ment of these genes represents a total of 5130 nucleotide
sites [27]. Different partitions from this data set were used
for calculating divergence times: ABV (1+2) = concatena-
tion of first and second codon positions of the three genes
(3421 sites); A2BV2 = concatenation of first and second
codon positions of ADRA2B and VWF plus all codon posi-
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tions of BRCA1 (4350 sites); and ABV (1+2+3) = concate-
nation of all codon positions of the three genes (5130
sites). As the relaxed molecular clock approach relies on a
topology to infer divergence times, we used the ML topol-
ogy previously identified on the complete data set [27]
which conforms to the current views on placental mam-
mals relationships based on the latest large scale analyses
[74].

Calibration points
In the Bayesian relaxed molecular clock approach [32], it
is important to use prior constraints on independent cali-
bration points dispersed across the tree in order to reduce
potential regional effects [36]. To render things compara-
ble among studies, we used the calibrations of Springer et
al. [40] that are compatible with our taxon sampling.
Thus, the six calibration points defining the following
eight prior constraints were used (see Figure 1): (1) a min-
imum of 54 Mya for Paenungulata (PAE), (2) a minimum
of 12 Mya for the divergence between the Muridae Mus
and Rattus (MUR); (3) a minimum of 43 Mya and a max-
imum of 60 Mya for Megachiroptera (MEG); (4) a mini-
mum of 54 Mya and maximum of 58 Mya for
Perissodactyla (PER); (5) a conservative maximum of 65
Mya for Cetartiodactyla (ART); and (6) a minimum of 52
Mya for the first appearance of Cetacea (CET). We do not
used prior constraint on the origin of Xenarthra because
we wanted to make independent inferences about their
divergence dates. We verified however that constraining
the base of Xenarthra with a minimum of 60 Mya [40]
does not significantly affect our molecular estimates (data
not shown). For the same reasons of independence, we
did not use intra Xenarthra calibrations, but also because
of a lack thereof. Indeed, if the fossil record of xenarthrans
is especially rich for extinct giant sloths for example, the
paleontological origins of extant species are almost
unknown [7]. In all subsequent Bayesian analyses these
eight prior constraints on calibration points were simulta-
neously used to derive posterior estimates of divergence
ages [36].

Divergence time estimates
The Bayesian relaxed molecular clock approach was
applied using the program package MULTIDIVTIME [75].
The module ESTBRANCHES was first used to estimate
branch lengths of the constrained topology and the corre-
sponding variance-covariance matrices for each data par-
tition using the three marsupials Macropus, Didelphis and
Vombatus as outgroups for the 47 placental taxa. The
F84+Γ8 model was used with maximum likelihood
parameters previously estimated by PAML version 3.13
[76]. Then, the module MULTIDIVTIME used the vari-
ance-covariance matrices produced by ESTBRANCHES to
run a MCMC for estimating mean posterior divergence
times on nodes with associated standard-deviation (SD)

and 95% credibility interval (CredI). In all calculations,
the MCMC was sampled 10,000 times every 100 cycles
and the burn-in stage was set to 100,000 cycles in all sub-
sequent analyses. The following priors were used for the
mammalian data set: 110 Mya (SD = 55 Mya) for the
expected number of time units between tip and root if
there has been no constraint on node times, and 200 Mya
for the highest possible number of time units between tip
and root. Other priors for gamma distribution of the rate
at root node and the Brownian motion constant describ-
ing the rate variation (i.e., the degree of rate autocorrela-
tion along the descending branches of the tree), were
derived from the median branch length for each data set
as advised by Thorne et al. [32].
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