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Abstract 

Background: Biogenic nanoparticles possess a capping of biomolecules derived from the organism employed in the 

synthesis, which contributes to their stability and biological activity. These nanoparticles have been highlighted for 

the control of phytopathogens, so there is a need to understand their composition, mechanisms of action, and toxic-

ity. This study aimed to investigate the importance of the capping and compare the effects of capped and uncapped 

biogenic silver nanoparticles synthesized using the filtrate of Trichoderma harzianum against the phytopathogenic 

fungus Sclerotinia sclerotiorum. Capping removal, investigation of the composition of the capping and physico-chem-

ical characterization of the capped and uncapped nanoparticles were performed. The effects of the nanoparticles on 

S. sclerotiorum were evaluated in vitro. Cytotoxicity and genotoxicity of the nanoparticles on different cell lines and its 

effects on nontarget microorganisms were also investigated.

Results: The capped and uncapped nanoparticles showed spherical morphology, with greater diameter of the 

uncapped ones. Functional groups of biomolecules, protein bands and the hydrolytic enzymes NAGase, β-1,3-

glucanase, chitinase and acid protease from T. harzianum were detected in the capping. The capped nanoparticles 

showed great inhibitory potential against S. sclerotiorum, while the uncapped nanoparticles were ineffective. There 

was no difference in cytotoxicity comparing capped and uncapped nanoparticles, however higher genotoxicity of the 

uncapped nanoparticles was observed towards the cell lines. Regarding the effects on nontarget microorganisms, in 

the minimal inhibitory concentration assay only the capped nanoparticles inhibited microorganisms of agricultural 

importance, while in the molecular analysis of the soil microbiota there were major changes in the soils exposed to 

the uncapped nanoparticles.

Conclusions: The results suggest that the capping played an important role in controlling nanoparticle size and 

contributed to the biological activity of the nanoparticles against S. sclerotiorum. This study opens perspectives for 

investigations concerning the application of these nanoparticles for the control of phytopathogens. 
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Background
�e use of nanotechnology in the agricultural sector is 

increasing, making important contributions to improve-

ments in areas including pest control. Among the new 

nanomaterials, silver nanoparticles (AgNPs) can be high-

lighted for the control of phytopathogenic microorgan-

isms [1]. �ese nanoparticles can be synthesized using 

biological reducing agents and stabilizers, including 

fungi, bacteria, plants, and algae [2], involving action of 

the nitrate reductase enzyme and other metabolites [3]. 

Fungi can be considered as nanobiofactories for the fast 

and environmentally friendly synthesis of silver nano-

particles [1]. �e nanoparticles are formed as a result 

of the interaction of a metallic precursor with enzymes, 

coenzymes, and other active substances derived from the 

organisms, with the resulting nanoparticles being capped 

with bioactive material [4, 5].

Metallic nanoparticles produced by biogenic synthesis 

generally possess this capping, which provides stability, 

while other substances can be added to provide specific 

activities that potentiate the effects of the nanoparticles 

[6, 7]. �e capping of biogenic nanoparticles is com-

posed of biomolecules and compounds derived from the 

metabolism of the fungus or other biological agent, such 

as extracellular proteins, enzymes, amino acids, and sec-

ondary metabolites [8, 9]. In the case of nanoparticles 

produced by chemical synthesis, it is necessary to add 

capping agents such as surfactants, proteins, and other 

biomolecules, in order to achieve electrosteric stability. 

�ese agents bind to the surfaces of the nanoparticles by 

means of covalent bonds or chemical interactions, and 

are not readily degraded [10–12].

Depending on its composition, the capping can also 

improve nanoparticle biocompatibility, providing an 

active surface for interaction with biological compounds 

and conjugation with substances such as medicines, anti-

microbials, genetic material, and amino acids [9]. Bhu-

nia et  al. reported that silver nanoparticles capped with 

protein such as human hemoglobin presented greater 

biocompatibility, compared to uncapped nanoparticles 

[13]. �ese characteristics make biogenic nanoparti-

cles more suitable for applications in the areas of health, 

agriculture, and the environment [14, 15]. However, an 

important consideration is that the surface capping may 

influence parameters such as the morphology, aggrega-

tion, and dissolution rate of the particles, in addition to 

affecting cytotoxicity [15]. Hence, before using these 

nanoparticles in the areas of health and agriculture, it is 

necessary to determine their physico-chemical character-

istics and perform toxicity evaluations on cell lines and 

nontarget organisms due to their consequent realease 

into the environment [16].

White mold, a disease affecting more than 450 spe-

cies of agricultural crops, is caused by the fungus Sclero-

tinia sclerotiorum, considered one of the most important 

phytopathogens worldwide. �is fungus is able to form 

highly resistant structures (sclerotia) that can remain 

viable for years in the soil [17]. �e control of this dis-

ease is based on the application of chemical fungicides 

and biological control agents, while some studies have 

reported the inhibitory effects of silver nanoparticles 

against phytopathogenic fungi [18–23]. In a previous 

study by our research group, silver nanoparticles were 

synthesized using the fungus Trichoderma harzianum, 

with and without stimulation of enzyme production, and 

were found to inhibit S. sclerotiorum mycelial growth and 

sclerotia germination in vitro [23].

Given the importance of the capping on nanoparticles, 

the aim of the present study was to compare the phys-

ico-chemical characteristics of capped and uncapped sil-

ver nanoparticles synthesized in our previous study [23], 

investigate the cappings using infrared spectroscopy, 

protein analyses, and enzymatic assays, and evaluate the 

biological activity of the nanoparticles against S. sclerotio-

rum, as well as their toxicity towards different cell lines 

and nontarget microorganisms.

Materials and methods
Materials

�is study employed silver nanoparticles previously 

synthesized using the filtrate of Trichoderma harzi-

anum, with enzyme production stimulated by the pres-

ence of the cell wall of Sclerotinia sclerotiorum, denoted 

AgNP-TSC (57.02 ± 1.75 nm; −18.70 ± 3.01 mV; polydis-

persity 0.49 ± 0.01), and nanoparticles produced with-

out stimulation, denoted AgNP-TC (81.84 ± 0.67 nm; 

−18.30 ± 1.73 mV; polydispersity 0.52 ± 0.00) [23].

�e cell lines V79 (Chinese hamster pulmonary fibro-

blast), 3T3 (albino Swiss mouse embryo fibroblast), and 

HaCat (human keratinocyte) were obtained from the 

Rio de Janeiro Cell Bank (Rio de Janeiro, Brazil). �e 

agriculturally important microorganisms Bradyrhizo-

bium japonicum, Pseudomonas aeruginosa, Bacillus 

thuringiensis, Beauveria bassiana, and the phytopatho-

gen Sclerotinia sclerotiorum were donated. �iazolyl 

Blue Tetrazolium Bromide (MTT) and resazurin were 

obtained from Sigma-Aldrich. Potato dextrose agar 

was purchased from Kasvi. Blueye Prestained pro-

tein molecular weight marker, the Apoptosis Annexin 

V AlexaFluor 488 and propidium iodide kit, the Qubit 

dsDNA HS DNA quantification kit, and SYBR Green 

were obtained from Invitrogen. Visking MWCO 

12–14  kDa dialysis membranes were purchased from 

Serva. �e PowerSoil kit for DNA extraction from soil 

was obtained from QIAGEN.
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Removal of the nanoparticle cappings

In order to investigate possible differences between 

capped and uncapped nanoparticles, the capping 

was removed from half the volume of the samples, as 

described by Jain et  al. [24]. �e nanoparticle disper-

sions were centrifuged, the pellets were resuspended 

and boiled in 1% sodium dodecyl sulfate (SDS), and a 

further centrifugation was performed. �e supernatants 

containing the cappings were stored at −20 ºC, prior to 

subsequent protein and enzyme analyses. Nanoparticles 

without cappings were obtained by boiling the pellets 

in 60 mM Tris-HCl pH 6.8, followed by dialysis using 

a Visking MWCO 12–14  kDa membrane. �e proce-

dure used to remove the capping from the nanoparticles 

resulted in two new uncapped samples, giving a total of 

four samples (two capped and two uncapped). �e sam-

ples were labeled as follows: AgNP-TSC (capped silver 

nanoparticles, with stimulation), AgNP-TC (capped silver 

nanoparticles, without stimulation), AgNP-TS (uncapped 

silver nanoparticles, with stimulation), and AgNP-T 

(uncapped silver nanoparticles, without stimulation).

Characterization and stability evaluation of the biogenic 

nanoparticles

After removal of the nanoparticle cappings, the capped 

and uncapped nanoparticles and the corresponding 

T. harzianum filtrates were analyzed using UV-visible 

spectroscopy in the wavelength range 200–800 nm, with 

resolution of 1 nm, using a Shimadzu Multispec 1501 

spectrophotometer. Measurements of the pH of the nan-

oparticles and the filtrates were performed immediately 

after capping removal at ambient temperature using a pH 

meter (HMMPB-210).

�e techniques of dynamic light scattering (DLS) and 

microelectrophoresis were used to determine the hydro-

dynamic diameter, polydispersity, and zeta potential of 

the samples, employing a ZetaSizer Nano ZS90 analyzer 

(Malvern Instruments). �e readings were made in trip-

licate, at 25 ºC, with a fixed angle of 90º. �e stability of 

the nanoparticles was evaluated by repeating these analy-

ses six and twelve months after the synthesis. �e nano-

particle concentrations were obtained by nanoparticle 

tracking analysis (NTA), using a NanoSight LM 10 cell 

and NanoSight v. 2.3 software. �e nanoparticles were 

dispersed in water to a standard working concentration 

of 1 × 1010 NPs.mL− 1.

Morphological analysis of the nanoparticles

�e morphologies of the capped and uncapped nano-

particles were investigated using atomic force micros-

copy (AFM). Aliquots of the nanoparticles were diluted 

in ultrapure water and 10 µL volumes were dripped onto 

silicon AFM plates, followed by keeping in a desiccator 

until completely dry. �e analyses were performed using 

an easyScan 2 atomic force microscope (Nanosurf, Swit-

zerland) equipped with TapAl-G cantilevers (Budget-

Sensors, Bulgaria) and operated in noncontact mode at 

a scan rate of 90 Hz. �e micrographs were interpreted 

using Gwyddion software.

Characteristics of the nanoparticle cappings

Fourier transform infrared spectroscopy (FTIR) analy-

ses of the capped and uncapped nanoparticles were per-

formed using a JASCO FT/IR-410 spectrometer. For this, 

KBr tablets were prepared using a proportion of 1.5% 

of the solid nanoparticles obtained by freeze-drying of 

aqueous dispersions. �e spectra were acquired in the 

range from 4000 to 400 cm− 1, at 8 cm− 1 resolution, with 

32 scans.

Analysis of proteins in the nanoparticle cappings
�e sodium dodecyl sulfate polyacrylamide gel electro-

phoresis (SDS-PAGE) was used to investigate the pres-

ence of T. harzianum proteins in the filtrates used for the 

synthesis and in the cappings removed from the nanopar-

ticles, as well as in the capped and uncapped nanoparti-

cles. �e assay was performed based on the methodology 

from Chowdhury et al. with some adaptations [25]. �e 

samples were mixed with buffer (1:1 v:v ratio), heated at 

95 ºC for 10 min, centrifuged at 14,000  rpm for 1 min, 

and loaded onto a 12% SDS-Polyacrilamide gel in the fol-

lowing order: (1) Blueye Prestained ladder (Invitrogen) 

11–245  kDa molecular weight marker; (2) Filtrate from 

T. harzianum without stimulation; (3) Capping without 

stimulation; (4) AgNP-TC; (5) AgNP-T; (6) Filtrate of T. 

harzianum with stimulation; (7) Capping with stimula-

tion; (8) AgNP-TSC; (9) AgNP-TS. Electrophoresis was 

performed at 200 V and 20 mA, until the dye reached the 

lower region of the gel. �e gel was stained using ammo-

niacal silver solution and analysis of the protein profiles 

was performed visually, based on the molecular weight 

marker.

Speci�c activity of the Trichoderma harzianum hydrolytic 

enzymes

�e protein concentrations in the filtrates, cappings, 

and nanoparticles AgNP-TSC, AgNP-TC, AgNP-TS and 

AgNP-T were determined using Bradford’s reagent and 

bovine serum albumin (1, 0.5, 0.25, and 0.125 mg.mL− 1) 

as standard [26]. Evaluation of the specific activities of 

the T. harzianum hydrolytic enzymes N-acetylglucosa-

minidase (NAGase), β-1,3-glucanase, chitinase, and acid 

protease in the filtrates, cappings, and nanoparticles 

was performed based on the methodology described by 
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Qualhato et al. [27]. �e assays employed 96-well micro-

plates and the following samples: T. harzianum filtrate 

without stimulation; capping without stimulation; AgNP-

TC; AgNP-T; T. harzianum filtrate with stimulation; cap-

ping with stimulation; AgNP-TSC; AgNP-TS.

Biological activity of the nanoparticles towards the 

phytopathogen Sclerotinia sclerotiorum

�e activity of the capped and uncapped nanoparticles 

for the control of S. sclerotiorum was evaluated using 

assays of the growth of the phytopathogen on potato 

dextrose agar supplemented with the samples at a con-

centration of 3 × 109 NPs.mL− 1 [19, 23]. After 15 days of 

culture, the mycelium growth halos were measured and 

the numbers of new sclerotia were counted.

Cytotoxic and genotoxic potentials of the nanoparticles 

towards cell lines and Allium cepa

Cytotoxicity and genotoxicity analyses were performed to 

compare the effects of the capped nanoparticles (AgNP-

TSC and AgNP-TC) and the corresponding uncapped 

nanoparticles (AgNP-TS and AgNP-T).

Cytotoxicity evaluation

�e cytotoxicity of the samples was evaluated using the 

V79, 3T3, and HaCat cell lines. Assays of mitochondrial 

activity employed the �iazolyl Blue Tetrazolium Bro-

mide (MTT). Cell viability, apoptosis, and necrosis were 

determined by imaging cytometry. Cell viability was eval-

uated using the trypan blue dye exclusion method.

For the MTT assay, the cells were plated (5 × 104 cells/

well) and exposed to the nanoparticles at concentra-

tions between 0.1 × 109 and 3.5 × 109 NPs.mL− 1 for 24 h. 

�e MTT solution (5  mg.mL− 1) was added, followed 

by incubation for 3  h, fixation of the cells with DMSO, 

and absorbance reading at 540 nm. In the analyses using 

imaging cytometry and trypan blue exclusion, the cells 

were exposed for 1 h to the nanoparticles at 3 × 109 NPs.

mL− 1. �e imaging cytometry analyses of cell viabil-

ity, apoptosis, and necrosis were performed using the 

Annexin V AlexaFluor® 488 and propidium iodide kit 

(Invitrogen), according to the manufacturer’s instruc-

tions, with the readings obtained using a Tali™ Image 

Cytometer. In the trypan blue exclusion assay, imme-

diately after the end of exposure to the nanoparticles 

at 3 × 109 NPs.mL− 1, the cells were stained with trypan 

blue, followed by counting using an optical microscope, 

in triplicate, considering cells stained blue to be dead.

Genotoxicity evaluation

�e genotoxicity of the nanoparticles was determined 

using Allium cepa and comet assays. �e Allium cepa 

assay was performed as described by Lima et  al. [28]. 

�e exposure of Allium cepa roots to the nanoparticle 

samples was performed for 24 h, using concentrations of 

1 × 1010 and 3 × 109 NPs.mL− 1, followed by fixation and 

hydrolysis of the roots, preparation of slides (in tripli-

cate), and analysis by optical microscopy. Out of the total 

number of cells, counting was made of those that pre-

sented cell division, giving the mitotic index (MI), and of 

these, those that presented chromosomal alterations, giv-

ing the alteration index (AI).

Comet assay was performed according to the meth-

odology described by Singh et al. [29], with adaptations. 

�e same cell lines used in the cytotoxicity assays were 

exposed for 1 h to the samples at 3 × 109 NPs.mL− 1, fol-

lowed by preparation of the slides, immersion in lysis 

solution for 1 h, neutralization, immersion in electropho-

resis buffer for 20 min, and electrophoresis for 20 min at 

22 V and 300 mA. �e slides were then fixed, stained, and 

evaluated under a microscope, with visual scoring [30].

Toxicity of the nanoparticles towards nontarget 

microorganisms

Evaluation of minimum inhibitory concentration (MIC) 

towards microorganisms of agricultural importance

MIC assay was performed using the agriculturally 

important microorganisms Bradyrhizobium japonicum, 

Pseudomonas aeruginosa, Bacillus thuringiensis, and 

Beauveria bassiana. �e microorganisms were cultured 

for 24 h, transferred to 96-well plates at a concentration 

of 5 × 105 CFU.mL− 1, and exposed to the capped and 

uncapped nanoparticles at decreasing concentrations 

between 4.0 × 109 and 1.0 × 108 NPs.mL− 1. After incuba-

tion for 24 h at 37 ºC, resazurin solution (6.75 mg.mL− 1) 

was added and the plates were incubated for a further 

24 h, followed by visual color assessment.

Molecular qPCR analyses of the e�ects of the nanoparticles 

on soil microbiota

Investigation was made of possible effects of the nano-

particles on soil bacteria that participate in the nitrogen 

cycle during the processes of fixation and denitrifica-

tion. For this, the soil was exposed to the nanoparticles 

at a concentration of 3 × 109 NPs.mL− 1, in microcosms 

containing 10 g of soil [31]. A control was also prepared 

using ultrapure water. �e microcosms were kept in 

the dark at ambient temperature. On the day of expo-

sure, DNA was extracted from an untreated soil sample 

(denoted soil zero), in order to obtain the initial condi-

tions. Extractions of DNA from all the samples were then 

performed 15, 90, 180, and 360 days after exposure, using 

the PowerSoil DNA Isolation Kit (QIAGEN), followed by 

DNA quantification using the Qubit dsDNA HS kit, with 

a Qubit 3.0 fluorometer, and dilution to a final concen-

tration of 100 ng  mL− 1. Quantification of the genes of 
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the nitrogen cycle bacteria was performed with specific 

primers, using the real-time polymerase chain reaction 

(qPCR) with Syber Green [32]. Relative quantification of 

the DNA was performed using the 16s rRNA gene as a 

reference. All the samples were analyzed in triplicate.

Statistical analyses

Statistical analyses employed one-way analysis of vari-

ance (ANOVA) followed by Tukey’s test (significance 

level of p < 0.05), performed using GraphPad Prism 7.0 

software.

Results and discussion
Characterization and stability of the biogenic 

nanoparticles

�e UV-Vis analyses of all the samples showed absorb-

ance peaks between 400 and 420 nm, characteristic of 

elemental silver  (Ag0). �e spectra for the capped nano-

particle samples AgNP-TSC and AgNP-TC showed peaks 

between 200 and 300 nm, which were similar to peaks in 

the corresponding filtrates and indicated the presence 

of organic compounds such as amino acid residues, sec-

ondary metabolites, and proteins. In the same region, 

noise signals were observed for the AgNP-TS and AgNP-

T samples, which could be attributed to the process of 

removing the capping and eliminating the biomolecules 

(Fig. 1a). 

�e nanoparticles presented different hydrodynamic 

diameter distributions, which could be attributed to the 

synthesis conditions employed, especially the presence 

or absence of a capping. �e AgNP-TSC sample showed 

peaks at 3 nm (6.0%), 59 nm (88.3%), and 825 nm (5.6%) 

(Fig. 1b), while the AgNP-TC sample showed peaks at 32 

nm (39.3%) and 190 nm (60.7%) (Fig. 1c). �e formation 

of particle populations with different sizes for nanoparti-

cles synthesized using biogenic routes has been observed 

previously [33, 34]. After removal of the cappings, these 

nanoparticles showed size distribution peaks at 220 nm 

(100%) for AgNP-TS (Fig. 1c) and at 190 nm (100%) for 

AgNP-T (Fig. 1c). Increase of the particle diameter after 

removal of the capping was probably due to subsequent 

aggregation of the nanoparticles [35].

Polydispersity index values of 0.49, 0.52, 0.42, and 0.25 

were obtained for the AgNP-TSC, AgNP-TC, AgNP-TS, 

and AgNP-T samples, respectively. �e lowest value for 

the AgNP-T sample reflected the smallest variation of 

nanoparticle size, although the larger diameter of these 

particles was indicative of aggregation followed by stabi-

lization. In the case of the zeta potential, corresponding 

to the charge formed at the interface between the nano-

particles and the dispersion medium, all the samples pre-

sented negative values (−16.7, −16.3, −33.3, and − 15.2 

mV for AgNP-TSC, AgNP-TC, AgNP-TS, and AgNP-T, 

respectively), with the AgNP-TS sample showing the 

highest electronegativity. Although a higher zeta poten-

tial generally indicates higher nanoparticle stability, the 

stability of biogenic nanoparticles is mainly influenced by 

the capping of biomolecules [12]. Different cappings pro-

duce different surface charges, which can influence the 

activity of the nanoparticles and their cytotoxicity [36, 

37].

�e stability of the nanoparticles was evaluated by DLS 

analyses performed 6 and 12 months after their synthe-

sis (Fig.  1d). In most cases, no changes in nanoparticle 

hydrodynamic diameter were observed. An exception 

was the AgNP-TC sample, which initially presented a 

bimodal particle size distribution, while after 6 months 

there was a shift towards smaller diameter nanoparticles. 

After one year, there was the emergence of a monomodal 

distribution, with the nanoparticles presenting a smaller 

diameter than observed at the start of the experiment. 

A possible explanation is that soon after synthesis resi-

dues of T. harzianum remain in the colloidal solution of 

nanoparticles, which can cause them to agglomerate and 

present larger diameter populations through DLS tech-

nique. Over time these organic compounds of the fungus 

are degraded and the capped nanoparticles are dispersed 

from the agglomerates, presenting a monomodal distri-

bution, that is, a single population of smaller diameter. 

Despite this change in diameter, both the capped nano-

particles continued to exhibit biological activity for the 

control of S. sclerotiorum after 12 months, with no evi-

dence of color change, flocculation, or sedimentation. 

�e maintenance of the activity could be attributed to 

the fungal biomolecules surrounding the nanoparticles, 

which provided steric stability [38]. �e stability of nano-

particles in a dispersion is essential for ensuring their bio-

logical activity [39]. Also, regarding stability of biogenic 

nanoparticles it is important to emphasize that there are 

other factors which could be involved in the stability over 

time, in special the zeta potential of the particles as stated 

above.

�e pH values of the dispersions of both types of 

capped nanoparticles were close to the values for the 

corresponding filtrates (pH 7.2–7.3). Lower values were 

obtained for the uncapped nanoparticles (pH 4.9–5.0), 

which was probably because the nanoparticles were not 

capped by compounds derived from the filtrate. During 

the synthesis,  OH− ions supply electrons for the reduc-

tion of silver ions and are adsorbed on the surfaces of 

the nanoparticles, ensuring their stability and avoid-

ing size changes, resulting in a more alkaline dispersion 

[14]. When the capping is removed, these  OH− ions are 

lost, changing the pH of the dispersion and exposing the 

 Ag0 nanoparticles to the aqueous solution, initiating an 

ionization process and consequent loss of stability [40]. 



Page 6 of 18Guilger-Casagrande et al. J Nanobiotechnol           (2021) 19:53 

Fig. 1 Physico-chemical characterization of the nanoparticles. a UV-Vis spectra of the nanoparticles and the corresponding filtrates. b and 

c Hydrodynamic diameter distributions obtained by DLS. d: Stability evaluation of AgNP-TSC (capped, with stimulation), AgNP-TC (capped, without 

stimulation), AgNP-TS (uncapped, with stimulation), and AgNP-T (uncapped, without stimulation)
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Uncapped nanoparticles are more readily ionized in 

aqueous dispersions, with lower pH of the dispersion 

favoring their dissolution [24, 41].

Morphological analysis of the nanoparticles

�e use of atomic force microscopy showed that the 

four nanoparticle samples presented spherical morphol-

ogy, while the uncapped nanoparticles had larger mean 

diameters (Fig.  2), in agreement with the diameter dis-

tributions obtained by DLS analysis. Previous work has 

found that the morphology and size of nanoparticles are 

directly influenced by the synthesis conditions [42]. 

Characterization of the nanoparticle cappings

FTIR is an important tool for characterization of systems 

such as those produced here, enabling the identifica-

tion of specific characteristics of the nanoparticles and 

their precursors. For example, the detection of proteins 

responsible for the biogenic synthesis and stability of sil-

ver nanoparticles has been reported in previous studies 

[25, 43, 44]. �e interactions of nanoparticles with these 

proteins and amino acid residues can occur by means of 

covalent bonds to amino groups and cysteine residues, 

as well as by electrostatic connections involving carboxyl 

groups [38, 44]. Daphedar and Taranath used FTIR to 

detect bands of protein groups in the spectra for nano-

particles produced by biogenic synthesis and reported 

that the phytochemical components of the extract used 

in the synthesis (proteins, carboxylic acids, flavonoids, 

alcohols, and phenols) acted in the processes of reduc-

tion, capping formation, and stabilization [45].

In the present work, the infrared spectra for the capped 

nanoparticles (TSC and TC) presented bands character-

istic of functional groups ascribed to the active fungal 

biomolecules (Fig. 3). A broad band at 3700−3000 cm− 1 

could be attributed to O–H stretching vibrations of 

hydroxyl groups [46, 47]. A band at 2960 cm− 1 was due to 

stretching of the amide NH groups [46] in the structures 

of proteins and hydrolytic enzymes such as glucanases 

and chitinases. Bands at 2917 and 2850 cm− 1 were char-

acteristic of C–H stretching [8, 48], while bands at 1637 

and 1535  cm− 1 could be attributed to amides I and II, 

respectively [38, 47]. An intense band at 1371 cm− 1 was 

attributed to bending vibration of C–H of methyl groups 

[46, 49] and/or stretching of C–N of aromatic amines [8, 

38, 47]. A low intensity band at 1249 cm− 1 corresponded 

to amine C–N stretching [47, 48]. Absorption at around 

1024  cm− 1 was attributed to ether group C–O stretch-

ing [46, 47, 50]. �e presence of these functional groups 

in the capped nanoparticles indicated that the capping 

was formed by structures derived from the fungus, such 

as proteins, hydrolytic enzymes, and amino acid residues 

produced by enzymatic proteolysis.

�e features observed in the absorption spectra were 

in agreement with previous results reported in the lit-

erature. Gurunathan et  al. synthesized silver nanoparti-

cles using filtrates of the bacterium Bacillus tequilensis 

and the fungus Calocybe indica, with the spectral bands 

for both nanoparticles being close to those found for the 

capped nanoparticles in the present study [36]. Jain et al. 

obtained similar results for silver nanoparticles synthe-

sized using filtrate of the fungus Aspergillus flavus NJP08. 

In both studies, formation of a capping around the nan-

oparticles was attributed to the high capacity of C–O 

groups of amino acid residues to bind with metals, where 

the stability of the nanoparticles was due to the interac-

tions with proteins [44].

�e characteristic bands of the capped nanoparticles 

were not observed for the nanoparticles that had under-

gone the process of capping removal. �ese nanopar-

ticles presented bands corresponding to the Tris-HCl 

buffer in which the nanoparticles were resuspended [51, 

52]. A broad band at 3300  cm− 1 corresponded to O–H 

stretching, while a band at around 3226  cm− 1 could be 

attributed to symmetrical N–H stretching. Bands in the 

region between 2957 and 2850  cm− 1 were ascribed to 

symmetric and asymmetric stretching vibrations of  CH2. 

Bands at 1629 and 1552 cm− 1 were characteristic of in-

plane and out-of-plane symmetric angular deformation 

of  NH2. Bands at 1463 and 1400 cm− 1 corresponded to 

 CH2 deformation and C–C vibration, respectively. Bands 

at 1294 and 1214 cm− 1 were attributed to the deforma-

tions of OH, while signals at 1062 and 1035 cm− 1 were 

due to deformations of C–O. Finally, a doublet at 628 

and 592  cm− 1 corresponded to C–C–C deformation. 

�ese results were in agreement with the work by Jain 

et  al. who removed the capping from silver nanoparti-

cles synthesized using the filtrate of Aspergillus sp. NJP02 

[24]. �e profile of the FTIR spectrum changed, with the 

vibrational bands corresponding to amide I, amide II, and 

aliphatic amine C–N stretching disappearing, hence con-

firming removal of the capping.

Analysis of proteins in the nanoparticle cappings

SDS-PAGE assay was performed in order to confirm 

that the proteins in the filtrate used for synthesis of the 

nanoparticles were retained in the cappings. �e protein 

profiles of both filtrates exhibited bands that were also 

shown by the corresponding cappings, indicating that the 

filtrate proteins were also present in the layer surround-

ing the nanoparticles (Fig. 4).

�e filtrate and capping samples showed bands at 

36  kDa and 40  kDa, corresponding to the molecular 

weights of the T. harzianum β-1,3-glucanase and chi-

tinase enzymes, respectively, indicating the presence 

of these enzymes, which was confirmed by specific 
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enzymatic activity analyses [53, 54]. No clear bands were 

observed for the capped and uncapped nanoparticle sam-

ples. In the case of the capped nanoparticles, the strong 

interactions between the proteins and the nanoparticles 

prevented the migration of proteins in the gel [44], while 

in the case of the uncapped nanoparticles, the proteins 

were eliminated from the samples during the processes of 

capping removal and dialysis.

�e appearance of bands corresponding to the same 

molecular weight in the analyses of the filtrates and cap-

pings provided confirmation that the filtrate proteins 

had capped the nanoparticles [44]. Similar results were 

reported by Rodrigues et  al. who obtained the same 

protein bands (at 75, 122, 191, and 328 kDa) for the fil-

trate and the capping of nanoparticles synthesized using 

Aspergillus tubingensis, which confirmed the participa-

tion of the filtrate proteins in the nanoparticle synthesis 

Fig. 2 Atomic force microscopy (AFM) images and size distributions of the capped nanoparticles AgNP-TSC (a) and AgNP-TC (b) and the uncapped 

nanoparticles AgNP-TS (c) and AgNP-T (d)
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process and their retention in the layer surrounding the 

nanoparticles [43]. Jain et al. used SDS-PAGE to analyze 

the filtrate of the fungus Aspergillus flavus, the nanopar-

ticles synthesized using this fungus, and the capping of 

the nanoparticles, which was removed by boiling in 1% 

SDS. �e fungus filtrate presented two intense bands at 

35 and 32 kDa, while the 35 kDa band was also observed 

for the nanoparticle capping. �e synthesis was sug-

gested to occur in two stages, with the 32  kDa protein 

firstly reducing the silver ions to form nanoparticles, fol-

lowed by bonding of the 35 kDa protein to the nanoparti-

cles, making them stable [44]. Chowdhury et al. reported 

the presence of a band at 85 kDa for the filtrate and the 

capping of silver nanoparticles obtained using Mac-

rophomina phaseolina, indicating the presence of fungal 

compounds enveloping the nanoparticles. �e authors 

attributed this band to a component of the capping that 

conferred stability to the nanoparticles [25].

Speci�c activity of Trichoderma harzianum hydrolytic 

enzymes

Determination of the specific activity of T. harzianum 

hydrolytic enzymes that act in the biological control of 

phytopathogens revealed the presence of these enzymes 

in the filtrates, cappings, and capped nanoparticles, while 

their activities were absent in the uncapped nanoparticle 

samples. Among the enzymes studied, the highest activity 

was generally observed for NAGase, followed by β-1,3-

glucanase, while chitinase and acid protease showed low 

activities. �e specific enzymatic activity profiles of the 

four enzymes are shown in Fig. 5.

Higher β-1,3-glucanase activity was observed for the 

capped nanoparticles AgNP-TSC and AgNP-TC, while 

NAGase showed higher activity in both filtrates. The 

highest chitinase activity was observed for AgNP-TSC, 

followed by the capping of AgNP-TC, while the highest 

protease activity was found for the capping of AgNP-

TSC. These differences could be explained by the pro-

cesses to which the samples were submitted, such as 

removal of the capping, involving heating and centrifu-

gation steps, which had different effects according to 

the particular enzymes.

The main finding of these analyses, in agreement 

with the SDS-PAGE and FTIR results, was that the 

enzymes from the filtrates remained in the cappings, 

as well as in the capped nanoparticles. This provided 

an explanation for the greater inhibitory activities of 

the capped nanoparticles towards the germination and 

mycelial growth of S. sclerotiorum, compared to the 

Fig. 3 FTIR spectra of the capped (AgNP-TSC and AgNP-TC) and 

uncapped nanoparticles (AgNP-TS and AgNP-T)

Fig. 4 SDS-PAGE analysis of the nanoparticles and the corresponding 

filtrates and cappings: 1. Molecular weight marker, 11–245 kDa 

(Blueye Prestained ladder, Invitrogen); (2) Filtrate of T. harzianum 

without stimulation; (3) Capping without stimulation; (4) AgNP-TC; (5) 

AgNP-T; (6) Filtrate of T. harzianum with stimulation; (7) Capping with 

stimulation; (8) AgNP-TSC; (9) AgNP-TS
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uncapped nanoparticles. It is likely that the enzymes 

present in the nanoparticle cappings could act syn-

ergistically with the nanoparticles, enhancing their 

effects, although further investigations will be needed 

to confirm this possibility.

The presence of proteins and enzymes in capped bio-

genic nanoparticles deserves special attention, given 

the importance of this capping in terms of the stabil-

ity, biocompatibility, and possible enhanced biological 

activity of these nanoparticles.

Biological activity of the nanoparticles towards the 

phytopathogen Sclerotinia sclerotiorum

Evaluation was made of the biological activity of the nan-

oparticles in terms of S. sclerotiorum mycelium growth 

and new sclerotia formation, comparing the effects 

of the capped and uncapped nanoparticles in culture 

medium supplemented with the samples. Decreased 

mycelium growth was observed for the fungus exposed 

to the capped nanoparticles, for which no formation of 

new sclerotia was observed, with the best results using 

AgNP-TSC. In contrast, use of the uncapped nanoparti-

cles resulted in mycelium growth throughout the areas 

of the plates, equivalent to the control plates, as well as 

the formation of new sclerotia (Fig. 6a and b). �e visual 

appearances of the cultures are shown in Fig. 6c

�e absence of any effect of the uncapped nanopar-

ticles could have been due to their increased size, since 

larger nanoparticles have been found to present lower 

cytotoxicity [55, 56]. Another important finding was the 

presence of active compounds derived from T. harzi-

anum in the capped nanoparticles, which could contrib-

ute to inhibition of the phytopathogen. Previous studies 

have found that during the processes of reduction of sil-

ver nitrate and binding to the surfaces of the nanopar-

ticles, the proteins do not undergo deformations of the 

secondary and tertiary structures, or disruption of the 

covalent bonds [38, 44]. �is suggests that the proteins 

did not suffer from loss of functionality, so they could 

contribute to the biological activity of the nanoparticles.

Depending on the characteristics and composition of 

the capping on biogenic nanoparticles, bonds formed 

Fig. 5 Specific activity (U.mg− 1) of the Trichoderma harzianum hydrolytic enzymes N-acetylglucosaminidase (NAGase), β-1,3-glucanase, chitinase, 

and acid protease. Filt TSC: filtrate with stimulation; Cap TSC: capping with stimulation; TSC: capped nanoparticles with stimulation; TS: uncapped 

nanoparticles with stimulation; Filt TC: filtrate without stimulation; Cap TC: capping without stimulation; TC: capped nanoparticles without 

stimulation; T: uncapped nanoparticles without stimulation. Statistically significant differences (p < 0.05) are indicated by * for comparison between 

Filt TC and Filt TSC, £ for comparison between Cap TC and Cap TSC, and # for comparison between TC and TSC. The greater the number of symbols 

the greater the statistical significance
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with different molecules can result in new functionali-

ties and improvements in colloidal stability [57], as well 

as mechanisms for the internalization of nanoparticles 

in cells [58]. Zewde et  al. reported that the presence or 

absence of a capping, the type of capping, and its density 

could greatly influence the antimicrobial effects and the 

cytotoxicity potential of nanoparticles [12]. Such findings 

suggest that the nanoparticle capping could exert anti-

fungal activity, enabling the control of S. sclerotiorum and 

contributing to maintenance of the antifungal properties 

of the nanoparticles themselves, providing them with 

greater stability.

Several previous studies have investigated the potential 

of biogenic nanoparticles for use in the control of phy-

topathogenic fungi. Elamawi et  al. used filtrate of the 

fungus Trichoderma longibrachiatum to synthesize sil-

ver nanoparticles that were evaluated in  vitro and pre-

sented inhibitory effects against the phytopathogenic 

fungi Fusarium verticillioides, Fusarium moniliforme, 

Penicillium brevicompactum, Helminthosporium oryzae, 

and Pyricularia grisea. FTIR analyses revealed bands 

corresponding to proteins bound to the surfaces of the 

nanoparticles, which appeared to contribute to stabi-

lization of the particles and avoidance of agglomera-

tion [39]. Abboud synthesized silver nanoparticles using 

Trichoderma harzianum and evaluated their effects 

against Fusarium oxysporum, Alternaria alternata, and 

Trichoderma harzianum. Concentration-dependent 

inhibition of fungal colony formation was observed [59]. 

Mishra et  al. employed silver nanoparticles synthesized 

using the bacterium Stenotrophomonas sp. as a nano-

fungicide for the control of foliar phytopathogens such 

as Alternaria alternata, Curvularia lunata, and Bipola-

ris sorokiniana, as well as the phytopathogen Sclerotium 

rolfsii in soil. Exposure to the nanoparticles at low con-

centrations resulted in complete inhibition of the conidia 

and sclerotia of the foliar phytopathogens [60].

Trichoderma harzianum acts as an antagonist against 

phytopathogenic microorganisms through direct and 

indirect mechanisms. Mycoparasitism is a direct mech-

anism in which, initially, the carbohydrates of T. harzi-

anum cell wall are bound to the phytopathogen lectins, 

followed by the hyphae winding, formation of appresoria 

and penetration into the target fungus hyphae. After this 

contact, hydrolytic enzymes such as chitinase and β-1,3-

glucanase are released which corrupt the cell wall of the 

phytopathogen, thus allowing the establishment of para-

sitism (Fig. 7a) [61, 62].

�e mechanisms of silver nanoparticles against fungi 

are not completely elucidated, however according to 

Fig. 6 Biological activities of the AgNP-TSC, AgNP-TS, AgNP-TC, and AgNP-T nanoparticles (3 × 109 NPs.mL− 1) towards S. sclerotiorum. a Mycelium 

diameters; b numbers of new sclerotia; c visual appearances of the cultures. Statistical analysis: a. control × AgNP; b. AgNP × AgNP. Different 

numbers indicate statistically significant differences (p < 0.05)
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some studies silver nanoparticles cause changes in the 

plasma membrane dynamics of fungal cells leading to 

loss of integrity, increased permeabilization and depo-

larization. In addition, silver nanoparticles release  Ag+ 

ions that interact with oxygen causing an increase in 

the intracellular levels of reactive oxygen species and an 

accumulation of hydroxyl radicals. �ese highly reactive 

compounds can trigger mitochondrial dysfunction and 

disruption of ATP synthesis, DNA fragmentation and 

apoptosis (Fig. 7b) [63, 64].

From the result of our study, we raised the hypoth-

esis of a synergistic effect between the nanoparticles 

and the capping against S. sclerotiorum. �e capping of 

the nanoparticles presented active hydrolytic enzymes 

of Trichoderma harzianum which act by degrading car-

bohydrates in the cell wall of the phytopathogenic fungi 

[27, 53, 54]. After fungal cell wall degradation, the silver 

nanoparticles come into action.

�ese combined events of capping and silver nano-

particles probably make the fast action of biogenic nan-

oparticles due to the presence and action of enzymes 

present in the capping. However, although the effect of 

the capped nanoparticles on Sclerotinia sclerotiorum is 

a strong indication of this synergy, further studies are 

needed. Figure  7c shows a hypothetical representation 

of the synergy between the silver nanoparticles and their 

capping against S. sclerotiorum.

Fig. 7 Schematic representation of the possible mechanism of action of the capped silver nanoparticles against S. sclerotiorum. a degradation of 

pathogenic fungi cell wall by T. harzianum hydrolytic enzymes; b membrane disruption and oxidative stress in pathogenic fungi cells caused by 

silver nanoparticles; c synergistic effect of the biogenic silver nanoparticles and the capping hydrolytic enzymes against S. sclerotiorum 



Page 13 of 18Guilger-Casagrande et al. J Nanobiotechnol           (2021) 19:53  

Although several previous studies have reported the 

potential of biogenic silver nanoparticles for the control 

of phytopathogens in agriculture, the approach used in 

the present study enabled evaluation of the importance 

of the capping for the quality and biological activity 

of the nanoparticles, opening perspectives for further 

detailed investigations to explore this feature of biogenic 

nanoparticles.

Cytotoxic and genotoxic e�ects of the nanoparticles in cell 

lines and Allium cepa

Cytotoxicity evaluation Use of the MTT assay revealed 

differences in the cytotoxicity of the capped and uncapped 

nanoparticles, notably in the HaCat cell line, where both 

types of uncapped nanoparticles showed greater cytotox-

icity. However,  IC50 values were not reached for any of the 

samples, indicating low cytotoxicity at the concentrations 

used in the exposures (Fig. 8a and b). �e results of the 

viability assays using imaging cytometry and the trypan 

blue test agreed with the MTT assay, with low cell death 

indices (Fig. 8c and d).

�e cytotoxicity of silver nanoparticles can vary 

greatly, depending on the type of particle and the synthe-

sis process, since it is related to factors such as exposure 

time, concentration, temperature, particle size, capping, 

and cell line [15, 39]. An important point is that biogenic 

silver nanoparticles are usually less cytotoxic than com-

mercial uncapped nanoparticles and silver ions [10]. 

Skladanowski et al. synthesized silver nanoparticles using 

Streptomyces sp. NH28 and used the MTT assay to evalu-

ate their cytotoxicity towards the L929 mouse fibroblast 

cell line. No cytotoxicity was observed at the lowest expo-

sure concentrations, at which cell viability was equivalent 

to that of the control, with  IC50 only being reached using 

high concentrations [65]. Although cytotoxicity may be 

low or absent, it is also important to evaluate the geno-

toxic effects of new nanoparticles.

Genotoxicity evaluation In the Allium cepa genotoxicity 

assays, the uncapped nanoparticles caused higher altera-

tion indices, compared to the capped nanoparticles, at 

both exposure concentrations (Fig.  9a). Similar results 

Fig. 8 Cytotoxicity evaluation of the AgNP-TSC, AgNP-TS, AgNP-TC, and AgNP-T nanoparticles. a MTT assay comparing AgNP-TSC and AgNP-TS; b 

MTT assay comparing AgNP-TC and AgNP-T; c imaging cytometry analysis of cell viability, necrosis, and apoptosis; d trypan blue exclusion assay. 

Statistical analysis: different numbers indicate statistically significant difference (p < 0.05)
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were obtained in the comet assays, with the uncapped 

nanoparticles resulting in higher damage indices, com-

pared to the capped nanoparticles (Fig. 9b). �e V79 cell 

line presented higher sensitivity to all the samples, com-

pared to the other cell lines.

�e greater genotoxic effects caused by the uncapped 

nanoparticles could be attributed to the fact that the 

capping not only increased the stability of the particles, 

preventing them from aggregating and losing their prop-

erties, but also retarded the release of  Ag+ ions, which are 

more toxic than nanoparticles composed of  Ag0 [66]. At 

non-cytotoxic concentrations, some silver nanoparticles 

can cause DNA damage, chromosomal aberrations, and 

possible mutagenic effects [15]. Daphedar and Taranath 

observed chromosomal aberrations in meristematic root 

tissues of Drimia polyantha exposed to biogenic silver 

nanoparticles, which were dependent on the nanopar-

ticle concentration and the duration of exposure. It was 

suggested that internalization of the nanoparticles in the 

roots could lead to a variety of chromosomal alterations 

including bridges, multipolar anaphase, delayed division, 

fusion failures, and C-metaphase, among others [45].

Toxicity studies of biogenic silver nanoparticles have 

shown varied results, due to the differences in types 

of biological reducing agents and stabilizers, capping 

compositions, and synthesis conditions, resulting in the 

formation of nanoparticles with different characteristics 

and levels of toxicity [39]. Furthermore, comparisons are 

hindered by the use of different nanoparticle concentra-

tions and organisms in the exposures. Nonetheless, it is 

important to evaluate the possibility of toxic effects, in 

order to ensure responsible and environmentally safe 

synthesis and application of these nanomaterials. �e 

cytotoxic and genotoxic effects caused by silver nanopar-

ticles can occur following their internalization in cells, 

causing oxidative stress, membrane damage, alterations 

of the cell cycle, inflammatory responses, DNA damage, 

and chromosomal aberrations [58], as well as changes in 

cell morphology, decreased viability, and cell death by 

apoptosis and necrosis [67].

Toxicity of the nanoparticles towards nontarget 

microorganisms

Minimum inhibitory concentration (MIC) for microorganisms 

of agricultural importance

�e MIC values varied according to the type of nano-

particle and the microorganism. Considering the 

capped nanoparticles, the AgNP-TSC sample pre-

sented MIC values of 3.0 × 109, 2.5 × 109, 3.5 × 109, 

and 1.5 × 109 NPs  mL− 1 for the microorganisms 

Bradyrhizobium japonicum, Pseudomonas aeruginosa, 

Bacillus thuringiensis, and Beauveria bassiana, respec-

tively, while the AgNP-TC nanoparticles presented 

MIC of 3.5 × 109 NPs  mL− 1 for Bradyrhizobium japoni-

cum and Pseudomonas aeruginosa, no concentration 

for Bacillus thuringiensis, and 3.0 × 109 NPs  mL− 1 for 

Beauveria bassiana. In the case of the uncapped nano-

particles, no mortality of the organisms was observed 

at the exposure concentrations evaluated. A possible 

reason for the lower toxicity of the uncapped nano-

particles towards the microorganisms was their larger 

hydrodynamic diameter and consequently lower toxic 

effects, given that a smaller diameter of silver nanopar-

ticles increases their toxicity to microorganisms [68, 

69]. In addition, it is important to consider that these 

nanoparticles were synthesized by biogenic pathways 

and present different characteristics in relation to the 

nanoparticles obtained by conventional synthesis. 

Removing the capping of biogenic nanoparticles can 

alter its properties since the capping is responsible for 

colloidal stability [70].

Molecular qPCR analyses of the e�ects of the nanoparticles 

on soil microbiota

�e soil samples exposed to the capped nanoparticles 

AgNP-TSC and AgNP-TC showed results closer to the 

control, in terms of both the quantity and proportions 

of genes. �is could be seen most clearly in the data 

Fig. 9 Genotoxicity evaluation of the AgNP-TSC, AgNP-TS, AgNP-TC, 

and AgNP-T samples. a Chromosomal alteration indices obtained 

using the Allium cepa test. b DNA damage indices obtained using 

comet assays. Statistical analysis: different numbers indicate 

statistically significant difference (p < 0.05)
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obtained after 360 days, when lower gene quantifica-

tion values were obtained for the soils exposed to the 

uncapped AgNP-TS and AgNP-T nanoparticles (Fig. 10).

After 15 days of exposure, the most evident alteration, 

relative to the control, was an increase in the propor-

tion of nifH in the soil samples exposed to the AgNP-

TSC and AgNP-TC nanoparticles, which was indicative 

of increased nitrogen fixation. After 90 days, increased 

nitrogen fixation was also observed for AgNP-TS and 

AgNP-T, while all four samples showed a reduction of 

the first phase of denitrification, indicated by the nirS 

gene. At the same time, AgNP-TSC showed an increase 

of cnorB, which is associated with the second phase of 

denitrification, while AgNP-T showed a decrease of this 

gene. After 180 days, changes were observed for AgNP-

TSC, with the disappearance of nifH and decrease of 

cnorB, while no changes were observed for the other 

nanoparticles, relative to the control. After 360 days, the 

soil samples exposed to the AgNP-TSC and AgNP-TC 

nanoparticles showed greater similarity to the control, 

compared to AgNP-TS and AgNP-T, indicating that over 

time, the bacteria population exposed to the capped nan-

oparticles tended to recover. It should be noted that the 

control soil without nanoparticles underwent progressive 

alterations during the course of the trial period.

Grün et  al. investigated the effects of silver nano-

particles on soil bacteria, either unfunctionalized or 

functionalized with amine or carboxyl groups, using 

quantification of the 16s rRNA, nifH, and amoA genes. 

Smaller alterations in the distribution of genes were 

observed for the soil sample exposed to the nanopar-

ticles functionalized with negatively charged carboxyl 

groups. �is was attributed to the effect of the capping, 

which decreased both the release of ions and direct con-

tact between the silver and the microorganisms, in addi-

tion to allowing the formation of bonds with soil cations, 

which further increased the barrier effect [71]. In other 

study, VandeVoort and Arai found that nanoparticles 

capped with polyvinylpyrrolidone (PVP) presented 

Fig. 10 Quantitative molecular analysis of soils exposed to the AgNP-TSC, AgNP-TC, AgNP-TS, and AgNP-T nanoparticles after 15, 90, 180, and 360 

days. a Quantification calculated using  2− ∆∆ct. b Results for the proportion of each gene analyzed
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greater affinity with the soil and lower toxicity to deni-

trification bacteria, compared to uncapped nanoparticles 

[72].

In the present study, the smaller changes observed for 

the soils exposed to the capped nanoparticles, especially 

in terms of the quantities of bacteria, could also be attrib-

uted to the presence of the capping. �ese results agreed 

with the lower cytotoxic and genotoxic effects of the 

capped nanoparticles in the assays using in  vitro expo-

sure of cell cultures and Allium cepa, which could have 

been associated with possible inhibition of ions release.

Conclusions
�e present study showed that capped biogenic nanopar-

ticles synthesized from different filtrates of the fungus 

Trichoderma harzianum have biological activity in the 

control of the phytopathogen Sclerotinia sclerotiorum in 

vitro with the effects being attributed to the presence of 

the capping. Uncapped nanoparticles presented larger 

hydrodynamic diameters and were ineffective in inhibit-

ing the development of S. sclerotiorum. Analysis of the 

cappings showed that the nanoparticles were capped 

with biomolecules derived from the filtrate and that they 

presented specific activities related to the hydrolytic 

enzymes of T. harzianum. �e capped nanoparticles were 

generally less toxic, compared to the uncapped nanopar-

ticles. �ese findings open perspectives for future studies 

investigating the composition and importance of the cap-

pings of biogenic nanoparticles employed for the control 

of phytopathogens in agriculture.
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