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Abstract
Depending on the geometric basis of measurement (gauge length), discrete strain sensors used
in structural monitoring of civil engineering structures can be considered as short-gauge
sensors or long-gauge sensors. Long-gauge sensors measure average strain over the gauge
lengths and are used for global monitoring of structures, in particular, those built of
inhomogeneous materials. However, the strain distribution along the sensor’s gauge length
may be nonlinear and the measured average strain value that is commonly attributed to the
midpoint of the sensor may be different from the real value of strain at that point.
Consequently, excessively long sensors may feature significant errors in measurement.
However, short-gauge sensors are more susceptible to other types of measurement error, most
notably, error caused by discontinuities (open cracks) distributed in the monitored material.
Thus an optimum gauge length is to be found. The error in average strain measurement
inherent to the sensor’s gauge length introduced by the strain distribution and discontinuities in
the monitored material is modelled for the most common applications met in civil engineering
practice. The modelling takes into account the geometric properties of the monitored structure
and various load cases. Guidelines for the selection of an appropriate gauge length are
proposed, and tables for measurement error estimation are presented.

Keywords: long-gauge sensors, measurement error, fibre-optic sensors, structural health
monitoring, concrete and steel structures

1. Introduction

Many construction materials, particularly concrete, can be
affected by local defects, such as cracks, air pockets and
inclusions. All these defects introduce discontinuities in
the mechanical material properties at a meso-level. More
indicative for structural behaviour, however, are material
properties at the macro-level. For example, although
reinforced concrete consists of hardened cement paste matrix
filled with aggregates of different sizes and steel reinforcing
bars, reinforced concrete structures are mainly analysed
at the macro-level as built of a virtually homogenous
material—cracked reinforced concrete [1]. Therefore, for
structural monitoring purposes it is necessary to use sensors
that are insensitive to material discontinuities observed at
the micro- and meso-levels while still providing reliable

measurements at the macro-level. In other words, it is not
of interest to know the exact strain in each component of
the material—hardened cement paste, aggregate, and steel—
but to evaluate the behaviour of the resulting material as a
whole.

The availability of long-gauge fibre-optic sensors [2–4]
has opened new and interesting possibilities for structural
health monitoring. For example, long-gauge sensors based
on low coherence interferometry allow the measurement of
deformations over a measurement basis that can reach tens
of metres with resolutions in the micrometre range. These
sensors were proven to be applicable for monitoring at a global
structural level through numerous projects [5]. The value of a
measurement performed using a long-gauge sensor represents
an average strain value along the sensor’s gauge length, which
is commonly attributed to the midpoint of the sensor. This is
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illustrated in figure 1 and described as follows:

εC,s = �Ls

Ls

= uB − uA

xB − xA

= 1

Ls

∫ xB

xA

εx,s(x) dx +
1

Ls

∑
i

�wd,i, (1)

where A, B are points delimiting the gauge length of the sensor
with coordinates xA and xB ; C is the midpoint of the sensor with
coordinate xC = (xA + xB)/2; Ls = xB – xA is the gauge length
at reference time, before the deformation is applied; uA, uB are
the x-axis component of displacements of points A and B after
deformation is applied; εC,s is the average strain at point C
measured by the sensor; εx,s(x) is the strain distribution along
the x-axis of the sensor; and �wd,i is the dimensional change
of the ith (xi ∈ [xA, xB]) discontinuity (crack opening, inclusion
dimensional change, etc) in the direction of the x-axis, after
the deformation is applied.

Equation (1) shows that the measured strain εC,s depends
on the strain distribution εx(x) between points A and B,
the number and the dimensional changes of discontinuities
�wd,i (size of crack openings or dimensional changes of
inclusions) between points A and B, and the gauge length
Ls . For nonlinear strain distribution between points A and B,
the first term on the right-hand side of (1) is different from the
real value of strain at point C, and this difference in general
increases as the sensor’s gauge length increases. Thus for more
accurate measurements shorter sensors are needed. However,
the accuracy of measurements of shorter sensors is affected
by dimensional changes of discontinuities [6, 7]. Thus, an
optimal gauge length is to be found as a compromise of the
two requirements—it must be short enough to guarantee good
accuracy of measurement for nonlinear strain distributions,
but at the same time, long enough to guarantee good accuracy
in the event of large dimensional changes of discontinuities.
General recommendations for determining a sensor’s gauge
length and accuracy are given in the literature [5, 8], but an
extensive analysis for the general case has not been performed,
and directly applicable models and guidelines have not been
presented. In this paper, the influence of the gauge length
on measurement accuracy is examined, and the measurement
error is modelled for prismatic beams subject to bending.
The most frequent load cases—concentrated forces, and loads
with polynomial distributions—are considered along with the
most used materials in civil engineering—steel and concrete.
Simplified guidelines are proposed for determining the optimal
sensor gauge length given the geometrical properties of the
structure.

2. Prismatic beams subject to bending

Prismatic beams have one dimension (length of a beam) that is
significantly larger than the other two dimensions (width and
depth). If the loads cause bending in only one plane, then the
beam is called a ‘plane beam’, and the bending is called ‘plane
bending’, otherwise the beam is called a ‘spatial beam’ and
the bending is called ‘spatial bending’. Spatial bending can
be calculated as the superposition of plane bending in each of
the perpendicular planes.

The cross-sectional geometric properties relevant for this
study are the moment of inertia I, depth h and position of
geometrical centroid (centre of gravity). The beams are
represented by centrelines—lines connecting the geometrical
centroids (centres of gravity) through the beam length. The
beams typically carry loads perpendicular to the centreline and
are subjected to bending. An example of a structure consisting
of several beams with various cross-sectional properties and
typical loads is presented in figure 2(a).

It is important to note in figure 2(a) that the beams are
defined as ‘free spans’ between joints, where a joint is defined
as points at which beams with different cross-sections or
mutual angles different from 180◦ meet. Joints are marked
with numbers in squares.

2.1. Loads

Loads can appear in the form of concentrated forces (e.g.
vehicle on the bridge, Fy in figure 2(a)), concentrated
external moments (e.g. transferred from other members, Me in
figure 2(a)), or distributed forces (e.g. weight of construction
material or snow, qy in figure 2(a)). Dead loads do not change
intensity or position in time (weight of construction material).
Live loads can change intensity and position along the structure
(vehicle on the bridge or weight of snow). The loads generate
internal forces in structural members—normal (axial) forces N,
bending moments M, and shear forces V. In this study axially
loaded members, columns, are not considered, but analysis
for these members is similar to the analysis presented here for
beams subjected to bending. Shear forces do not influence
the sensor’s measurement. Thus, the only internal force of
interest is the bending moments whose distribution depends
on the member’s geometrical properties, the border conditions
and the type of applied loads. An example of a bending
moment distribution is given in figure 2(b).

2.2. Load–strain relation in elementary theory of beams

The strain fields in beams depend on the load type, the
distribution of bending moments M, geometric properties
of the cross sections and the mechanical properties of
the construction material. In elementary beam theory
(linear theory of the first order), four main assumptions
are made: (i) strain is small (geometric linearity),
(ii) deformation is small, (iii) Bernoulli’s hypothesis is valid,
and (iv) stress–strain relation is linear [9]. Assumptions (i)–
(iii) are valid in general for beams with the length–depth
(L/h) ratio higher than 5:1 [10], which is the case in common
structures, while the validity of assumption (iv) depends on
the properties of the construction material.

Structural steel has a linear stress–strain relation and the
Young’s modulus is a constant. Concrete has more complex
behaviour and the Young’s modulus depends on the magnitude
of stress. For lower stresses the behaviour of concrete can be
considered as linear, but for higher stresses this is not the case
[1]. In order to simplify the presentation, the Young’s modulus
of concrete will be considered as constant regardless of the
stress level; however this simplification is made only to abridge
the presentation, and it does not affect general conclusions of
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Figure 1. Schematic representation of a long-gauge sensor in an inhomogeneous material (courtesy of SMARTEC SA).
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Figure 2. Schematic representation of a structure consisting of several beams subjected to bending loads, corresponding distribution
diagrams of bending moments and cross-section curvatures.
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Figure 3. Strain distribution in the beam’s cross-section.

the analysis. Provided that above-mentioned assumptions (i)
to (iv) are valid, the distribution of strain εx in a beam subject
to bending is given by the following expression:

εx(x, y) = M(x)

E · I
· y = κ(x) · y, (2)

where E is the Young’s modulus of the construction material
(constant) and κ(x) is the curvature in a cross-section.

Let a long-gauge sensor be installed at a distance ys from
the centre of gravity as shown in figure 3.

The expected strain at the midpoint of the sensor is
calculated using (2) by substituting x and y with xC and ys . The
strain distribution along the beam is obtained by substituting y
with yC . Curvature in a cross-section is a direct consequence
of a bending moment and is therefore a deformation parameter
that is relevant to bending. An example of the distribution of
curvature in a structure consisting of several beams is given in
figure 2(c).

2.3. Saint-Venant principle

Concentrated loads, forces and moments, as well as distributed
loads with abrupt changes along the beam create perturbations

of stress and strain which make (2) inapplicable. The Saint-
Venant principle states that at points ‘far enough’ from the
point of perturbation, the stress and strain fields comply
with (2). Theoretical derivations and experimental results
demonstrated that in most cases the ‘safe’ distance for common
cross-sections corresponds to the depth h of the beam [10].
Consequently, (2) can be used only for parts of the girders
subjected to a ‘smooth’ distributed load that are approximately
a distance h away from the location where the loads are
applied (including the extremities of the structural member).
Otherwise, a correction factor is to be added [10].

3. Influence of the gauge length on the accuracy of
measurement

In order to assess the influence of the sensor’s gauge length
on the accuracy of the measurement, it is necessary to split
the problem into several basic load cases as shown in table 1.
The case IDs are composed as follows: first letter B = beam;
second letter for sensors installed far from extremities: E =
load at extremities, P = polynomial load distribution along the
structural member, F = concentrated load, M = concentrated
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Figure 4. Basic load cases and the corresponding distribution of bending moments.

Table 1. Breakdown of the problem.

Case Structural
ID member Load type Position of the sensor

BE Beam At the extremities of Far from extremities
the structural member

BP Beam Polynomial load along Far from extremities
the structural member

BF Beam Concentrated force Far from extremities
BM Beam Concentrated moment Far from extremities
BX Beam Any Close to extremities

moment; second letter X for any type of load installed close
to extremities. The basic load cases and the corresponding
diagrams of bending moments are given in figure 4.

Once the influence on each basic load case has been
determined, complex cases can be solved using the principle
of superposition. For example, the accuracy of the sensors
installed in structural members 2 and 3 in figure 2 can be
analysed as a combination of basic cases BE and BF for
sensors far from joints 2 and 3. For sensors installed close
to the extremities, case BX can be added.

The analysis is performed separately for homogeneous
and inhomogeneous materials. For a homogeneous material,
the average strain measured by the sensor which is attributed
to the sensor’s midpoint is given by the first term (integral) on
the right-side part of (1). The error of measurement inherent
to the gauge length is calculated as follows:

δεC,s = εC,s − εx(xC, ys)

= 1

Ls

∫ xB

xA

M(x)

E · I
ys dx − M(xC)

E · I
· ys

= ys

E · I

(
1

Ls

∫ xB

xA

M(x) dx − M(xs)

)
. (3)

For an inhomogeneous material the second term (sum) of the
same expression is corrected as shown in section 3.7.

3.1. Homogeneous structural member loaded at extremities
(case BE)

For structural members loaded at the extremities as shown in
figure 4, the bending moment distribution function is given as
follows:

M(x) = Ml + Ryx = Ml +
Mr − Ml

Lbeam
x, (4)

where Lbeam is the length of the beam.
The error of the measurement inherent to the gauge length

is obtained by combining (3) and (4), and taking into account

that xC = (xA + xB)/2 and Ls = xB − xA (see figure 1 and (1)):

δεC,s = ys

E · I

{
1

xB − xA

[(
MlxB + Ry

x2
B

2

)

−
(

MlxA + Ry

x2
A

2

)]
−

(
Ml + Ry

xA + xB

2

)}
= 0. (5)

Consequently, the gauge length does not affect the accuracy of
the sensors for structural members loaded at the extremities if
the sensors are installed ‘far enough’ from the extremities.

3.2. Homogeneous beam loaded with distributed loads (case
BP)

For a homogeneous beam loaded with a distributed load as
shown in figure 4, the resultant force is expressed in (6a) and
the bending moment distribution function is given in (6b),
taking into account the equilibrium conditions between the
loads and reactions at extremities:

FRy
=

∫ L

0
qyx

n dx =qy

Ln+1
beam

n + 1
; (6a)

M(x) = qy

(n + 1)(n + 2)

(
Ln+1

beamx − xn+2
)
. (6b)

The relation between the maximal moment MBP
max and maximal

strain εBP
max for case BP is found using the local maximum of

the function defined in (3) combined with (6b):

εBP
max = ys

E · I
MBP

max = ys

E · I
qy

Ln+2
beam

n + 1
αn

= ys

E · I
FRy

Lbeamαn, (7)

where αn = n+1
(n+2)2· n+1√

n+2
.

The error of the measurement inherent to the gauge length
in the case of bending is obtained by combining equations (3),
(6a) and (7) taking into account that xC = (xA + xB)/2 and Ls

= xB − xA (see figure 1 and (1)):

δεBP
C,s = − ys

E · I
· FRy

(n + 2)(n + 3)Ln+1

×
n+1∑
i=0

[(
n + 3

i

)
1 − (−1)n+3−i

2n+3−1

]
Ln+2−i

s xi
C. (8)

This equation demonstrates that in general the error in the
measurement exponentially depends on the sensor’s gauge
length Ls and, for n > 0, on the position xC . In order to further
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Table 2. Coefficients φBP,n.

ξ n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

1/20 −0.001 −0.002 −0.003 −0.004 −0.005 −0.006 −0.008 −0.009 −0.011 −0.013 −0.015
1/10 −0.003 −0.006 −0.010 −0.013 −0.018 −0.022 −0.026 −0.031 −0.036 −0.041 −0.046
1/8 −0.005 −0.010 −0.015 −0.020 −0.026 −0.032 −0.038 −0.045 −0.051 −0.057 −0.063
1/6 −0.009 −0.017 −0.025 −0.033 −0.042 −0.051 −0.060 −0.068 −0.076 −0.084 −0.091
1/5 −0.013 −0.023 −0.034 −0.046 −0.057 −0.068 −0.078 −0.087 −0.096 −0.104 −0.111
1/4 −0.021 −0.036 −0.051 −0.066 −0.080 −0.092 −0.104 −0.114 −0.122 −0.129 −0.135
1/3 −0.037 −0.060 −0.082 −0.101 −0.118 −0.131 −0.142 −0.150 −0.155 −0.159 −0.161
1/2 −0.083 −0.122 −0.150 −0.170 −0.181 −0.186 −0.187 −0.185 −0.180 −0.174 −0.167
3/4 −0.188 −0.228 −0.241 −0.237 −0.225 −0.209 −0.192 −0.176 −0.161 −0.147 −0.135
1 −0.333 −0.325 −0.291 −0.253 −0.218 −0.189 −0.165 −0.145 −0.129 −0.116 −0.105

evaluate the measurement error, (8) can be transformed by
numerical transformations and substitution with (7):

δεBP
C,s = − εBP

max

αn(n + 2)(n + 3)

× 1

ξ

[(
η +

ξ

2

)n+3

−
(

η − ξ

2

)n+3

− (n + 3)ξηn+2

]
, (9)

where ξ = Ls

Lbeam
and η = xC

Lbeam
.

As per (8), the biggest error in the measurement is
obtained for the maximal xC , which is less than or equal to
Lbeam − Ls/2 (i.e. η � 1 − ξ/2). With this substitution in (9),
the maximal absolute error can be estimated as∣∣δεBP

C,s

∣∣ � εBP
max

∣∣φBP,n
∣∣, φBP,n = − 1

αn(n + 2)(n + 3)

× 1

ξ

[
1 − (1 − ξ)n+3 − (n + 3)ξ

(
1 − ξ

2

)n+2
]

. (10)

The coefficients φBP,n are given in table 2. They represent a
relative error in the measurement of maximal strain and can
be used as a criterion to determine the maximal gauge length
of a sensor.

For example, let n = 2 and let the criterion be to measure
the maximal strain with relative error not exceeding 1%
(=0.01); then the sensor’s gauge length should not exceed
1/10 of the length of the beam (see table 2).

For the most common case, n = 0, uniformly distributed
load (dead weight, snow, etc), and n = 1, linearly distributed
load, the error is calculated as follows:

n = 0 ⇒ fy(x) = qy = const ⇒ δεBP
C,s = − ys

E · I

qyL
2
s

24

= − ys

E · I

FRy

Lbeam

L2
s

24
= −1

3
εBP

maxξ
2, (11a)

n = 1 ⇒ fy(x) = qyx ⇒ δεBP
C,s = − ys

E · I

qyL
2
s

24
xC

= − ys

E · I

FRy

L2
beam

L2
s

12
xC = −0.650εBP

maxξ
2η. (11b)

The relative error in the measurement of maximal strain does
not exceed 1% for Ls � Lbeam/6 in the case of uniformly
distributed load (n = 0) and for Ls � Lbeam/8 in the case of
linearly distributed load (n = 1).

3.3. Homogeneous beam loaded with concentrated force
(case BF)

For a homogeneous beam loaded with concentrated force as
shown in figure 4, the bending moment diagram has a ‘broken
line’ shape. The force application cross-section splits the beam
into two segments, and each segment can be considered as a
beam loaded at the extremities, see figure 4. Consequently,
the sensors installed ‘far enough’ from the force application
cross-section are exposed to the linear distribution of strain
as in case BE, and the gauge length does not involve error in
measurement (see subsection 3.1).

For the cross-sections close to the application point of the
force, the strain distribution is more complex and does not
follow (2) [10, 11]. In general the strain field can be presented
as a sum of the strain field from (2), superposed with the
corrective strain field εμBF

(x, y) [10], i.e.,

εx(x, y) = MBF(x)

E · I
· y + εμBF

(x, y)

= κMBF
(x) · y + εμBF

(x, y), (12)

where

MBF(x) =
{
Fy

(
1 − xFy

Lbeam

)
x

∣∣∣∣x � xFy
,

FyxFy

(
1 − x

Lbeam

)∣∣∣∣x � xFy

}
and xFy

is the coordinate of the force application cross-
section.

The measurement error relative to the first term of
(12) depends on the position of the sensor. The maximal
measurement error is generated when the sensor’s midpoint
corresponds to the force application cross-section [5]. In this
case, the maximal strain at the sensor’s midpoint, relative to
the first term on the right-hand side of (12), is given in (13)
and the maximal error in (14):

εMBF

max = MBF(xFy
)

E · I
· ys = Fyys

E · I
xFy

(
1 − xFy

Lbeam

)

= Fyys

E · I
LbeamηFy

(
1 − ηFy

)
, (13)

δεMBF

C,s = −1

8

Fyys

E · I
Ls = −1

8
εMBF

max
ξ

ηFy

(
1 − ηFy

) . (14)

The influence of the gauge length on the second term of (12) is
more difficult to determine, since the function εμBF

(x, y) varies
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significantly along the x-axis (changes sign) and is nonlinear
along the y-axis [10]. The Bernoulli hypothesis is not valid
in the strain perturbation zone (cross-section does not remain
a plane after the deformation) and (2) is not valid. However,
the real values of the strain in the cross-sections close to the
force application point are not of interest for global structural
monitoring, and rather an overall deformation created by a
strain field perturbation is of interest. The estimation of
this global influence requires more sophisticated analysis that
exceeds the scope of this research. Only the most common
case is analysed—a beam with a rectangular cross-section with
a force applied on an external surface. In order to evaluate the
error due to the gauge length, let us define equivalent strain as
the strain value assuming that the Bernoulli hypothesis is valid,
i.e. the cross-sections remain a plane after deformation. The
equivalent strain and the curvature correction around the force
application cross-section [10] are then expressed as follows
(respectively):

εμBF

equ (x, y) = κμBF
(x) · y =

[
1

h

∫
h

εμBF
(x, y)

y
dy

]
· y, (15a)

κμBF
(x) = 1

3
β

(
x − xFy

h

)
Fyh

E · I
, (15b)

where h is the depth of the cross-section and β is the function
dependent on x as shown in figure 5.

The equivalent strain is different from real strain, but
it gives equivalent global deformation as the real strain, i.e.
the same curvature and deformed shape. Maximal equivalent
strain at the location of the sensor is obtained by combining (2)
and (15b) for x = xFy

and β = 1.438 (figure 5), and presented
as follows:

εμBF

equ,max = 0.479
Fyh

E · I
ys

= 0.479εMBF

max
h

Lbeam

1

ηFy

(
1 − ηFy

) . (16)

According to figure 5, when the cross-section of interest is
approximately 0.5h from the cross-section where the force
is applied, the corrective curvature is close to zero. Thus,
the Bernoulli hypothesis is valid at that point and the strain
field is approximately equal to the field as determined in the

elementary theory of beams. For sensors with a gauge length
shorter than h, the above statements are not valid and the
use of such a short sensor is not recommended. Because
measurements depend on a sensor’s position in the cross-
section, the results may be difficult to interpret. That is why
sensors with a gauge length not shorter than the depth of the
cross-section h are recommended for structural monitoring,
and only these sensors are analysed further in this text. The
measurement of the sensor with a gauge length not shorter
than the depth of the cross-section (i.e. Ls � h) is expressed as

ε
μBF

C,s = 1

3

Fyh

E · I
ys

1( xB−xFy

h
− xA−xFy

h

)
×

∫ xB −xFy

h

xA−xFy

h

β

(
x − xFy

h

)
dx

= 0.695εμBF

equ,max
h

Ls

[
γ

(
Ls

2h

)
− γ

(
−Ls

2h

)]
, (17)

where γ is the integral of β, dependent on x as shown in
figure 5.

It can be noticed in figure 5 that for values Ls � h the
function γ is constant for (x − xFy

)/h � 0.5 and approximately
equal to 0.715, and for (x − xFy

)/h � −0.5 it is approximately
equal to 0. Thus, for Ls � h, (17) transforms into (18) and the
measurement error is estimated using (19):

ε
μBF

C,s = 0.497εμBF

equ,max
h

Ls

= 0.238εMBF

max
h2

LbeamLs

1

ηFy

(
1 − ηFy

) ; (18)

δε
μBF

C,s = εμBF

equ,max

(
0.497

h

Ls

− 1

)

= εMBF

max
h

L

1

ηFy

(
1 − ηFy

) (
0.238

h

Ls

− 0.479

)
. (19)

Equation (19) is used to assess the error generated by a strain
field perturbation for Ls � h. It is important to highlight
that this error does not depend on the position of the force.
For example, for Ls = h the error is equal to 0.503 of the
maximal equivalent strain (from (19)). Finally, the maximal
equivalent strain and the corresponding error are calculated
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Table 3. Coefficients φBF.

Ls = h Ls = 1.5h Ls = 2h Ls = 3h

h/Lbeam ξ ηFy
= 1

2 ηFy
= 1

4 ξ ηFy
= 1

2 ηFy
= 1

4 ξ ηFy
= 1

2 ηFy
= 1

4 ξ ηFy
= 1

2 ηFy
= 1

4

1/40 1/40 −0.035 −0.046 1/26.7 −0.048 −0.064 1/20 −0.058 −0.076 1/13.3 −0.074 −0.097
1/30 1/30 −0.046 −0.060 1/20 −0.064 −0.083 1/15 −0.076 −0.100 1/10 −0.097 −0.127
1/25 1/25 −0.054 −0.071 1/16.7 −0.075 −0.098 1/12.5 −0.091 −0.118 1/8.3 −0.115 −0.150
1/20 1/20 −0.067 −0.087 1/13.3 −0.093 −0.120 1/10 −0.111 −0.144 1/6.7 −0.141 −0.183
1/15 1/15 −0.087 −0.111 1/10 −0.120 −0.154 1/7.5 −0.144 −0.185 1/5 −0.183 −0.235
1/10 1/10 −0.123 −0.155 1/6.7 −0.170 −0.216 1/5 −0.205 −0.259 1/3.3 −0.260 −0.329
1/8 1/8 −0.148 −0.185 1/5.3 −0.205 −0.257 1/4 −0.246 −0.308 1/2.7 −0.312 −0.391
1/6 1/6 −0.185 −0.228 1/4 −0.257 −0.317 1/3 −0.308 −0.380 1/2 −0.391 −0.483
1/5 1/5 −0.212 −0.258 1/3.3 −0.294 −0.359 1/2.5 −0.353 −0.431 1/1.7 −0.448 −0.547

Table 4. Coefficients φBF
left and φBF

right.

Ls = 0.5h Ls = 0.75h Ls = h Ls = 1.5h

ηFy
= 1

2
1
4

1
2

1
4

1
2

1
4

1
2

1
4

h/Lbeam ξ Both Left Right ξ Both Left Right Both Left Right Both Left Right

1/40 1/80 0.007 0.009 0.009 1/53 0.026 0.035 0.035 0.033 0.045 0.043 0.026 0.036 0.034
1/30 1/60 0.009 0.012 0.012 1/40 0.035 0.048 0.046 0.044 0.061 0.058 0.035 0.049 0.046
1/25 1/50 0.011 0.015 0.015 1/33 0.042 0.058 0.056 0.053 0.074 0.070 0.042 0.060 0.055
1/20 1/40 0.014 0.019 0.018 1/27 0.053 0.074 0.070 0.067 0.095 0.088 0.054 0.078 0.070
1/15 1/30 0.019 0.026 0.024 1/20 0.072 0.101 0.094 0.092 0.131 0.119 0.074 0.110 0.095
1/10 1/20 0.028 0.040 0.037 1/13 0.110 0.160 0.143 0.142 0.214 0.183 0.117 0.189 0.147
1/8 1/16 0.036 0.051 0.047 1/11 0.141 0.210 0.182 0.183 0.285 0.233 0.153 0.265 0.189
1/6 1/12 0.049 0.072 0.063 1/8 0.195 0.303 0.248 0.256 0.427 0.320 0.221 0.441 0.265
1/5 1/10 0.060 0.090 0.077 1/7 0.240 0.389 0.303 0.320 0.569 0.394 0.284 0.662 0.331

by combining equations (13) and (18), and equations (14) and
(19) respectively, as follows:

εBF
max = εMBF

max + εμBF

equ,max

= εMBF

max

[
1 + 0.479

h

Lbeam

1

ηFy

(
1 − ηFy

)
]

; (20)

δεBF
C,s = δεMBF

C,s + δε
μBF

C,s = εMBF

max
1

ηFy

(
1 − ηFy

)
×

[
h

L

(
0.238

h

Ls

− 0.479

)
− 1

8

Ls

Lbeam

]
= εMBF

max φBF.

(21)

These equations help determine the magnitude of the
measurement error with respect to the total equivalent strain
generated by the concentrated force. The measurement error
for the concentrated force acting in the middle and at quarter
of the span are given for various ratios h/Lbeam and h/Ls

(Ls � h) in table 3.
In common practice, the ratio h/Lbeam is for steel

structures between Lbeam/20 and Lbeam/30 and for reinforced
concrete girders between 1/15 and 1/25. For these girders it
is recommended to use a gauge length not exceeding 1.5h in
order keep the relative error contained between 5% and 15%
(reinforced concrete is not a homogeneous material, but this
observation is given here as information to be considered later
in the text). The ratio h/Lbeam is much smaller for pre-stressed
or post-tensioned girders, between 1/30 and 1/40, and longer
gauge lengths can be used.

Using the equations presented in this section it can be
proven that the accuracy of measurement can be significantly
improved if the sensor with the gauge length Ls is replaced
with two shorter sensors with gauge lengths equal to Ls ,half

= Ls/2, installed to the left and right of the force application
cross-section. In this case, the result of monitoring provides
two values of measured strain at distances –Ls ,half/2 and
+Ls ,half/2 from the force application cross-section. The total
error in measurement inherent to the gauge length is calculated
using equations (12)–(17) with appropriate substitution of
coordinates. In order to simplify the presentation, the
derivation of these formulae is not presented, but final results
are as follows:

δε
BF,left
C,s,half = εMBF

C,half(xC,half)φ
BF
left; (22a)

δε
BF,right
C,s,half = εMBF

C,half(xC,half)φ
BF
right. (22b)

The coefficients φBF
left and φBF

right are given in table 4.
The values presented in table 4 are in general smaller than

those presented in table 3. Consequently, if the position of
the concentrated force on the beam is known (e.g. support
3 in figure 2), then it is recommended to use two sensors
installed on each side of the force application cross-section
and to determine the length of the sensors based on (22b) and
table 4. However, the position of the force is frequently not
pre-defined (e.g. a vehicle on the bridge), and in that case it is
recommended to use sensors with gauge lengths determined
using (21) and table 3.
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Figure 6. Schematic representation of the influence of the discontinuities on the sensor measurement.

3.4. Homogeneous beam loaded with concentrated moment
(case BM)

A concentrated moment creates a discontinuity in the bending
moment distribution (bending moment diagram), as shown in
figure 4. The bending moment distribution ‘far enough’ from
the extremities and ‘far enough’ from the moment application
cross-section is linear, and the error in measurement inherent
to the gauge length is null (see section 3.2). The bending
moment diagram practically has two values at the cross-section
where the concentrated moment is applied, one on the left
and the other on the right of the application cross-section.
Consequently two sensors installed at these positions are to
be used for monitoring. This solution is possible only if the
concentrated moment acts as a dead load, i.e. if it does not
change position, which in real cases occurs when the moment
is transferred to the beam from some other structural member.
However, in that situation, the interception point between the
loading structural member and the beam defines the extremity
of the beam and the moment application cross-section is
practically at the extremity. This case is discussed in the next
subsection. Live loads can also create concentrated moments
(e.g. heavy vehicle that suddenly brakes), but since their
position is not pre-defined on the beam, the strain they generate
at the application cross-section cannot be directly measured,
since the position where the required pair of sensors is to be
installed is not known. Thus, no specific recommendation for
determining the gauge length can be proposed, except to keep
it longer than or equal to the depth of the cross-section in order
to overcome issues related to local strain perturbations.

3.5. Cross-sections close to the extremities of a homogeneous
beam (case BX)

The strain field in the cross-sections close to the extremities of
the beam is perturbed due to concentrated loads and does not in
general conform to predictions made by the elementary theory
of beams. It depends strongly on border conditions, which is
why a simple and universal solution for modelling the stain
perturbation does not exist. Consequently, it is impossible to
model the error of measurement inherent to the gauge length
for the sensors installed close to the extremities in a simplified
manner. The general recommendation is to use a sensor with
the gauge length at least as long as the cross-section depth. In
the cases where the concentrated force acts at the extremity of
the beam (and models developed in subsection 3.3 are valid),
then the gauge length of the sensor can be decreased to one half
of the cross-section depth. Another solution is to use sensors
with a gauge length determined using other criteria presented

in this paper, but to position the sensors ‘far enough’ from the
extremities.

3.6. Inhomogeneous beam

Reinforced concrete structures, although truly inhomogeneous
(at meso-level), are considered as homogeneous (at macro-
level) during design and structural analysis. The idea of
using long-gauge sensors follows the philosophy of reinforced
concrete: the structural condition of an inhomogeneous
material is assessed considering it as a homogeneous material.

In an ideally homogeneous material, without local defects
or discontinuities (cracks), the elastic strain field follows
the theoretical models; thus in an ideally homogeneous
material the use of a short gauge length is not an issue
(except at locations of concentrated loads). In contrast,
in inhomogeneous materials and notably materials with
discontinuities (e.g. cracks in reinforced concrete) sensors
with a short gauge length cannot be used for monitoring at
the structural level [7, 12].

Let us observe three sensors with equal gauge lengths
installed in a plane at a distance ys from the centreline, as
shown in figure 6 (plane view). Let the sensor position in the
plane be as follows: two sensors have extremities belonging
to the same cross-sections (S1 and S2), while the third sensor
(S3) is slightly shifted along the x-axis (see figure 6). Finally,
let us suppose that the beam is built of reinforced concrete,
sensors are installed in the tensioned part of the beam, and, to
simplify presentation, the average strain is constant along the
sensors (e.g. the bending moment diagram is constant). Due
to tension, the reinforced concrete element will crack; let us
suppose that the first crack occurs exactly in one of the cross-
sections where S1 and S2 have their extremities. In the worst
case, the extremities of the sensors will belong to two separate
blocks of concrete, as shown in figure 6. The sensor S3 is
only slightly axially shifted; thus its left extremity belongs to
block 1. The other extremities of all three sensors belong to
the same block n + 1.

Since the theoretical average strain field in the beam is
constant, all three of the sensors are expected to measure this
same value. However, due to cracking and imperfection in
the sensor positions, the measurements of sensors S1, S2 and
S3 will be different from each other and from the calculated
average strain in the beam. This error is analysed in [5] and
presented as follows where the notation is as given in figure 6:

δεcrack
C,s ≈ ±wc

Ls

≈ ±εC,s

wc

�Lc + wc

· Lc

Ls

< ±εC,s

Lc

Ls

= ±εC,sφ
crack; (23)
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Figure 7. Position of the sensors in the structure.

This equation demonstrates that a longer length of the
sensor’s gauge length provides results with lower errors and
consequently with better accuracy in the measurements. To
achieve a relative error smaller than 10%, it is necessary to
use sensors that are at least ten times longer than the distance
between the cracks Lc. In order to improve the durability
of concrete structures, it is preferred to have larger number
of cracks along the beam with a low crack width, instead of
having fewer cracks with large widths. A typical spacing
between the cracks ranges between 100 and 300 mm [13],
and consequently typical minimal recommended lengths of
sensors range between 1 and 3 m.

If the gauge length is shorter than the distance between
the cracks, then, depending on position, the sensor will either
measure strain in the tensioned concrete, which is much lower
than the calculated average strain in the beam, or measure
the ratio between crack opening and gauge length, which is
much higher than the calculated average strain in the beam
[5]. These results are interesting from the point of view of
local material behaviour, but they do not provide information
on global structural behaviour.

3.7. Combined loading

A beam is, in general, subjected to a combination of distributed
and concentrated loads. For beams that behave in accordance
with elementary beam theory, the strain generated by a
combination of loads can be presented as the sum of strain
generated by each individual load. Thus, in the general case,
the combined strain and the limits of measurement error for a
given gauge length are calculated as follows:

εcomb.
C,s =

∑
i

εBE
C,s,i +

∑
j

εBP
C,s,j +

∑
k

εBF
C,s,k; (24a)

δεcomb.
C,s =

∑
i

δεBE
C,s,i +

∑
j

δεBP
C,s,j

+
∑

k

δεBF
C,s,k ± δεcrack

C,s . (24b)

In (24b) the term related to case ‘BE’ is null, and the term
related to case ‘BF’ is also null if the sensor is far enough from
the force application cross-section.

4. Case study—comparison of measurement by
sensors with different gauge lengths

The southeast leg (SE-leg) of the Streicker Bridge at Princeton
University campus is a curved continuous girder made of post-
tensioned concrete and supported by weathering steel columns
[15]. The bridge has been equipped with Bragg-grating fibre-
optic long-gauge sensors [15] with absolute measurement error
estimated to be 4 με (4 × 10−6 m/m). The monitoring project
has broad research and education aims, but only a part of the
research relevant to the topic of this paper is presented here,
while more details about the other aims of the project, the
employed monitoring strategy and the monitoring system are
found in the literature [15, 16]. The aim of this section is to
present the differences in measurements obtained by sensors
with different gauge lengths, installed in the zone where the
strain field is perturbed.

In order to assess the influence of the gauge length on
the average strain measurement, three sensors AB1, AB2, and
AB3, with gauge lengths LAB1 = 0.3 m, LAB2 = 0.6 m, and
LAB3 = 1.2 m, respectively, were embedded in concrete close
to each other, at the same distance from the centre of gravity,
parallel to the elastic line of the beam, in the zone with constant
cross-section, as shown in figure 7. The bridge has horizontal
curvature, but radius (110 m) is several orders of magnitude
bigger than the length of sensors; thus the bridge can locally
be considered as prismatic. The sensors were close to the
abutment, in the zone where the strain field was expected to
be perturbed by the proximity of the concentrated reaction
force from the abutment, and the change in cross-sectional
properties.

The post-tensioning of the SE-leg was performed in three
stages by applying approximately 25%, 55% and 100% of the
full post-tensioning force. Measurements were made three
times in the first two stages, and four times in the last stage.
The results of the measurements are presented in figure 8 as
discrete spots. The strain distribution at the location of sensors
is calculated theoretically for each stage based on simplified
elastostatics theory [10]. The theoretically calculated strain
distributions are presented in figure 8 in the form of continuous
or dashed lines.

The measurement error inherent to the gauge length could
not be accurately determined for the following reasons: (I) no
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Figure 8. Results of measurements performed by sensors with different gauge lengths.

short-gauge sensors were installed in parallel with long-gauge
sensors for direct comparison; (II) the theoretically calculated
strain is determined based on linear elastostatics theory, which
is not strictly accurate; and (III) small force fluctuations were
present at each stage of post-tensioning due to the performance
of the post-tensioning device, the friction/sliding of the bridge
deck with the formwork, the friction/sliding of tendons within
the inner duct, and creep effects in concrete and relaxation
effects in tendons. Nevertheless, the analysis presented in this
section illustrates well the contents presented in section 3.

All the sensors have the same starting point ‘A’ and
different ending points ‘B’ (see figure 7), and consequently
different centres ‘C’. Since the point ‘A’ of all three sensors
is practically in the cross-section where the cross-section
changes (see figure 7), a strain field perturbation, i.e. strain
concentration, is expected around this point. The strain
concentration results from transfer of both axial stresses,
mainly introduced by the post-tensioning force, and shear
stresses, mainly introduced by reaction from the abutment.
The sensors are embedded very close to the centre of gravity
of the cross-section, and the theory of elasticity [10] predicts a
very small strain perturbation at that location due to the post-
tensioning force. The perturbation of the strain field due to
shear stresses was assumed to be more important; however, the
magnitude and the length of the perturbed zone were expected
to be smaller than those induced by concentrated force as
presented in subsections 3.3 and 3.5. Since the depth of the
cross-section at the location of sensors was slightly shorter
than 0.578 m, the perturbed zone was expected to be shorter
than 0.289 m. Hence, all three end points ‘B’ were assumed to
be either out of the perturbed zone or just slightly inside this
zone. All these assumptions were confirmed by the results.

Besides the direct average strain measurement provided
by the three original sensors, three additional strain values can
be determined between the extremities of the sensors (between

pairs of points ‘B’) using the following formula:

εC,skj
= εBkBj

= �LBj Bk

LBj Bk

= εC,sjk
LABj

− εC,sjk
LABk

LABj
− LABk

= εABj
LABj

− εABk
LABk

LABj
− LABk

(j, k) ∈ {(2, 1), (3, 1), (3, 2)}.
(25)

Two important properties of the ‘measurements’ of these three
virtual sensors B1B2, B1B3, and B2B3 are as follows: (i) their
extremities are in the zone where no perturbation of the strain
field is expected, i.e. in the zone where a strain distribution is
assumed to follow the elementary theory of beams; (ii) only
two values out of three are linearly independent—the third can
be represented as a linear combination of two others. The
strain measurements obtained by both the original and virtual
sensors are compared with the theoretically calculated strain
as shown in figure 8.

Before the post-tensioning force was applied, the bridge
was supported by the formwork; thus the reactive forces
in the abutment and the columns, as well as longitudinal
stress and strain components due to dead load were very low,
approximately zero. After the first increment of the post-
tensioning force was applied, the bridge spans lifted up, the
dead load was activated, and reactions arose in the abutment
and the columns. Out of the perturbed zone the combination
of axial force and bending moments created a parabolic strain
distribution but, at the location of sensors, the deviation from
the straight line is smaller than the measurement error of
the monitoring system (4 με), and consequently the strain
distribution can be considered as linear. The increase in the
post-tensioning force causes changes in the strain distribution:
the axial strain component (offset) increases by an absolute
value while the slope decreases. Perfectly balanced post-
tensioning would have as a consequence uniform compression
in the beam, with no bending, and the strain distribution would
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Figure 9. Assumed loading, position of sensors, and displacement of the pile’s head.

be constant along the beam. Here it is important to note
that an increase in the post-tensioning force will not increase
reactions: the dead load and reactions are activated after the
first increment of post-tensioning is applied and the spans are
lifted up, and an additional increase in the post-tensioning
force does not change this equilibrium.

At each stage of post-tensioning, sensor AB1 measured
the highest compression, sensor AB3 measured the smallest
compression, while the measurement of sensor AB2 was
between the measurements of other two sensors. These results
were expected since the sensors were installed close to the
extremity where the strain field is perturbed by the proximity
of the abutment reaction and the change in the cross-section.
Based on the linear elastostatics theory, the perturbation of
the strain field around point ‘A’ of the sensors is mainly
introduced by shear stresses, which are created by reaction of
the abutment, and the magnitude and the length of the zone of
the perturbation are practically established after the first step
of post-tensioning and kept constant through the other two
stages. The sensor measurements confirmed this assumption.
Thus, for the original sensors AB1, AB2, and AB3 we can
assume that the strain distribution can be expressed as

εC,s = ε
perturbed
C,s + ε

non-perturbed
C,s , (26)

where ε
perturbed
C,s is constant and ε

non−perturbed
C,s is linear.

According to the conclusions from subsection 3.2 the error
inherent to the gauge length is for a linear distribution equal
to zero. Consequently the error inherent to the gauge length
is equal only to the error introduced in the zone of perturbed
strain. This error is supposed to be constant for each increment
of force and is calculated to be −1, −7 and −3 με for sensors
AB1, AB2 and AB3 respectively (for comparison see half of the
diagram shown in figure 5). The ranges of differences between
theoretically calculated strains and the measured strains shown
in figure 8 are then equal to the sum of the measurement error
of the monitoring system (±4 με) and the measurement error
inherent to the gauge length of the sensors, i.e. −5 to +3 με

for sensor AB1, −11 to −3 με for sensor AB2, and −7 to +1
με for sensor AB3. Among the three original sensors the most
accurate was the one with the gauge length approximately
equal to half of the depth of the cross-section as suggested in
subsection 3.3, and partially in subsection 3.5. However, that
was true only because the zone of the strain perturbation was

not longer than half of the depth of the cross-section which
might not be true in a general case.

Virtual sensors were all mostly out of the perturbed zone,
i.e. in the zone with a linear strain distribution; thus their
measurement error inherent to the gauge length is equal to zero
and the range of differences between theoretically calculated
and measured strains is equal to the measurement error of the
monitoring system, i.e. −4 to +4 με.

All the ranges of differences for both original and virtual
sensors are approximately confirmed in figure 8, i.e. they are
in good agreement with the theory developed in previous
sections. The aim of this section was to emphasize the
differences between measurements obtained using sensors
with different gauge lengths installed at approximately the
same location, in the zone where the strain field is perturbed.
In the next section an application example for a beam-like
structure is presented.

5. Application example

The measurement error estimations and consequent
recommendations for the selection of the sensor gauge length
developed in this paper were proven to be viable through direct
and indirect comparisons performed on real structures. The
detailed presentation of these comparisons would go beyond
the scope of this paper; thus, a summary of one selected project
is presented as an illustrative application example. More
information on the project presented and other comparisons
can be found in the literature [5, 17].

To assess the foundation performance for a new
semiconductor production facility in the Tainan Scientific
Park, Taiwan, it was decided to perform, among others, a
flexure test of pile in a full-scale on-site condition. The pile
diameter was 1.20 m and the length was 34.5 m. Horizontal
force was applied to the head of the pile and the test
was performed in accordance with ASTM D3966-90. The
displacement of the head of the pile was directly monitored
using a linear variable differential transformer (LVDT) and
average strain in the pile was monitored using long-gauge
fibre-optic sensors. The sensor position in the pile is given in
figure 9.

The reaction of soil was assumed to be piecewise linear
distributed as shown in figure 9, which was later confirmed
by measurements. Thus, the part of pile consisting of cells
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1–3 is expected to crack, while the part of pile consisting of
cells 4–8 is not expected to crack (see figure 9). Four-metre
long sensors were embedded in concrete during pouring of
the pile and the ratio between the sensor gauge length and the
length of the pile was 1/8.75. With such a gauge length the
relative measurement error at the location of maximum strain
in cracked cells 1–3 was expected not to exceed −1% due to
the strain distribution (see table 2) and ±10% due to crack
openings assuming that the distance between the cracks will
not exceed 40 cm (23), and the total relative error was expected
to be between −11% and +9% approximately. For the non-
cracked part of the pile the relative error was expected not to
exceed −1% (see table 2). Each pair of sensors embedded
in the same cell allowed for calculus of curvature [5, 14] and
double integration of curvature allowed determination of the
pile’s deformed shape and deflection diagram [5, 14]. Since
the error propagates linearly through the process of double
integration, it was expected to determine the displacements of
pile points with relative error between −11% and +9%.

The displacement of the pile head obtained using double
integration of curvature measurement is compared with direct
LVDT measurement as shown in figure 9. The comparison
confirmed good estimation of relative error and consequently
good selection of sensor gauge lengths based on theory
recommendations developed in section 3.

6. Conclusions

The conclusions from the above subsections can be in
contradiction: for inhomogeneous materials long-gauge
sensors are needed, but in the case of a parabolic or broken-line
strain distribution, shorter sensors would provide results with
lower errors. Consequently, in inhomogeneous materials with
a parabolic or broken-line strain distribution it is practically
impossible to perform strain monitoring without an error due
to the sensors’ gauge length. In homogeneous materials, short-
gauge sensors can be used, and consequently the error due to
sensors’ gauge length can be better controlled. However, at
locations on the beam where concentrated loads are applied,
the short-gauge sensors provide information that is irrelevant
to the global monitoring. Thus, the use of long-gauge sensors
is recommended in the case of a homogeneous material too,
because they overcome the issues related to local perturbations
of the strain field, and provide results that reflect global
structural behaviour. In addition, they cover larger areas of the
structure and therefore, the probability of detecting a critical

strain is increased. General principles for the selection of an
appropriate sensor gauge length, depending on application
type and construction material, are presented in figure 10
(adapted from [5]).

If the qualitative distribution of strain in a monitored
structure can be estimated based on numerical models or
design assumptions, the errors in the measurements can be
evaluated using the principles and expressions presented in
this paper. In the case of a beam with a constant cross-section,
length Lbeam and depth h, a preferable gauge length Ls of the
sensor can be determined using the following guidelines.

• Monitored cross-section is close to the extremity of the
beam: Ls � h (Ls � h/2 for simple support).

• Monitored cross-section is in the span, close to application
point of the concentrated load: Ls � h.

• For inhomogeneous materials Ls � 10Lc (Lc as defined in
figure 6).

• For a beam with a parabolic strain distribution (e.g. due
to uniformly distributed load) Ls � Lbeam/6.

• For a beam with a broken-line strain distribution (e.g. due
to concentrated force) 1.5h � Ls � h in the general case
(Ls � h/2 if two sensors are used), combined if possible
with the condition Ls � Lbeam/10 (in order to minimize
error on strain component generated by MBP).

While designing the sensing network on a structure, the
position and the gauge length of the sensors, besides the
guidelines presented in this paper, it is important to consider
project requirements and overall aims of monitoring.

Acknowledgments

Part of the work was performed at SMARTEC SA,
Switzerland. The author would like to thank Mr George
Lederman and Mr David Hubbell for help in improving the
quality of this paper.

References

[1] Bhatt P, MacGinley T J and Choo B S 2006 Reinforced
Concrete: Design Theory and Examples 3rd edn
(Abingdon: Taylor & Francis) p 767

[2] Measures R 2001 Structural Monitoring with Fiber Optic
Technology (London: Academic) p 717

[3] Feng X, Sun C, Zhang X and Ansari F 2010 Determination of
the coefficient of thermal expansion with embedded
long-gauge fiber optic sensors Meas. Sci. Technol. 21 065302

12

http://dx.doi.org/10.1088/0957-0233/21/6/065302


Meas. Sci. Technol. 22 (2011) 035206 B Glisic

[4] Rodrigues C and Inaudi D 2010 Laboratory and field
comparison of long-gauge strain sensing technologies
European Workshop on Structural Health Monitoring
(Sorrento, Italy) paper SS4-05

[5] Glisic B and Inaudi D 2007 Fibre Optic Methods for
Structural Health Monitoring (Chichester: Wiley) p 262

[6] Hornby I W 1992 The vibrating wire strain gage Strain Gauge
Technology ed A L Window (Barking: Elsevier) pp 325–46

[7] Chung W, Kim S, Kim N-S and Lee H 2008 Deflection
estimation of a full scale prestressed concrete girder using
long-gauge fiber optic sensors Constr. Build. Mater.
22 394–401

[8] Glisic B and Inaudi D 2009 Short-gage and long-gage sensors:
applicability and interpretation of measurement Structural
Health Monitoring 2009: Proc. 7th Int. Workshop on
Structural Health Monitoring (Stanford University, USA,
9–11 September 2009) ed F-C Chang (Lancaster, PA:
DEStech Publications) pp 1659–66

[9] Hibbeler R C 2008 Structural Analysis 7th edn (Upper Saddle
River, NJ: Prentice-Hall) p 667

[10] Timoshenko S P and Goodier J N 1970 Theory of Elasticity
(New York: McGraw-Hill) p 567

[11] Ades C S and Lee L H N 1961 Strain-gage measurements in
regions of high stress gradient Exp. Mech. 1 199–200

[12] Dotsenko A M and Gorodnichenko V I 1984 Errors of
measuring crack length with foil crack gauges and method

of taking the errors into account in analysis of the results of
cracking resistance tests on materials Probl. Prochn. 5
119–24

Dotsenko A M and Gorodnichenko V I 1984 Strength Mater.
16 757–63 (Engl. Transl.)

[13] Piyasena R 2002 Crack spacing, crack width and tension
stiffening effect in reinforced concrete beams and one-way
slabs PhD Thesis Griffith University, Southport,
Queensland, Australia pp 6-1–6-30

[14] Vurpillot S 1999 Analyse automatisée des systèmes de mesure
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