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Abstract. Parallel genetic algorithms (PGAs) have been traditionally used to overcome the intense use of CPU and
memory that serial GAs show in complex problems. Non-parallel GAs can be classified into two classes: panmictic
and structured-population algorithms. The difference lies in whether any individual in the population can mate with
any other one or not. In this work, they are both considered as two reproductive loop types executed in the islands of
a parallel distributed GA. Our aim is to extend the existing studies from more conventional sequential islands to other
kinds of evolution. A key issue in such a coarse grain PGA is the migration policy, since it governs the exchange of
individuals among the islands. This paper investigates the influence of migration frequency and migrant selection in
a ring of islands running either steady-state, generational, or cellular GAs. A diversity analysis is also offered from an
entropy point of view. The study uses different problem types, namely easy, deceptive, multimodal, NP-Complete,
and epistatic search landscapes in order to provide a wide spectrum of problem difficulties to support the results.
Large isolation values and random selection of the migrants are demonstrated as providing a larger probability of
success and a smaller number of visited points. Also, interesting observations on the relative performance of the
different models are offered, as well as we point out the considerable benefits that can accrue from asynchronous
migration.
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1. Introduction

Complex optimization tasks need efficient algorithms.
Numerous complex learning and search problems are
being successfully addressed by evolutionary algo-
rithms (EAs) and particularly by genetic algorithms
(GAs) [1]: function optimization, machine learn-
ing, combinatorial optimization, constraint satisfaction
problems, etc. [2–4]. An EA iteratively improves the
sub-optimal solutions contained in a population, thus
conducting a search that considers many points of the
search space at the same time. For this purpose, the
algorithm applies stochastic operators inspired by cer-
tain processes found in organic evolution: selection of
the fittest, crossover, mutation, etc.

Using a parallel platform to run a parallel GA has the
advantage of providing lower run time and enlarging
the available memory [5–7]. But, in addition, parallel
GAs have an appealing trait in that they often reduce
the computational effort to solve the same problem as
compared to sequential GAs, even when run in a single
processor [8].

This last characteristic makes a difference with re-
spect to other search algorithms, in that PGAs are not
simple parallel versions of sequential algorithms. The
reason for this can be found in several of the most
striking characteristics of a PGA: (1) its decentral-
ized search, which allowsspeciation(different sub-
algorithms evolve towards different solutions), (2) the
larger diversity levels (many search regions are sought
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at the same time) (3) an intense exploration performed
by all thedemes(sub-algorithms), and (4) exploitation
inside these demes, i.e., refining the better partial solu-
tions found at any moment.

We will defer a survey of the different kinds of ge-
netic algorithms analyzed in this paper until the next
section. For the moment, we will focus our attention
on a parallel distributed GA in which many communi-
cating sub-algorithms (islands) cooperate to solve the
same problem. In this kind of GA the migration policy
(set of rules governing the communication among the
islands) biases the search.

Although no formal proof of superiority can be al-
located to any migration policy for arbitrary problems
[9], some useful research has been conducted on this
matter. In this line we further consider a wide variety
of problems in order to test our working hypotheses on
some of the most well known application domains of
GAs. Also, we will check the observations on different
parameterizations to avoid biasing the results.

With regard to the migration policy in a distributed
GA, the initial work of Tanese [7] on a hypercube
(NCUBE/6), and the more recent results of Belding
[10] on a KSR2, provided valuable results. These works
state that a distributed algorithm can attain important
speedup values on problems such as a class of Walsh
polynomials and Royal Road functions, respectively.
See [5, 11] for additional background.

A relatively long isolated evolution has been a priori
suggested to provide good results in [7, 10] whenever
a small number of individuals are being migrated. The
sparse migration of a small number of strings has the
advantage of requiring a low overhead due to the sparse
communication among the islands when the distributed
GA is run on parallel hardware. Here, we carry out a
generalization of the mentioned works since they study
multiple parameters at a time, or only a single class
of problems is considered. In this work our goal is
to check these results on a wide variety of problems
and models of GAs in order to better understand the
importance of the migration policy.

Therefore, one of our main contributions is to ex-
tend the existing analyses to incorporate steady-state
and cellular island evolution modes [12, 13], since
Tanese and Belding only studied a distributed gener-
ational GA. Also, we will consider a wide variety of
problems across which the numerical behavior will be
studied, and finally, diversity and run time will be dis-
cussed to obtain a full picture of the implications of
using a given migration policy.

The paper is organized as follows. In Section 2 we
characterize parallel GAs and also the migration pol-
icy. Sections 3–7 study the influence of the migration
policy on easy, deceptive, multimodal, NP-Complete,
and epistatic problems, respectively. Afterwards, we
analyze the influence of the migration frequency on the
computation time (Section 8), and population diversity
(Section 9). Finally, the most important conclusions
are summarized in Section 10.

2. A Brief Survey of Parallel Genetic Algorithms

In order to offer a brief review of the research with
parallel models of GAs we include some information
for non-GA researchers in this section. We briefly want
to show how coarse grain and fine grain PGAs (cgPGA
and fgPGA, respectively) are subclasses of the same
kind of parallel GA consisting in a set of communicat-
ing sub-algorithms. Although many surveys [2, 3] and
studies have suggested an opposite vision/use of these
models, they can be studied from a common point of
view [14] with potential advantages arising from a uni-
fied methodology, just as it is occurring with EAs in
general [15].

2.1. Unified Review of Existing PGAs

Let us begin with a brief unifying survey of sequential
and parallel GAs. A sequential GA (Fig. 1) proceeds in
an iterative manner by generating new populations of
strings from the old ones. Every string is an encoded
(binary, real, ...) version of a tentative solution. An
evaluation function associates a fitness measure with
every string indicating its suitability as a solution to
the problem. The algorithm applies stochastic opera-
tors such as selection, crossover, and mutation, on an
initially random population in order to compute a new
generation of strings [4].

A sequential GA (Fig. 2(a)) applies the genetic oper-
ators to the whole population (panmixia). Two popular

Figure 1. Pseudocode of a sequential genetic algorithm.
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Figure 2. Two basic non-distributed models (sequential-panmictic and cellular) and a possible -merged!- parallel distributed implementation.
We call seqGA (a) to a traditionally sequential GA with a steady-state (ssGA) or generational (genGA) evolution. A cellular GA (cGA) uses a
given two dimensional spatial distribution for the individuals (b). Finally, a distributed GA (dGA) performs a parallel search (c) by using the
mentioned algorithms as the basic reproductive loops in each sub-algorithm (island).

panmictic versions exist: generational and steady-state
evolution modes [16]. A generational GA (genGA) cre-
ates one new population from the old one, while a
steady-state GA (ssGA) only generates one individual
(or a few) in each iteration.

In a cellular GA (cGA) [6, 17] the string population
is spatially structured with some topology, e.g., a 2D
toroidal grid. In a cGA, the interactions of a string with
its neighbors (e.g., north, south, east, west) are very
frequent. These interactions consist in getting a small
pool of (4+ 1= 5) strings to apply the reproductive
plan on it (Fig. 2(b)).

A parallel GA is an algorithm of multiple com-
ponent GAs, regardless of their population structure.
Each component (usually a sequential) sub-algorithm
includes an additional phase ofcommunicationwith a
set of neighboring sub-algorithms. Different parallel
algorithms differ in the characteristics of the elemen-
tary GAs and in the communication details.

As an example, in distributed GAs (Fig. 2(c)) [7]
there exists a small number of islands performing a
separate GA, and periodically exchanging strings af-
ter a number of isolated steps(migration frequency).
Normally, the islands use a considerable population
size (À1), although some works like [7] consider a
wide range of population sizes (even as small as two
strings per island). Usually, the islands of a coarse
grain PGA apply a generational GA, although there
are many important exceptions in the literature (such
as GENITOR II [18]).

The source and the destination islands for a migrant
string are determined depending on the island topol-
ogy. This topology can be a static ring, hypercube, etc.
[2], or a dynamic topology, in which target islands are
defined by an arbitrarily complex (time-varying) crite-
rion (e.g., [19]) that is applied in every communication
step.

In the cGA model it is usual for every sub-algorithm
to wait synchronously for its neighbor structures (suit-
able for SIMD computers [6], and even implemented
in MIMD machines [20]). On the other hand, the dis-
tributed GA can either be implemented to have syn-
chronous receptions (wait for incoming migrants) or
not, and it is suitable for MIMD computers, e.g., a clus-
ter of workstations. This is an additional advantage of
distributed GAs, since clusters are readily available in
labs and departments. Therefore, the traditional distri-
bution of sub-populations can be considered as a mech-
anism capable of enhancing the behavior of any kind
of basic GA.

Distributed generational GAs have attracted the
greatest attention [5, 7, 10, 11], while some distributed
algorithms running steady-state islands exist [13, 18].
However, distributed GAs with cellular islands are rel-
atively new [13, 21, 22]. Here, by using a parallel
distributed GA with every island running a cGA we
want to obtain the search advantages of a structured-
population, as well as the physical-numerical bene-
fits of a parallel distributed GA. Some related works
dealing with the migration policy and new models of
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evolution for distributed GAs can be found in [23] and
[24], respectively.

We should differentiate between thepopulation
structure(panmictic or decentralized: distributed, cel-
lular, ...), and itsimplementation(hardware type, syn-
chronism, model-to-hardware mapping, ...). We pro-
pose a change in the nomenclature, calling coarse and
fine grain PGAsdistributedandcellularGAs (dGA and
cGA) respectively, since the grain is usually intended to
refer to their computation/communication ratio, while
the actual differences can be also found in the way in
which they both structure their populations.

We assign the name dssGA to a parallel distributed
GA running a steady-state algorithm in every island
with sparse migrations among islands. Similarly, we
define a dcGA to be a distributed algorithm whose is-
lands are executing a cGA, and a dgenGA an algorithm
in which the islands are performing a canonical genGA.
We implement all the distributed versions in an ATM
LAN by mapping each island to a different processor
(UltraSparc 1). The islands are configured in a uni-
directional ring topology (easy and fast). We mainly
focus on the dssGA and dcGA models, and defer the
studies with dgenGA until the diversity section. We do
this because dgenGA is better known.

While a distributed GA has “large” sub-populations
(À1) a cGA has typically one single string in every sub-
algorithm. For a dGA the sub-algorithms are loosely
connected, while for a cGA they are tightly connected.
In addition, in a dGA there exist only a few sub-
algorithms, while in a cGA there is a large number
of them. See the structured-population cube in Fig. 3.

This view of PGAs as a continuum isdirectly sup-
ported in only a few implementations of PGA software

Figure 3. The Structured-Population Genetic Algorithm Cube: cellular GAs (cGA) versus distributed GAs (dGA) and the continuum between
them.

[21, 25]. However, it is very important since it offers
a unifying point of view: we can study the full set of
parallel implementations by considering different cod-
ings, operators, and communication details.

In fact, this is a natural vision of PGAs that is inspired
by the initial work of Holland [26], in which agran-
ulated adaptive systemis a set of grains with shared
structures. Every grain has its own reproductive plan
and internal/external representations for its structures
(see also [27]). To link our results and algorithms to
these works we will develop the survey and technique
descriptions with a more formal notation.

The outline of a general PGA is presented in Algo-
rithm 1. It begins by randomly creating a population
P(t = 0) ofµ structures−(strings), each one encoding
the p problem variables, usually as a vector over
B={0, 1} (I =Bp·lx ) or R(I =Rp). An evaluation
function8 is needed to associate a quality real value
with every structure.

The stopping criterionι of the reproductive loop is
to fulfill some condition. The solution is identified as
the best structure ever found.

The selection s2s operator makes copies of every
structure fromP(t) to P′(t) attending to the fitness
values of the structures (some parameters2s might
be required). The typical variation operators in GAs
arecrossover(⊗), andmutation(m). They are both
stochastic techniques whose behavior is governed by
a set of parameters, e.g., application probabilities:
2c={pc}-usually high- and2m={pm}-usually low-.

Finally, every iteration ends by selecting theµ new
individuals for the new population (replacement pol-
icy r). For this purpose the new poolP′′′(t) plus a set
Q are considered. The best structure usually survives
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Figure 4. Difference between steady-state and generational GAs. The intermediate region is occupied by the algorithms generating and
replacing only a given percentage of the population.

deterministically (elitism). Many panmictic variants
exist, but the two mentioned are especially popular [16]
(Fig. 4): thegenerational GA-genGA-(λ=µ, Q=∅),
and thesteady-state GA-ssGA-(λ= 1, Q= P(t)).

In a parallel GA there exist the mentioned ele-
mentary GAs (grains:1i ) working on separate sub-
populations Pi (t) concurrently (11‖12‖ . . . ‖1d).
Each sub-algorithm includes an additional phase of
periodiccommunicationwith a set of neighboring sub-
algorithms located on some topology.

This communication usually consists in exchanging
a set of individuals or population statistics. All the sub-
algorithms perform the same reproductive plan. Other-
wise the PGA is heterogeneous [14].

ALGORITHM 1: PARALLEL GENETIC ALGORITHM 1par ::= 11‖12‖ . . . ‖1d

1i : t := 0;
initialize: P(0) := {Ea1(0), . . . , Eaµ(0)} ∈ I µ;
evaluate: P(0) : {8(Ea1(0)), . . . , 8(Eaµ(0))};
while not ι(P(t)) do //Reproductive Loop

select: P′(t) := S2s(P(t));
recombine: P′′(t) := ⊗2c(P

′(t));
mutate: P′′′(t) := m2m(P

′′(t));
evaluate: P′′′(t) : {8(Ea′′′1 (0)), . . . , 8(Ea′′′λ (0))};
replace: P(t + 1) := r2r (P

′′′(t) ∪ Q);
<communication step> //Migration in a distributed GA
t := t + 1;

end while

In particular, the steady-state panmictic algorithm
we will analyze (Fig. 2(a)) generates one single indi-
vidual in every iteration. It is inserted back into the
population only if it is better (greater fitness than) the
worst existing individual.

In all the cGAs we use (Fig. 2(b)) a NEWS neighbor-
hood is defined (North-East-West-South in a toroidal
grid [17, 28]) in which overlapping demes of 5
strings(4+ 1) execute the same reproductive plan. In
every deme the new string computed after selection,
crossover, and mutation replaces the current one only
if it is better.

Throughout this paper we deal with MIMD imple-
mentations (Fig. 2(c)) of homogeneous dGAs in which
migrants are selectedrandomly, and the target island
replaces itsworst string with the incoming one only
if it is better (except when other policy is mentioned
explicitly). The sub-algorithms are organized in a uni-
directional ring.

2.2. Migration Policy in a Parallel Distributed GA

To complete the working principles of these algorithms
we now describe their communication phase. The
migration policy determines the communication step

undertaken by the islands in a parallel distributed GA.
We define the migration policy as a tuple of five values:

M = (m, ζ, ωS, ωR, sync) (1)

where:r m: is the number of individuals undergoing mi-
gration,m ∈ {0, 1, . . . ,∞} (migration rate). Alter-
natively, it could be measured as a sub-population
percentage. This value is usually bound by the pop-
ulation size in practice, but, theoretically, nothing
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prevents sending many more (copies of) individuals
to one or more neighbor islands.r ζ : is the frequency of migration (in numbers of eval-
uations),ζ ∈ {0, 1, . . . ,∞}. With this definition, if
the distributed algorithm stops aftere evaluations,
then any value of migration above this value(ζ >e)
means isolated evolution (just like usingζ = 0).r ωS: is the policy for selecting migrants. The topo-
logy and the migrated individuals are defined by this
operator: if two islands do not share any individual
they are said to be unconnected (thus defining the
topology). This operation takes two islands as argu-
ments, and it also determines the set of shared indi-
viduals between any pair of islands in the distributed
GA. The migrant selection can be made according to
any of the selection operators available in the associ-
ated literature (proportional selection, tournament,
random, etc.). Also, we could choose between send-
ing out a copy of the selected individual (we do so
in this paper) or the individual itself.r ωR: is the migration replacement policy, used for
integrating an incoming individual in the target sub-
population.r sync: is a flag indicating whether the algorithm is
performing regular blocking input/output commu-
nications from/to another islands, or whether indi-
viduals are integrated in the receiving population
whenever they arrive from its neighbors. These two
variants can be implemented on a parallel hardware
or by using a hand-made scheduler in a uniprocessor
machine (simulatingthe parallel operations).

We define the migration frequency in terms of the
number of evaluations made in the island, and not in
terms of the number of generations, since we are com-
paring models of different basic steps. A distributed
GA with d steady-state islands must takeµ/d steps to
complete one generation, while the genGA and cGA
islands will compute a full new generation ofµ individ-
uals in every parallel iteration. Anyway, in all the cases
we will study the frequency of migrations in multiples
of the global population size: 1·µ, 2 ·µ, 4 ·µ, . . . The
graphs in this paper show these multiples: 1, 2, 4,. . .

Hence,ζ depends on the population size, and has no
“general recipe” values. When the population is large
enough, values between 0 and 1 forζ could be of some
help to complete the analysis.

Formally, a migration operatorωM is used in the
communication phase of a PGA1par, indicating how

the structures of one island are shared by another
island(s). The selection operatorωS(1i ,1 j ) deter-
mines the set of shared structures between neighboring
sub-algorithms1i ,1 j :

ωM2M (1 j )=ωR ◦ ωS(1i ,1 j ) | ∀1i ,1 j ∈1par (2)

The number of migrants is the number of shared struc-
tures:

m= |ωS(1i ,1 j )| (3)

and the probability of application of the migration op-
erator is

PM = 1

ζ
ζ > 0 (4)

Some work is available on the convenience of us-
ing asynchronous communications [13, 20, 29]. This
can be achieved by inserting an individual whenever
it arrives, thus avoiding blocking everyζ steps, i.e.,
emissions and receptions of migrants are managed in
separate portions of the source code. The set of pa-
rameters2M controlling the migration operatorωM is
the migration policyM. We will label synchronous re-
sults with ans, and asynchronous ones with ana in the
forthcoming graphs.

The reproductive cycle of a parallel distributed GA
is then a composition of an island reproductive cycle
and a migration operator:

ωd = ωM ◦ ωisland (5)

In practice, many useful combinations of these tech-
niques are possible, and this is why we set some para-
meters. We will use a unidirectional ring of islands
since it is very easy to implement, and the migration
takes place in a constant time (see an interesting discus-
sion on this and other topologies in [30]) which is good
for the scalability of the algorithm. Migration rate is
set tom= 1 while migration frequency will be modi-
fied in the experiments, since a correlation between the
two seems to exist [10]. The replacement technique in
all the experiments eliminates the worst string in the
target island only if the incoming one is better, as in
[8, 31, 32]. Other works use a random replacement [7]
that sometimes allows fitness decrements for escaping
from local optima. However, complex problems usu-
ally force to preserve at least the bestk strings in every
island (k-elitism), since losing the best strings cannot
be afforded.
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In the following four sections we will study the im-
pact of migrant selection and migration frequency on
search spaces with different characteristics. In partic-
ular, the number of evaluations to obtain a solution, the
percentage of hits in the set of independent executions,
and the run time will be analyzed.

3. Results with a Traditional Easy Problem

We begin by analyzing the influence of some of the mi-
gration parameters in the generalized sphere problem.
This is a non-epistatic problem in which the sum of
the separated fitness contributions of the variables are
maximized (see Eq. (6)).

f (xi |i=1..n) =
n∑

i=1

x2
i xi ∈ [−5.12, 5.12] (6)

We use an instance ofn= 16 variables encoded in 32
bits each (SPH16-32,l = 512 bits) instead of the usual
n= 3 problem. Since we aremaximizing, the problem
has 216 possible solutions. Other authors usually mini-
mize this function (there exists a single optimum in0).
Our version is slightly more difficult since solutions
of different genotype could show similar fitnesses, and
the algorithm is likely to change many times from one
search region to another during one run, thus requiring
a longer evolution.

We use 512/nproc individuals for the tests, applying
fitness proportional selection, double point crossover

Figure 5. Total number of evaluations versus the number of processors when using dssGA (left) and dcGA (right) for solving SPH16-32. We
show the results for three migration frequencies 1, 2, 4 and for synchronous -s- and asynchronous -a- versions.

(pc= 1.0), and bit-flip mutation(pm= 1/ l ). In the dis-
tributed algorithms we send a copy of one random indi-
vidual to the neighbor population in the ring. Figure 5
plots the average curves (100 runs) of the total number
of evaluations for dssGA and dcGA. We study the ef-
fects of synchronization (s: sync,a: async) and the mi-
gration frequency (the numeric values associated with
thes or a labels in Fig. 5). The stopping condition is
to locate an optimum for this problem.

Three interesting observations can be made from
studying Fig. 5. First, a high coupling(ζ = 1) reduces
the total effort to locate a solution. This occurs because
the panmictic-like evolution of a group of highly cou-
pled islands leads itself to solving this easy problem.
The contrary usually holds for more complex problems,
as we will see in the next sections.

Second, the larger the number of islands (and proces-
sors), the smaller the evaluation effort needed to find a
solution (especially for dssGA, see Fig. 5 (left)). This
effect is due to the combined work of the ring topol-
ogy [30], the separate parallel exploration of different
zones of the search space provided by the distributed
search, and the aggressive exploitation typical of the
dssGA model.

Finally, it can also be seen that synchronous and
asynchronous versions perform (numerically) very
similarly for dssGA and dcGA at any migration fre-
quency. The slight differences are due to the physical
parallel checking of the termination condition, and to
the fast fitness evaluation of this objective function.
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4. Results with a Deceptive Problem

Deceptive problems are specifically designed to make
GAs converge to wrong regions of the search space.
These problems are constructed to decorrelate the rela-
tionship between the fitness of a string and its genotype
(contents).

Since the algorithm works on the genotype, but, at
the same time, it is guided by the fitness of the strings
(computed after the phenotype), this kind of func-
tions tends to mislead the GA. One of these deceptive
problems is the massively multimodal deceptive prob-
lem (MMDP) [33] in which a binary string encodesk
6-bit sub-problems (see Fig. 6). The optimum fitness
is k. Every sub-problem contributes with a partial fit-
ness depending on its number of 1’s (unitation). There
exist 22k optima from which only 2k are global optima.
The literature addresses instances fork= 1, . . . ,5,
while we will use a considerably more difficult instance
of k= 15 (strings ofl = 90 bits).

Figure 6. Tabulated (left) and graphic (right) sub-problem contributions for MMDP(k= 1).

Figure 7. Influence of the migration frequency and migrant selection in MMDP15 with dssGA and dcGA. Success percentage (left) and number
of evaluations (right), out of 50 independent runs. The stopping criterion is to obtain a solution or to achieve 400000 evaluations.

We study the influence of the migration frequency
ζ(0.25, . . . ,32.0), and the migrant selection in the ring
ωS: should we send the best or a random string? We
plot the number of hits (out of 50 runs) on dssGA and
dcGA in Fig. 7 (left). We analyze a configuration of 8
islands with 32 individuals each for all the algorithms
(every island in dcGA uses a grid of 2× 16= 32 in-
dividuals). We use proportional selection, two point
crossover withpc= 1.0, and bit flip mutation with
pm= 0.01.

The results indicate that it is better to migrate a
random string since migration of the best string of-
ten generates super-individuals which induce prema-
ture convergence in the target population. For larger
sub-populations this could be a minor problem, but
population sizes like ours (in the range [100..500]) are
the most frequently used in EAs. A second observation
is that loosely coupled islands (ζ = 16 or 32) provide
better efficacy, since high isolation promotes hyper-
plane exploitation in islands, and exploration occurs
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Figure 8. Influence of the migration frequency and migrant selection in RAS20-8 with dssGA and dcGA. Success percentage (left) and number
of evaluations (right), out of 50 independent runs. The stopping criterion is to obtain a solution or to achieve 400000 evaluations.

after migrations (punctuated equilibria working prin-
ciple [34]).

The third observation is that dcGA yields better re-
sults than the dssGA in all these experiments with
equivalent configurations. In the next section we will
often find the same result. We think that this is due to
the good exploration capabilities of a cGA, since this
algorithm will show to maintain high diversity through-
out the search in all the tested problems. Some results
support this hypothesis, since ssGA is better for prob-
lems where the exploitation component of the algo-
rithm is the main feature needed to locate a solution,
e.g., where local tuning is essential (see an example
when training a neural network in Section 7).

As a final remark, we have to mention that the re-
sults in Fig. 7 (also in Fig. 8) for migration frequencies
below 2.0 are wrapped to 400000 evaluations to clarify
the graph. All the percentages and values are reported
for algorithms reaching a solution of the same quality
(this holds throughout the article). In Figs. 7 and 8
we stop the algorithm after performing 400000 evalu-
ations without finding the optimum for frequencies of
2.0 and below. Whether or not these frequent migra-
tions would have led to an optimum, the conclusion
is that they performed considerably worse than sparse
migrations. For the evaluation effort in Figs. 7 and 8
we average all the runs, considering that unsuccessful
ones need 400000 evaluations.

5. Results with a Multimodal Problem

In this section we study the effects of migrant selection
and migration frequency on a problem with a large
search space and a very large number of local optima

that can easily lead to non-optimal solutions. The gen-
eralized Rastrigin function (Eq. (7)) is a non-epistatic
function representing a typical test for EAs [35]. We
use an instance ofn= 20 variables, each one encoded
in 8 bits (RAS20-8,l = 160 bits).

Ras(xi |i=1...n) = 10 · n+
n∑

i=1

x2
i − 10 · cos(2 · πxi )

xi ∈ [−5.12, 5.12] (7)

We use 8 islands of 22 individuals (grids of 2×
11= 22 individuals in every island of dcGA), propor-
tional selection, two point crossover withpc= 1.0,
and bit-flip mutation withpm= 0.01. We have only
changed the population size with respect to the previ-
ous section since we are tackling a different problem,
and also in order to check whether the achieved ob-
servations hold for more reduced populations than the
ones tested for the preceding problem.

The results in Fig. 8 confirm the benefits of migrat-
ing a random string in that greater efficacy is achieved
with moderate effort. Although the numeric effort is
very similar for dssGA and dcGA, the number of hits
for dcGA is clearly superior. Also, a tight coupling
(ζ <16) is definitely bad for dssGA, although dcGA is
capable of a larger number of successful runs even for
high interconnection. The experiments with RAS20-8
also corroborateζ = 32 as a very good migration gap.

6. Results with an NP-Complete Problem

In this section we deal with an optimization task known
as the subset sum problem [36]. We have selected
this problem because it is an example of the very
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Figure 9. Average number of evaluations with 1, 2, and 8 processors in solving SSS128 with dssGA (left hand of the graph) and dcGA (right
hand of the graph). We analyze the results with migration frequencies 1, 16 and 32.

interesting NP-Complete problem class. It consists in
finding a subset of valuesV ⊆W from a set of inte-
gersW={ω1, ω2, . . . , ωn}, such that the subset sum
approaches a constantC without exceeding it. We use
instances ofn= 128 (SSS128,l = 128 bits) in which
the integersωi are generated in the range [0..104] in-
stead of [0..103] in order to obtain a harder problem,
as explained in [36].

In order to formulate this as a maximization prob-
lem we compute the sump(Ex)= ∑n

i = 1 xi ·ωi for a
tentative solutionEx, and then use the fitness function:

f (Ex) = a · P(Ex)+ (1− a) ·max[C − 0.1 · P(Ex), 0]

(8)

where a= 1 when Ex is admissible, i.e., whenC −
P(Ex) ≥ 0, anda= 0 otherwise. Solutions exceeding
the constantC are penalized.

The experiments (Fig. 9) plot dssGA and dcGA over
nproc= 1, 2, 8 processors for three values of the migra-
tion frequency (1, 16, 32) and a random selection of
migrants.

We performed 100 independent runs and used
512/nproc individuals. The dcGA uses either 2 islands
with a 2× 128 grid, or 8 islands with a 2× 32 grid.
We always apply proportional selection, two point
crossover withpc= 1.0, and bit-flip mutation with
pm= 1/ l .

When a random string migrates with migration gap
1, the number of visited points is bad (large) for 2 and
8 processors, even precluding finding a solution. We
plot the percentage of success on the top of the bars
only for frequencyζ = 1.

Migration frequencies of 16 and 32 provided much
better numeric efficiency and 100% efficacy in all the
experiments. Also, better resistance of dcGA to bad
migration frequencies (ζ = 1) for a small number of
large islands and of dssGA for a larger number of small
islands is detected. For example, for migration fre-
quencyζ = 1, when using 2 processors, dssGA had
57% success while dcGA had 100% and it needed a
smaller number of evaluations. On the other hand, when
using 8 processors, dssGA had a 74% success rate while
dcGA had 47%–39% for sync-async versions, respec-
tively (always withζ = 1).

These results can be explained as follows. The fre-
quent migration has a larger impact on dssGA when
few populations are being used, since its numerical be-
havior is more similar to that of a panmictic ssGA: it
has more difficulties in solving a complex problem if a
panmictic-like evolution is used. On the other hand, the
negative impact of higher migration frequency is more
important for dcGA as the total grid is split into smaller
sized islands: two islands of 2× 128= 256 individu-
als had better resistance to frequencyζ = 1 than eight
islands of 2× 32= 64 individuals each. The reason
is that structuring the population is clearly worthwhile
only for medium/large population sizes.

7. Results with an Epistatic Problem

Epistasis is a fundamental concept in problem com-
plexity [37]. It defines the degree of parameter interde-
pendency present in a problem. Real-life and difficult
domains are epistatic. A clear example of an epistatic
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problem can be found in training a neural network
(NN), since the correlation among the weights is very
high [32].

We use a PGA for learning the set of weights that
make a multilayer perceptron classify a set of patterns
correctly [38]. This is an example of integration of
technologies in the field ofcomputational intelligence
that has provided valuable results in escaping from
local optima, since the weight search space is multi-
modal. In addition, other different applications are
possible, such as using GAs for selecting the most rep-
resentative pattern subset from a large pattern set in
order to reduce the training time of a neural network.
In this paper we only deal with training a NN by genetic
means.

The first NN we consider computes the parity of
4 binary inputs [39] and it uses three layers of 4-
4-1 neurons. The neurons have abinary activation
function. Every string containsl = 4 · 4+ 4 · 1+ 4+
1= 25 real-encoded variables (weights plus biases).
The fitness function computes the absolute error be-
tween the expected and the actual output over the 16
training patterns. The result is subtracted from the max-
imum possible error to have a maximization function.

The second NN is trained to predict the level of urban
traffic in a road [40]. The perceptron has three layers
of 3-30-1 neurons with asigmoidactivation function.
For this problem we present results by encoding each
weight as a real number or in a gene of 8 bits. This
yields strings ofl = 151 real values orl = 1208 bit
length, respectively. Every function evaluation com-
putes the error along a set of 41 patterns.

Figure 10. Number of evaluations training “parity4” (left) and “traffic” (right) with several different migration frequencies (1-16-32 and
1-16-32-128-0). We plot results with 1 and 8 processors for “parity4”, and 8 processors for “traffic”. Besides that, for the “traffic” NN training
problem we compare the number of evaluations needed to solve the problem when the weights are encoded in floating point numbers versus a
binary representation for them.

The sigmoid neurons (continuous neuron outputs),
and the pattern set make this problem hard for a canon-
ical GA without using any specialized operator and/or
representation. Also, the long length of the strings is
an additional problem for the medium-size populations
wewant to use.

For all these experiments we averaged the results
over 100 independent runs and use 512/nproc individu-
als (dcGA uses 8 islands of 2×32 strings), proportional
and random selection for every pair of parents, uniform
crossover [41] withpc= 1.0, and additive float muta-
tion with pm= 0.01. All the algorithms have to show
the same final solution quality (a mean error below
10−3), and this is used as the termination criterion.

The numeric results in Fig. 10 (left) indicate that
ζ = 16 andζ = 32 are the best isolation times for the
“parity4” NN (just like for the previous problems).
Concerning the “traffic” network (Fig. 10 (right)), all
the isolation times studied needed very similar numbers
of evaluations. This occurs because the main difficulty
with this network is in refining the final values of the
genomes, a widely known weak characteristic of GAs
when no specialized operators are used. Almost all
the search time is spent in refining the weights in the
strings of the algorithm. Also notice that the number
of evaluations that the different models need to solve
these problems (∼106) is really large when compared
to other problems.

On average, dcGA has the advantage when solv-
ing the “parity4” NN (Fig. 10 (left)). However, the
contrary is true for the traffic NN (Fig. 10 (right)),
with the exception of the slightly greater numerical
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effort of synchronous dcGAs using migration frequen-
ciesζ = 16 andζ = 32.

This supports the hypothesis of the larger explo-
ration/exploitation canonical characteristics of dcGA/
dssGA, respectively. This means that, since the
“parity4” NN has only a few different fitness values, it
requires high hyper-plane diversity and recombination
(exploration) to find a solution since the fitness val-
ues do not provide much information to the algorithm.
This necessity of exploration is easily achieved thanks
to the local work in every neighborhood of the cGA
and dcGA. On the other hand, for the “traffic” prob-
lem, all the algorithmsquickly found the region of the
solution when a distributed model is being used, but
they need a very large number of evaluations to tune
the real-values included in the strings, since the fitness
landscape is continuous. This latter is best achieved in
the ssGA and dssGA models since their selection pres-
sure is much stronger than that of the cGA and dcGA
versions.

One of the main problems found in other similar
works [32] is the loss of diversity. We have no such
problems thanks to our floating-point representation,
relatively high mutation (no random search is intro-
duced since a bad string never replaces a better one in all
the models tested), and good diversity (see Section 9).
The analysis of the binary encoding will be discussed
in the next section in the light of results on run time.

8. Influence of the Migration Frequency
on Run Time

Since the migration policy influences the number of
visited points, it also modifies the search time, usu-
ally reducing it [7, 10]. For the tests in this section
we are using the same problems and parameters as for
the numerical results in the last two sections. We mea-
sure the total execution time in seconds in all the time
graphs (computation plus communications). The time
has been measured in a cluster of SUN UltraSparc 1
workstations running Solaris v2.5 and linked by an
ATM LAN. Again, in all cases, the termination cri-
terion is to find a solution to the problem studied.

Figure 11 shows the results when solving SPH16-32
with dssGA (a) and dcGA (b). Superlinear speedups
are obtained for all the models since the parallel algo-
rithms are much faster than the sequential ones: ssGA
and cGA. Notice in the table of Fig. 11(c) how an
ssGA needs 548.44 seconds to find a solution, while
a distributed synchronous dssGA with 8 islands and a

migration frequency ofζ = 1 locates a solution in only
2.84 seconds. Asynchronous versions are especially
consistent, whereas the speedup of the synchronous
versions is more dependent on the migration frequency.
For the SPH16-32 problem, the speedup of the dcGA
models is comparatively better than the speedup of the
dssGA models.

In Fig. 12 we plot similar reductions in the run time
when using distributed versions of ssGA and cGA for
the subset sum problem. There is a clear general trend
to decrease the search time as the number of proces-
sors increases. However, having a large isolation step
is fundamental (Fig. 12 plots three values of isolation:
1, 16 and 32); in some cases a tight coupling (ζ = 1)
could prevent the algorithm from presenting linear
speedup. In all these cases the asynchronous algorithms
outperformed their synchronous versions, as suggested
for other parallel models and problems [19, 29].

Long binary representations for complex problems
like training an artificial neural network (Fig. 13) need a
larger computation time as is also shown in [42]. How-
ever, they usually ease the search in that performing
binary exchanges among strings is more easily man-
aged than crossing over real numbers in the algorithm
with a traditional uniform crossover. Besides this, con-
sider the lower number of evaluations in Fig. 10 (right)
needed by the binary (discretized) representation used
in dssGA.

There exist many ways in which we could have
improved the results shown, namely (1) reducing the
crossover probability, (2) using a different crossover
operator (in fact, uniform crossover is not theoretically
well suited to such a highly epistatic problem), or (3)
even changing the encoding. However, we do not want
to make these choices in order to avoid biasing the re-
sults just to obtain “pretty” performance graphs.

High coupling induces excessive synchronization
and larger execution times in almost all the experi-
ments. Conclusions are somewhat different for dssGA
and dcGA, since the grain of their basic step is differ-
ent: a concatenation ofµ steps in dssGA is slightly
slower than a single step in dcGA. This effect is almost
unnoticeable in runs requiring a few hundred thousand
evaluations, but it provokes a noticeable difference in
the run time when long executions are needed (millions
of distributed evaluations). Although it is of interest,
this result can not be generalized since it depends on
whether the population needs to be sorted or not in ev-
ery step, the time to compute fitness, etc. For example,
using ranking in a panmictic GA of 512 individuals
is rather slower than using it in a cellular GA of 512
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Figure 11. Speedup solving SPH16-32 with dssGA (a) and dcGA (b). The execution times for the synchronous versions (c) show that large
differences can appear when comparing ssGA/cGA with dssGA/dcGA with any of the tested migration frequencies: 1, 2 and 4, and for any
number of processors (from 1 to 8).

Figure 12. Average execution time in solving SSS128 with dssGA
and dcGA (1, 2, and 8 processors) with migration frequencies 1, 16
and 32.

individuals, since in the last case the rank is locally and
quickly applied to small groups of 5 strings.

In Fig. 14 (right) we can appreciate that linear and
even super-linear speedup values can be attained in
practice when the stopping criterion is to obtain a so-
lution of the same quality even for complex problems.
This requirement has been imposed lately in various
works [29, 30] for ensuring correctness and fairness
in the speedup and time studies comparing sequen-
tial and parallel GAs. Super-linear speedups are rela-
tively frequent in these stochastic parallel algorithms
[5, 10].

Some of the speedup values are surprisingly large,
despite comparing algorithms that find a solution of
the same quality. The basic reason is that we are com-
paring the performance of one population (structured
or not) against a distributed population partitioned in
a distributed island GA. These two algorithms behave
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Figure 13. Average execution time in training “traffic” with 8 pro-
cessors with dssGA and dcGA. Floating-point and binary represen-
tations are shown in the graph, and many migration frequencies have
been tested (1-16-32-128-0).

differently, thus explaining our results, as well as many
other results found in this field.

The natural step after having used the “correct”
stopping criterion for a fair comparison is to present
speedup values of the same dssGA/dcGA running over
1, 2, ... processors. This would have worked out more
reasonable speedup curves. This idea is an ongoing
line of research for the authors, and preliminary results
show almost linear speedup values, i.e., a traditional
result in parallel algorithms when the parallelization
scheme is good (but still with sparse moderate super-
linear speedup lines).

Figure 14. Average execution time in training “parity4” with 1 and 8 processors (left), and speedup with 8 processors (right) with dssGA and
dcGA. Three migration frequencies have been analyzed: 1, 16 and 32.

9. Influence of Migration Frequency on Diversity

A key issue in distributed GAs is that structuring their
population induces speciation [7, 10]. This means that
different islands can evolve to different solutions. In
general, a PGA is a widely used method to sustain
diversity [2, 3, 43], thus giving the algorithm more
chances to explore new promising zones, and to im-
prove schema processing [19]. But for the same num-
ber of individuals as a sequential GA, the distributed
islands can show quick convergence due to a reduction
in diversity (see Fig. 15).

Figure 15 shows the mean population entropyH (see
Eq. (9), in whichPi

0 is the proportion of 0’s at position
i : 1..l , and Pi

1 is the number of 1’s) of a population
of 512/nproc individuals when solving the generalized
sphere problem (see Section 3). Every line is the av-
erage of 20 independent runs to provide meaningful
results.

H[ P(t)] = −1

l
·

l∑
i=1

(
Pi

0 · log2Pi
0 + Pi

1 · log2Pi
1

)
(9)

Figure 15(a) plots decreasing diversity curves as the
algorithm proceeds for two cellular GAs, one gener-
ational, and one steady-state GA. We plot two sepa-
rate grid cGA shapes (almost square 22× 23, and thin
4× 128) since the shape seems to be related to the se-
lection pressure, diversity, and exploration capabilities
of the cGA [12, 28].
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Figure 15. Population mean entropy (in bits) in solving SPH16-32 with non-distributed (a) and distributed models: frequency 1 (b) and 32 (c).
We use 512/nproc individuals, proportional selection, two point crossover withpc= 1.0, and bit-flip mutation with probabilitypm= 1/ l .
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The distributed versions (Fig. 15(b)) show severe
entropy drops since the 512 string population is parti-
tioned into 8 islands of 64 strings each. However, the
migration frequency has a major impact on the over-
all quantity of information processed by the algorithm.
For a migration frequency of 32 (Fig. 15(c)) the en-
tropy is much higher than for 1 (Fig. 15(b)). Note,

Figure 16. Population mean entropy (in bits) in solving SSS128 with non-distributed (a) and distributed synchronous models with frequency 32
(b). Reducing the number of individuals from 512/nproc (first row) to 256/nproc also reduces the diversity for non-distributed (c) and distributed
models of equal frequency (d). When using 512 individuals again, a high coupling with frequency 1 (e) reduces diversity, while executing the
asynchronous versions with frequency 32 (as in b) does not alter the entropy spectrum (f).

for example, the small diversity peaks for dssGA in
Fig. 15(c) when migration occurs: loosely coupled is-
lands favor diversity.

The SPH16-32 problem is easy and diversity is
quickly lost after a solution is found. For more dif-
ficult problems like the subset sum it is normal to have
a spectrum of higher diversity. If we compare Fig. 16(a)
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and (b) we will notice how diversity considerably de-
creases for dssGA and dgenGA with 8 islands, while
dcGA maintains a very high diversity (consider the nu-
meric labels of the Y axis in Fig. 16(a)). Even dssGA
provides a surprisingly high level of diversity. This
explains its successful application to this and other do-
mains [12, 31, 32], although it should converge much
faster than the other models from a theoretical point of
view.

In Fig. 16(c) and (d) we plot the effects of reducing
the global population from 512 (first row) to 256 for
the non-distributed and distributed models. Of course,
diversity decreases quicker, although dcGA still main-
tains large the allele diversity. This is due to its lower de-
centralized selection pressure [28] when compared to
the other models. This characteristic makes them very
suitable for problems where local search is added into
the GA or for non-stationary objective functions, since
local search often provokes global diversity decre-
ments, and since dynamically changing functions need
to preserve diversity to quickly adapt the population to
find the new optimal value.

Figure 16(e) plots a serious reduction in diversity
for dcGA when the migration frequency is modified
from ζ = 32 (loosely coupled) toζ = 1 (highly cou-
pled). The diversity in dssGA and dgenGA is not re-
duced, because, while dcGA effectively finds a solution
and propagates it quickly, dssGA and dgenGA keep
wandering along the search space without working out
a solution (thus presenting high diversity but useless
search).

Finally, in Fig. 16(f) we can see that executing par-
allel asynchronous versions of the synchronous al-
gorithms in Fig. 16(b) does not change the diversity
spectrum. In fact, the synchronous and asynchronous
versions are running the same algorithm on a clus-
ter of workstations of the same type. This provokes
differences mainly in the execution time (not in the
numerical behavior), since small time derivations are
compensated on average, with the added advantage that
asynchronous islands are faster since they do not wait
for each other at every migration step.

10. Conclusions

In this paper we have confirmed the importance of the
migration policy in parallel distributed genetic algo-
rithms, not only for the traditional model of island evo-
lution (a generational GA), but also for steady-state and
cellular nodal GAs. PGAs almost always outperformed
sequential GAs. They provided shorter execution times

and visited a smaller number of points for equivalent
parameterizations. However, frequent island interac-
tions can lead to parallel distributed GAs which per-
form worse than the non-distributed ones, making mi-
gration policy an important design factor.

The importance of using considerable isolation times
among the islands and the benefits of running asyn-
chronous versions are supported by our results, and
indirectly by other works [23, 29]. Migration of a ran-
dom string prevents the “conquest” effect in the target
island for small or medium sized sub-populations.

Using problem-knowledge operators could lead to
different results. However, the canonical revision of
these techniques is important for their future extensions
and combinations with other techniques by providing
baselines for comparisons.

We have obtained preliminary results with similar
GAs in other domains like TSP and numerical opti-
mization problems that support the benefits of using
large isolation steps. “Considerable isolation” has been
quantified in this paper as a factor (16 and 32) of the en-
tire population size. These values have been computed
to provoke many migrations during the search. If the
search uses populations as large as 104 individuals our
results are thought to hold since the search would need a
similarly very large number of evaluations. Very large
populations needing a small number of evaluations to
find a solution (e.g., of the same magnitude) need a
detailed and special study.

Although large isolation gaps and random emigrants
cannot be theoretically proven to be the best choices
for an arbitrary problem, the heterogeneity of our test
suite and their considerable complexity provide strong
empirical support to this hypothesis.

Diversity is usually related to exploration and prob-
ability of success in the literature. The distributed
models can be tuned to provide any desired level of
diversity. In particular, the dcGA model is very flexi-
ble since the grid shape (or the neighborhood) can be
changed to modify selection pressure. This source of
flexibility (changing the shape of the 2D grid) is only
present in a cGA. The selection operator used in all the
tested algorithms is anotherdifferent(complementary)
source of exploitation, that can be used to provide an
additional level of selection pressure. This observation
does not restrict the ability of these or other algorithms
to change their selection pressure. It only states the ad-
ditional source of flexibility coming from using cGA
or dcGA.

The impact of the migration policy is still an open
question depending on the island reproductive plan and
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its relationship to the fitness landscape: do parallel
distributed GAs do better with high coupling for easy
problems, and are ssGA/cGA more appropriate for ex-
ploitation/exploration, respectively? In the light of our
heterogeneous (but limited) test suite, and with the
same conditions and operators for these two models,
the answer in both cases is “yes”, although we recog-
nize that more research is needed on this matter.
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