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Abstract. Investigations into the role of the N/Z ratio on the decay modes of compound nuclei are
presented. Characteristics of fragments with atomic number 6≤Z≤28 and light charged particles
emitted in 78,82Kr+40Ca at 5.5 MeV/A reactions were measured at the GANIL facility using the 4π-
INDRA array. Data are compatible with an emission process from a compound nucleus. Persistence
of structure effects and emission before full separation of fission fragments are evidenced from
elemental cross-sections and coincidence data between light charged particles and fragments. Data
are discussed in the framework of the transition state model.
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INTRODUCTION

The behaviour of nuclei produced under extreme conditions is of interest from both ex-

perimental and theoretical points of view. The fusion process between heavy ions collid-

ing at incident energies around the Coulomb barrier is well-adapted to form compound

nuclei in a controlled way in terms of excitation energy and angular momentum. These

excited nuclei decay through a variety of channels and fundamental quantities, such as

level density parameters, fission barriers or nuclear viscosity can be extracted from the

study of these channels. The neutron enrichment (N/Z) of the compound nuclei is ex-

pected to play a role in the various emission mechanisms and nuclear quantities quoted

above. In this contribution we present preliminary data on light charged particles and

fragments emitted in 78,82Kr+40Ca reactions at 5.5 MeV/A incident energy.
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FIGURE 1. a) Experimental average velocity Vcm for fragments with atomic number Z=10, 15, 20, 25

emitted in the 78Kr+40Ca reaction as a function of the emission angle in the centre-of-mass; b) angular

distribution for fragments with atomic number Z=10, 15, 20, 25 in the centre-of-mass; c) average centre-

of-mass Vcm for fragments with atomic number 6≤Z≤28 measured in the 78Kr+40Ca reaction.

EXPERIMENTAL RESULTS

The experiment was carried out at the GANIL facility. Beams of 78,82Kr were accelerated

to 5.5 MeV/A and impinged on a self-supported 1mg/cm2 thick 40Ca target. The kinetic

energy and atomic number of the ejectiles were measured with the 4π-INDRA array

[1]. Here, we report on characteristics of charged products emitted in the 3≤ θlab ≤45.

For this angular domain, each detection ensemble is made of three layers: ionization

chamber, silicon detector and CsI. The energy calibration was obtained from elastic

scattering with beams of various q/A selected with the CIME cyclotron.

Kinematic features of the emitted fragments provide important clues about the re-

action mechanisms. The centre-of-mass average velocity Vcm and the angular distribu-

tions for fragments with atomic number Z=10, 15, 20, 25 are shown in fig.1 for the
78Kr+40Ca reaction. The average centre-of-mass velocitiy Vcm for each Z-species are

shown in fig.1c. To extract the velocity, the average mass of a given fragment is deduced

from its atomic number using an empirical formula [2]. The centre-of-mass average ve-

locity Vcm is roughly independent of the emission angle and agrees with the predictions

deduced from the Viola systematic [3] (horizontal lines in fig.1a). These features suggest

a strong degree of relaxation in the formation mechanism of the observed fragments and

an emission governed mainly by Coulomb interaction. The Coulomb origin is also sup-

ported by the quasi-linear decrease of <Vcm> with increasing fragment Z-value (fig.1c).

The angular distributions dσ /dθcm are rather flat (fig.1b) as in a case of fission from com-

pound nuclei with large angular momentum. These characteristics are consistent with an

emission from a compound nucleus (CN). Similar results are obtained for the 82Kr+40Ca

reaction. The absolute cross-sections were deduced from the normalization with respect

to the elastic scattering measured at a laboratory angle for which the cross-section is

given by the Rutherford scattering.

The measured charge distributions are shown in fig.2a for the 78Kr+40Ca reaction

(open circle). The cross-section distributions present a shape with a maximum around

Z=28 which corresponds to half of the charge of the CN. This indicates that elements

with Z≥14 come mainly from a symmetric fission process (see also fig.3b). For frag-
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FIGURE 2. a) Experimental cross sections for fragments emitted in the 78Kr+40Ca reaction (open

circles), compared to GEMINI (broken line) and GEMINI++(dashed line) predictions assuming Jmax=65h̄

; b) Experimental ratio σ
118Ba
Z /σ

122Ba
Z for odd-Z fragments (triangles) and even-Z fragments (squares)

compared to GEMINI calculations for Jmax=60h̄ (dashed line) and Jmax=75h̄ (broken line)

ments with Z≤10 a strong odd-even staggering is visible, and this effect is still present

for higher Z with a smaller amplitude. Similar features are observed for the 82Kr+40Ca

reaction, but the yields around the symmetric splitting are about 30% smaller than for the
78Kr+40Ca system. A probable explanation would be that the fission barrier for the neu-

tron poor CN is smaller than for the neutron rich one. Since the cross-section depends

on the thermal energy left once the collective energy is subtracted, a higher cross-section

is expected for symmetric fission of the 118Ba CN. The cross-sections for odd-Z frag-

ments are higher for the neutron rich CN while cross-sections for even-Z fragments are

higher for the neutron poor CN. To quantify this effect, the Z-dependence of the ratio

R= σ
118Ba
Z /σ

122Ba
Z is reported on fig.2b. R decreases roughly from 1.25 for Z=6 down to

0.75 for Z=7. For odd-Z (triangles), the ratio increases up to Z=21 and reaches a kind of

plateau. For even-Z (squares), R decreases from Z=6 to Z=10 and then increases to reach

the same kind of plateau as for odd-Z. The excitation energy and the maximum angular

momentum stored in the compound nucleus are expected to be very similar in both re-

actions. Thus, the observed effects are probably linked to the difference in the (N/Z) of

the CN. To summarize, we observe the coexistence of features that reasonably reflect the

role of the angular momentum, and a staggering behaviour which reflects the persistence

of structure effects in the process, or/and the influence of the secondary decays. In the

next section we discuss these aspects in the framework of a statistical approach.

COMPARISON WITH STATISTICAL APPROACH

Statistical decay calculations were performed using the GEMINI [4] code. All decay

channels are calculated within the Hauser-Feshbach model for Z≤2 and transition state

formalism of Moretto for Z≥3. The key ingredient to describe the fragment emission is

the conditional saddle configuration. The saddle conditional energy for different mass

(or charge) asymmetry was deduced from the rotating finite-range model developed by

Sierk [5]. More details can be found in [4].



The fusion cross-section comprises the fusion-evaporation and fusion-fission compo-

nents. In this work, the fusion evaporation cross-section is not yet available. However,

the fission cross-section is sensitive to the highest angular momentum leading to fu-

sion. The maximum angular momentum Jmax which reproduces the yields around the

symmetric fission could be considered as a good estimate of the Jmax for fusion. Thus,

calculations were performed assuming a CN spin distribution given by the sharp cut-off

approximation with the value of Jmax taken as a parameter.

The shape of the charge distribution around the symmetric fission could be satisfac-

torily reproduced by varying Jmax and the level density parameter values in a reasonable

range for these reactions at low excitation energies (Jmax between 60 and 75h̄ and a level

density parameter value between a=A/8 and a=A/9). In fig.2a are shown the predictions

for the disintegration of a 118Ba assuming Jmax = 65h̄ and a=A/8.5. The model repro-

duces well the charge distribution around the symmetry. However, the yields for light

fragment emission are overestimated by the model. The yields for light fragments are

well reproduced assuming Jmax = 50h̄ but the yields at symmetry are underestimated by

almost a factor 10 (not shown). These disagreements would indicate a failure of the Sierk

barriers and/or the transition state picture at large mass (charge) asymmetry and large

angular momentum. Predicted values of the ratio σ
118Ba
Z /σ

122Ba
Z are shown in fig.2b for

two values of Jmax (60h̄ (dashed line) and 75h̄ (broken line)). The calculations repro-

duce qualitatively the experimental data for light fragments with odd-Z and for Z≥14

but strongly underestimates the yields of light even-Z fragments.

In this analysis we have used the sharp cut-off approximation at variance with models

which predict a diffuse distribution for the angular momenta leading to fusion. However,

a finite value of the diffuseness would not change drastically the predicted relative

yields between light fragment emission and symmetric fission, and would not explain

the specific behaviour of the ratio R for Z≤14.

The persistence of staggering effects would seem to indicate that light fragments could

be emitted relatively cold or at a later stage of the separation process. Coincidence data

between light particles and fragments bring more insights on the emission process, as

will be presented in the following.

COINCIDENCE DATA

All light charged particles and fragments emitted in the angular range 3≤ θlab ≤ 45

are included in the following event-by-event analysis. In order to study only products

coming from the disintegration of a CN, events with a total measured charge greater

than 48 have been considered.

The correlation between the two biggest fragments Z1 and Z2 is shown in fig.3a for

the 78Kr+40Ca reaction. Data are not corrected for efficiency. In the correlation plot, the

two maxima in the yields correspond to fission and evaporation components. The ridge

is slightly shifted to an average value smaller than the charge of the CN (Z=56), which

reflects a weak light charged-particle emission. The Z distribution for the 78Kr+40Ca

reaction (fig.3b) indicates both fission-fragments and residues components. It is worth

noting that the relative yield between fusion-fission and fusion-evaporation processes is

biased due to the criterion on total measured charge in the limited angular range.
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FIGURE 3. Correlation between the two biggest fragments Z1 and Z2 (a) and Z distribution (b) for the
78Kr+40Ca reaction.

In fig.4 are shown the kinetic energy distributions of Z=2 particles emitted in coinci-

dence with fragments of different sizes, from evaporation residues (top left panel) to the

symmetric splitting (bottom right panel). All spectra have been arbitrarily normalised

to unity to discuss the shape evolution of the energy distribution. Looking at the two

extremes of charge asymmetry, we can see spectra with a single component for par-

ticles emitted in coincidence with residues, while particles emitted during the fission

process are characterised by spectra with two components. For emission particles in co-

incidence with the residues, the shape of the kinetic energy distribution is akin to an

evaporation spectrum from a hot CN. In the symmetric splitting case, the high kinetic

energy component of the energy spectra could be attributed to an emission from a sys-

tem evolving from the saddle to the scission configuration, while the low kinetic energy

component would be associated to the emission from fragments after separation. The

same feature is also observed on a broad range of charge asymmetry as indicated in the

three bottom panels of fig.4. Interestingly, the location of the peak and the slope of the

high kinetic energy component are similar for the range 16≤Z≤40 (e.g the fission peak)

which suggest that particles are emitted from an intermediate system having equivalent

properties in shape and temperature while the final states are very different. This is at

variance with the results obtained in [6] showing an increase of the interaction barrier

of about 5 MeV from Z=16 to Z=40. Finally, for asymmetric splitting, the component

at high kinetic energy is still observed. Moreover, this component dominates the full

spectrum which indicates a weak post-scission emission of light charged particles. Con-

sequently, the odd-even staggering effect observed in the yields of light fragments could

be reasonably due to the low excitation energy left at the scission stage, otherwise the

staggering would have been blurred by the disintegration process. These features have

been deduced from the integrated kinetic energy spectra measured in a limited angular

range since data have not yet been fully reduced. Thus it is premature to extract the pre-

scission and post-scission light particles properties by using an appropriate procedure

as, for example, the well-known multiple-sources method. This kind of analysis will be

performed in a near future.

These experimental characteristics call for a dynamical description of the evolution

of a system on a potential energy surface including structure effects sensitive to the

neutron enrichment of the emitting CN. This is challenging for models. In this work,
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FIGURE 4. Kinetic energy distributions of Z=2 particles emitted in coincidence with fragments. Gates

on the Z values are indicated in each panel. See text.

we have used an approach proposed in [7] (GEMINI++). The code is based on both

pre-fission neutron emission data [8] and widths of fragment distributions in the fission

process [9]. The temperature at the saddle configuration is deduced from the energy

removed by the pre-fission emission and the width of the fission fragment distribution

is deduced from [9] which links the temperature at saddle configuration and the width

of the fragment distribution. Results of the calculation are presented in fig.2a (dashed

line) for the 78Kr+40Ca reaction assuming Jmax = 65h̄ and a=A/8.5. The predicted cross-

sections agree very well with the experimental data except for fragments with atomic

number Z=6,7,8 for which no data are available in [9]. Even though more quantitative

analysis is required, the agreement with the experimental data support a scenario of

pre-fission light charged particle emission in the mechanism of the fragment formation

produced in the 78Kr+40Ca reaction at 5.5 MeV/A. Further investigations are foreseen

to explore quantitatively the influence of the N/Z ratio on the pre-fission and post-fission

light charged particles emission process.
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