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There remains an active investigation on elevating the classification accuracy and

information transfer rate of brain-computer interfaces based on steady-state visual

evoked potential. However, it has often been ignored that the performance of

steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs)

can be affected through the minor displacement of the electrodes from their optimal

locations in practical applications because of the mislocation of electrodes and/or

concurrent use of electroencephalography (EEG) devices with external devices, such

as virtual reality headsets. In this study, we evaluated the performance robustness of

SSVEP-based BCIs with respect to the changes in electrode locations for various channel

configurations and classification algorithms. Our experiments involved 21 participants,

where EEG signals were recorded from the scalp electrodes densely attached to the

occipital area of the participants. The classification accuracies for all the possible cases of

electrode location shifts for various channel configurations (1–3 channels) were calculated

using five training-free SSVEP classification algorithms, i.e., the canonical correlation

analysis (CCA), extended CCA, filter bank CCA, multivariate synchronization index (MSI),

and extended MSI (EMSI). Then, the performances of the BCIs were evaluated using two

measures, i.e., the average classification accuracy (ACA) across the electrode shifts and

robustness to the electrode shift (RES). Our results showed that the ACA increased with

an increase in the number of channels regardless of the algorithm. However, the RES was

enhanced with an increase in the number of channels only when MSI and EMSI were

employed. While both ACA and RES values for the five algorithms were similar under

the single-channel condition, both ACA and RES values for MSI and EMSI were higher

than those of the other algorithms under the multichannel (i.e., two or three electrodes)
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conditions. In addition, EMSI outperformed MSI when comparing the ACA and RES

values under the multichannel conditions. In conclusion, our results suggested that the

use of multichannel configuration and employment of EMSI could make the performance

of SSVEP-based BCIs more robust to the electrode shift from the optimal locations.

Keywords: brain-computer interface (BCI), steady-state visual evoked potential (SSVEP), performance robustness,

classification algorithm, electrode configurations

INTRODUCTION

The brain-computer interface (BCI) allows the users to
communicate with the external world using their brain
activities without standard communication methods, such as
speaking and through gestures (Wolpaw et al., 2002). Various
recording modalities have been used to implement BCIs,
such as electroencephalography (EEG) (Lotte et al., 2018),
magnetoencephalography (Mellinger et al., 2007), near-infrared
spectroscopy (Hwang et al., 2014, 2016), electrocorticography
(Hill et al., 2006; Schalk et al., 2007), and local field potential
(Asgharpour et al., 2021). Among these modalities, EEG has
been the most widely used owing to its advantages, such as
non-invasiveness, excellent temporal resolution, convenience of
use, and cost-effectiveness (Han et al., 2013; Hwang et al., 2013;
Oikonomou et al., 2016; Lotte et al., 2018).

Electroencephalography-based BCIs convert electrical
potentials measured on the scalp of the user while they perform
a specific mental task, into designated commands. These
commands are applied to various applications such as mental
spellers (Hwang et al., 2012; Lim et al., 2015; Speier et al.,
2017), assistive technology for patients (Hwang et al., 2017;
Lim et al., 2017), and online home appliance control (Park
et al., 2020). EEG-based BCIs can be classified based on the
paradigms to elicit neural activities (Hwang et al., 2013) as motor
imagery (MI)-based BCI (Acqualagna et al., 2016; León et al.,
2020), visual P300-based BCI (Gu et al., 2019), steady-state
visual evoked potential (SSVEP)-based BCI, non-motor mental
imagery-based BCI (Kristensen et al., 2020), auditory BCI (Kim
et al., 2011; Simon et al., 2015), and hybrid BCI (Jalilpour et al.,
2020). Among these, SSVEP-based BCIs have the advantage
of higher accuracy and higher information transfer rate (ITR)
and generally require no/short training time (Tello et al., 2014;
Nakanishi et al., 2015; Hwang et al., 2017; Xing et al., 2018).

Steady-state visual evoked potential-based BCIs recognize the
intentions of the users by identifying the frequency of the visual
stimulus. SSVEP is a quasi-periodic brain signal elicited through
visual stimulus flickering or reversing at a specific frequency,
generally recorded in the occipital region of the brain (Vialatte
et al., 2010; Xu et al., 2014). Power spectral density analysis has
traditionally been used to classify the frequency of SSVEP (Cheng
et al., 2002; Cao et al., 2015). Recently, various algorithms have
been proposed to enhance the classification accuracy and ITR of
SSVEP-based BCIs, such as canonical correlation analysis (CCA)
(Lin et al., 2007), least absolute shrinkage and selection operator
(Zhang et al., 2012), multivariate synchronization index (MSI)
(Zhang et al., 2014), filter bank CCA (FBCCA) (Chen et al.,

2015), and task-related component analysis (Nakanishi et al.,
2018).

Although elevating the classification accuracy and ITR of
SSVEP-based BCIs is important, maintaining consistently high
performance in the BCIs is an equally important factor to
be considered for long-term and/or daily-life BCI applications.
One factor that degrades the consistency of performance in
the SSVEP-based BCI is the electrode dislocation from the
optimal electrode locations, e.g., O1, O2, and Oz locations were
generally used for a three-electrode BCI. It is generally not
possible to reattach the electrodes to an identical location on
the scalp for every usage in a BCI system. In addition, the
locations of the electrodes can be slightly modified when the
EEG device is concurrently used with external devices, such as a
virtual reality head-mounted display (HMD) headset. However,
to the best of our knowledge, the influence of electrode shift
on the performance of SSVEP-based BCIs has not yet been
quantitatively evaluated.

Park et al. (2013) evaluated feature extraction methods for
MI-based BCIs in terms of performance robustness to slight
changes in the electrode location and recommended the cross-
correlation method as a promising feature extraction method.
Except for this study, the robustness of performance against the
electrode location shift has not been studied for EEG-based BCIs.
On the contrary, the robustness of performance to the electrode
shift was mainly investigated for electromyography (EMG)-
based myoelectric interfaces. Boschmann and Platzner (2012)
showed that the degradation of pattern recognition performance
due to electrode shift could be improved by increasing the
number of electrode channels and expanding the recording
locations. Pan et al. (2015) demonstrated that the performance
robustness against electrode shift in myoelectric prostheses based
on high-density EMG could be improved by employing the
multiclass common spatial pattern feature. Fan et al. (2016)
proposed a novel CCA-based method to eliminate the reduction
in performance in a surface EMG-based motion classification
system. The recent work of Lv et al. (2018) proposed a novel
neural network model using an autoencoder to extract the robust
features against electrode shift.

With the recent growing interest in the practical use
of SSVEP-based BCIs, there is a growing need for studies
evaluating the performance robustness under various conditions,
such as the number of channels and classification algorithms.
This study aimed to investigate the performance variation
in SSVEP-based BCIs owing to minor electrode shifts and
to discover the conditions that minimize the variations in
classification accuracy while maintaining high classification
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accuracy. The stimulus frequencies used for SSVEP-based BCIs
can be classified into three frequency bands: low (∼12Hz),
medium (12–30Hz), and high (>30Hz) frequency bands
(Regan, 1989). The majority of SSVEP-based BCI studies
were based on low-frequency and medium-frequency bands,
since SSVEP responses are stronger in low-frequency bands
than in high-frequency bands (Zhu et al., 2010; Liang et al.,
2019). Therefore, in this study, we primarily investigated
the performance robustness of the low-frequency SSVEP-
based BCIs. To this aim, an experiment eliciting the SSVEP
was conducted with 21 healthy participants and the EEG
signals were recorded from the electrodes densely attached
to their occipital area. Then, the performance robustness
of SSVEP-based BCIs to the electrode shift with respect to
the numbers of channels and classification algorithms was
quantitatively investigated.

MATERIALS AND METHODS

Participants
In this study, 25 healthy volunteers (15 men and 10 women;
age 23.52 ± 2.73 years) with normal or corrected-to-normal
vision had participated. None of them had any history of
neurological, psychiatric, or other severe diseases that could
affect the experimental results. The participants signed an
informed consent form and were familiarized with the
detailed protocol of the experiment. After completion
of the experiment, each participant received a monetary
reimbursement. Data from four participants were excluded
from further analyses because of the non-existence of
spectral peaks. The remaining data (14 men and 7 women;
age 23.9 ± 2.79 years) were used in this study. This
experimental study was approved and reviewed by the
Institutional Review Board (IRB) of Hanyang University,
Korea (HYI-14-167-11).

Experiments and Data Acquisition
Four 6 × 6 pattern-reversal checkerboard stimuli reversing at
different frequencies were used to elicit the SSVEP responses.
The four frequencies were set to 6Hz (top left), 6.66Hz
(top right), 7.5Hz (bottom left), and 10Hz (bottom right),
considering the intrinsic monitor refreshing rate. Figure 1A

illustrates the configuration of the visual stimuli. In each trial,
four visual stimuli were presented for 5 s with a 2 s inter-stimulus
interval. The participant gazed at one of the four stimuli without
blinking the eyes and making no body movements according
to the instructions provided immediately before the stimulus
presentation. One session consisted of 20 trials, and five sessions
were conducted for each participant with a variable time interval
between the sessions. Note that the participants could take a
rest as long as they wanted during the inter-session intervals
for reducing visual fatigue. The order of stimulus presentation
was randomized and counterbalanced to avoid the potential
habituation effects. The visual stimuli were displayed on a
24-in LCD monitor screen with a 60Hz refresh rate, placed
approximately 70 cm away from the eyes of the participant. The

visual stimuli were generated and controlled using the Cogent-
2000 toolbox (www.vislab.ucl.ac.uk/cogent.php; Wellcome
Trust Centre for Neuroimaging and Institute of Cognitive
Neuroscience, UCL, London).

Electroencephalography signals were recorded using a
commercial biosignal recording system (ActiveTwo; Biosemi,
Amsterdam, the Netherlands) from the 21 electrodes at a
sampling rate of 2,048Hz. A lab-made electrode pad was used
to record the EEG signals from the 21 electrodes attached
to the occipital area of the participants. Figure 1B shows the
fabricated electrode array pad with a sports headband that
mounts the electrodes densely on the occipital area. Figure 1C
shows the detailed configuration of the electrodes on the pad,
which were arranged in three rows and seven columns, and
the distance between two neighboring electrodes was set to
be 1.3 cm. EEG electrodes used for measuring the SSVEPs are
usually attached to O1, Oz, and O2 according to the extended
international 10–20 system (Meng et al., 2011; Zhang et al.,
2012; Lim et al., 2015, 2017; Hwang et al., 2017). Therefore,
the center of the array pad (Channel-11) was placed at Oz,
when Channel-5 and Channel-17 corresponded to O1 and O2,
respectively. A common mode sense active electrode and a
driven right leg passive electrode were attached to the left and
right mastoids, respectively, to form a feedback loop for the
amplifier reference (www.biosemi.com/faq/cms&drl.htm).

Analysis
All analyses, including the signal preprocessing, classification,
and statistical analysis, were performed using MATLAB R2019b
(Mathworks, Natick, MA, USA).

Preprocessing
Recorded EEG signals were downsampled at 256Hz considering
the computational efficiency and were then band-pass filtered
using a third-order zero-phase Butterworth filter with cutoff
frequencies of 4 and 52Hz. We investigated the SSVEP
responses elicited by flickering stimuli using EEG signals
recorded from Channels 5, 11, and 17. Please note that we
excluded the data from four participants whose SSVEP responses
were not observed, as mentioned in section Participants.
Supplementary Figure 1 shows the average amplitude spectra
averaged across 21 subjects and 25 trials for each stimuli
frequency at channels O1, Oz, and O2, where clear SSVEP peaks
were observed at the target frequencies (6, 6.66, 7.5, and 10,
which corresponds to 60/10, 60/9, 60/8, and 60/6) and their
harmonics. For each trial, the visual stimulus that the participant
was staring at was identified using five different classification
algorithms: CCA, extended CCA (ECCA), FBCCA, MSI, and
extendedMSI (EMSI) (Zhang et al., 2017). The preprocessed EEG
datasets are available at the following link: https://figshare.com/s/
cd46e1531d67f3023fa6.

Classification Algorithms
Canonical correlation analysis is a multivariate statistical method
used to determine the linear combinations, which maximize the
correlation between the two data sets X and Y (Lin et al., 2007;
Bin et al., 2009). The weight vectors WX and WY that maximize

Frontiers in Neuroinformatics | www.frontiersin.org 3 October 2021 | Volume 15 | Article 750839

www.vislab.ucl.ac.uk/cogent.php
http://www.biosemi.com/faq/cms&drl.htm
https://figshare.com/s/cd46e1531d67f3023fa6
https://figshare.com/s/cd46e1531d67f3023fa6
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Kim and Im Electrode Shift in SSVEP-Based BCIs

FIGURE 1 | Experiment setup and channel combination (A) four 6 × 6 pattern-reversal checkerboard stimuli [frequencies of the four stimuli were set to 6Hz (top left),

6.66Hz (top right), 7.5Hz (bottom left), and 10Hz (bottom right)] (B) fabricated electrode array pad with dense electrode configuration (C) array pad [distance

between the two neighboring electrodes was set to 1.3 cm,; center of the array pad was placed at Oz and according to the extended international 10–20 system; 21

channels were categorized into three categories depending on the location of the channel: left (channel 1–9), middle (channel 7–15), and right (channel 13–21)] (D)

possible channel combinations with respect to the number of channels used for classification [for example, when two EEG signals recorded at two channels were

used to classify the frequency of SSVEP, the classification accuracy was calculated in a total 81 channel combinations by combining the left 9 channels (channel 1–9)

and right 9 channels (channel 13–21)].

the canonical correlation between x = XTWX and y = YTWY
were determined by solving the following optimization problem:
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Wx ,Wy
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where ρ is the canonical correlation coefficient. In the SSVEP
frequency classification, X and Y are the EEG signals and SSVEP
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stimulus frequency were computed as follows:
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where Nh is the number of harmonics, Fs is the sampling rate,
M is the number of signal samples, and f is the base frequency
of each stimulus frequency. The number of harmonics for the
five classification algorithms was set to four for achieving the
highest average classification accuracy for the optimal electrode
positions. The canonical correlation coefficients were calculated
for all the stimulus frequencies. Then, the frequency of the largest
coefficient was selected.

Multivariate synchronization index measures the
synchronization between the two datasets, similar to the
coefficient of CCA for classifying the stimulus frequency (Zhang
et al., 2014). Let X and Y denote the EEG and reference signals,
respectively. The size of matrix X is N × M and the size of Y is
2Nh ×M. Here, N is the number of channels in the EEG signals,
Nh is the number of harmonics, andM is the number of samples.
The correlation matrix of X and Y was calculated as follows:

C=

[

C11 C12

C21 C22

]

, (3)
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TABLE 1 | Results of the two-way repeated-measures ANOVA with two factors of “Number of channels” and “Algorithm” for various window lengths.

Source (df, df error) Window length (s)

2 2.5 3 3.5 4 4.5 5

Average classification accuracy across the electrode shift (ACA)

Number of channels (2, 40) 10.681*** 9.454*** 10.435*** 12.954*** 13.305*** 16.966*** 19.156***

Algorithm (4, 80) 4.440** 4.532** 5.670*** 4.954** 5.440** 4.987** 4.772**

Number of channels × Algorithm (8, 160) 6.659*** 10.261*** 10.754*** 8.820*** 8.657*** 7.309*** 5.076***

Robustness to the electrode shift (RES)

Number of channels (2, 40) n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Algorithm (4, 80) 17.865*** 24.256*** 24.904*** 24.337*** 18.062*** 15.599*** 12.433***

Number of channels × Algorithm (8, 160) 17.385*** 17.360*** 24.962*** 17.123*** 20.358*** 17.102*** 14.162***

Values denote the F-value (p-value); n.s. indicates the non-significant (p ≥ 0.05).

Asterisks indicate the statistical significance (**p < 0.01, and ***p < 0.001).

FIGURE 2 | Mean and SD of the average classification accuracy across the electrode shift (ACA) across the subjects with five SSVEP classification algorithms in the

case of 3 channels and seven window lengths (wl) (black, gray, and white bars denote the mean accuracies of 1 channel, 2 channels, and 3 channels, respectively;

the error bars represent the SD ACA).

where C11 =
1
MXXT , C22 =

1
MYYT , C12 = C21 =

1
MXYT ,

and M is the number of samples. Because the synchronization
measure can be influenced by autocorrelation, the following
linear transformation was applied to matrix C (Joudaki et al.,
2012).

U=

[

C11
−

1
2 0

0 C22
−

1
2

]

(4)

The transformed matrix was given by

R=UCUT , (5)

where the dimension of R is N + 2Nh. Let λ1, λ2, · · · , λP,
where P = N + 2Nh, be the Eigenvalues of matrix R. The

Eigenvalues were normalized as follows: λ
′

i =
λi

∑P
i=1 λi

. Then,

the synchronization index between X and Y was calculated
as follows:

S=1+

∑P
i=1 λ

′

i log λ
′

i

log P
(6)

The synchronization indices were calculated for all the stimulus
frequencies and the frequency of the largest synchronization
index was selected.

Extended MSI is an algorithm that extends the MSI by
incorporating time-delayed EEG signals during the calculation
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TABLE 2 | Bonferroni corrected p-values of post-hoc analysis among the average classification accuracies across the electrode shift (ACAs) of three different numbers of

channels for classification algorithm and window length.

Algorithm Number of channels (left vs. right) Window length (s)

2 2.5 3 3.5 4 4.5 5

CCA 1 vs. 2 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

1 vs. 3 n.s. n.s. n.s. n.s. n.s. 0.014 0.008

2 vs. 3 0.011 0.001 0.000 0.000 0.000 0.000 0.000

ECCA 1 vs. 2 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

1 vs. 3 n.s. n.s. n.s. 0.035 0.025 0.008 0.003

2 vs. 3 0.004 0.000 0.000 0.000 0.000 0.000 0.000

FBCCA 1 vs. 2 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

1 vs. 3 0.002 0.003 0.004 0.002 0.002 0.001 0.001

2 vs. 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MSI 1 vs. 2 0.019 0.047 0.041 0.030 0.014 0.003 0.003

1 vs. 3 0.000 0.001 0.000 0.000 0.000 0.000 0.000

2 vs. 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EMSI 1 vs. 2 0.023 0.030 0.036 0.020 0.009 0.002 0.001

1 vs. 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 vs. 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n.s. indicates the non-significant (Bonferroni corrected p > 0.05).

A positive value indicates that the ACA of the right is higher than that of the left.

of the synchronization index (Zhang et al., 2017). ECCA is an
algorithm that extends the CCA similar to the EMSI. Let X be the
EEG signal. The delayed signals, Xτ , were appended to X as

X=

[

X
Xτ

]

, (7)

where τ is the number of delayed samples (Zhang et al., 2017).
In this study, we generated the delayed signals using the circular
shift method that moves the final sample of a signal to the first
position while shifting all the other samples of the signal to
the next position. We shifted the circular samples of the EEG
signals once, i.e., τ was set to 1. Then, the new synchronization
index and the new canonical correlation coefficient using X were
calculated using Equations (2)–(6) and (1)–(2), respectively. The
target frequency was then estimated in a manner similar to the
MSI and CCA.

Filter bank CCA decomposes the EEG signals into multiple
sub-band components and calculates the canonical correlation
coefficient of each sub-band component. The weighted sum of
the squared CCA coefficients corresponding to all the sub-band
components was calculated as follows:

ρf=

Nsb
∑

n=1

w (n)·
(

ρn
f

)2
, (8)

where Nsb is the number of sub-bands and n is the index of the
sub-band. The weights of the sub-band components were defined
as follows:

w (n)=n−a
+b, (9)

where a and b are constants. In this study, three parameters
were determined based on the previous studies (Chen et al.,
2015) (a = 1.25, b = 0.25, and Nsb = 5). The lower and
upper cutoff frequencies of the five sub-bands were designed as
follows: 4–52Hz, 8–52Hz, 12–52Hz, 16–52Hz, and 20–52Hz.
The weighted sum of the squared CCA coefficients (ρf ) was
calculated for all the stimulus frequencies. The frequency with
the maximum ρf was then selected as the target frequency.

Performance Evaluation Measures
Classification accuracies were calculated for five training-free
SSVEP classification algorithms for all the possible electrode
shift cases with respect to different numbers of channels (1–3
channels). As shown in Figures 1C, 21 channels were divided into
three-channel groups: the left 9 channels (Channels 1–9), middle
9 channels (Channels 7–15), and right 9 channels (Channels 13–
21). In each channel group, the central channels (left: Channel
5, middle: Channel 11, right: Channel 17) corresponded to the
original channel positions (O1, Oz, and O2, respectively), and
the remaining eight channels in each group corresponded to
the position where the electrodes could be shifted from their
original positions.

There can be various channel combinations when the number
of channels is 1, 2, and 3, as illustrated in Figure 1D. When the
number of channels was 1, the frequency of SSVEP was classified
using only one EEG signal recorded from one channel. In this
case, the classification accuracies were calculated for each of the
middle nine channels (Channels 7–15). When two EEG signals
recorded at two different channels were used for the classification,
the classification accuracies were calculated for each of 81 channel
combinations by combining the left nine channels (Channels
1–9) and right nine channels (Channels 13–21). Finally, when
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TABLE 3 | Bonferroni corrected p-values of post-hoc analysis among the average classification accuracies across the electrode shift (ACA)s in five different algorithms for

the number of channels and window length.

Number of channels Algorithm (left vs. right) Window length (s)

2 2.5 3 3.5 4 4.5 5

1 CCA vs. ECCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

CCA vs. FBCCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

CCA vs. MSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

CCA vs. EMSI n.s. n.s. n.s. n.s. 0.035 0.002 0.029

ECCA vs. FBCCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

ECCA vs. MSI n.s. −0.045 n.s. n.s. n.s. n.s. n.s.

ECCA vs. EMSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

FBCCA vs. MSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

FBCCA vs. EMSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

MSI vs. EMSI n.s. 0.043 n.s. n.s. 0.031 0.002 0.025

2 CCA vs. ECCA 0.037 0.002 0.001 n.s. 0.049 0.005 0.010

CCA vs. FBCCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

CCA vs. MSI 0.012 0.003 0.002 0.022 0.003 0.002 0.000

CCA vs. EMSI 0.009 0.002 0.001 0.008 0.001 0.000 0.000

ECCA vs. FBCCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

ECCA vs. MSI n.s. 0.042 0.034 n.s. 0.049 n.s. n.s.

ECCA vs. EMSI 0.038 0.016 0.012 0.037 0.006 0.014 0.013

FBCCA vs. MSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

FBCCA vs. EMSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

MSI vs. EMSI n.s. n.s. n.s. 0.004 0.009 0.003 0.001

3 CCA vs. ECCA 0.003 0.000 0.000 0.003 0.001 0.001 0.000

CCA vs. FBCCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

CCA vs. MSI 0.020 0.005 0.002 0.008 0.005 0.008 0.002

CCA vs. EMSI 0.009 0.004 0.002 0.004 0.002 0.001 0.000

ECCA vs. FBCCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

ECCA vs. MSI n.s. n.s. 0.047 n.s. n.s. n.s. n.s.

ECCA vs. EMSI n.s. 0.045 0.019 0.041 0.021 0.036 0.017

FBCCA vs. MSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

FBCCA vs. EMSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

MSI vs. EMSI n.s. n.s. n.s. 0.008 0.005 0.004 0.002

n.s. indicates the non-significant (Bonferroni corrected p > 0.05).

A positive value indicates that the ACA of the right is higher than that of the left.

A negative value indicates that the ACA of the left is higher than that of the right.

the number of channels was 3, classification accuracies were
calculated for each of 675 channel combinations by combining
the left 9 channels, middle 9 channels, and right 9 channels. In
the combination of these three groups, the combinations with
specific channels that overlapped with each other were excluded,
e.g., Channels 7, 7, and 13.

To compare the changes in the classification performance
owing to the electrode shift, two measures were calculated
for each subject: (1) average classification accuracy across the
electrode shift (ACA) and (2) robustness to the electrode shift
(RES). The ACA was calculated by averaging the classification
accuracies for all the channel combinations. The RES was
evaluated by calculating the coefficient of variation (CV) of the
classification accuracies for all the channel combinations, with
the RES value being defined as 1 – CV. CV is a standardized
measure of dispersion, which is defined as the ratio of the
standard deviation to the mean. A low-RES value indicates

that the classification performance is affected significantly by
the changes in the electrode locations, whereas a high-RES
value indicates that the classification performance is not affected
significantly by the electrode shift.

Statistical Analysis
A two-way analysis of variance with repeated measures based
on two factors (the number of channels and the classification
algorithm) was used to statistically compare the ACA and RES.
A paired t-test with Bonferroni correction was used for the
post-hoc analyses.

RESULTS

Statistical Comparison
First, we statistically compared the ACA and RES values
with respect to the number of channels and classification
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FIGURE 3 | Mean and standard deviation of the robustness to the electrode shift (RES) across the subjects with five SSVEP classification algorithms in the case with

the number of channels as 3 and window length (wl) as 7 (black, gray, and white bars denote the mean accuracies in the cases with the number of channels as 1, 2,

and 3, respectively; the error bars represent standard deviations of RES).

algorithms for window lengths of 2–5 s with intervals of 0.5 s.
In Table 1, the two-way repeated-measures ANOVA for ACA
showed a statistically significant main effect on the number
of channels and the algorithms for all the window lengths.
The interaction between the number of channels and the
algorithm was statistically significant for each window length.
In contrast, the two-way repeated-measures ANOVA for RES
showed a statistically significant main effect only for the
classification algorithms for every window length, when the
interaction between the number of channels and the algorithm
was statistically significant for each window length. While the
main effect of the number of channels on the RES value was
not significant, we statistically compared the ACA and RES of
the three levels of the number of channels and five levels of
algorithms using a paired t-test as a post-hoc analysis because
the interaction of ACA and RES was found to be statistically
significant for every window length.

Average Classification Accuracy Across
the Electrode Shift
Figure 2 and Supplementary Table 1 show the average and SD
of the ACA across the 21 subjects. Table 2 shows the results
of the paired t-test for the number of channels with respect
to the algorithm and window length. When classifying the
frequency of SSVEP using the CCA, ECCA, and FBCCA, there
was no statistically significant difference between the ACA for
one channel and that for two channels in each window length.
However, the ACA for three channels was significantly higher
than those for one channel and two channels (CCA: 4.5 and

5 s; ECCA: 3.5, 4, 4.5, and 5 s; FBCCA: all window lengths).
When the frequency of SSVEP was classified using MSI and
EMSI, the ACA was significantly increased with an increase in
the number of channels in every window length. In short, the
ACA for three channels was higher than that for one and two
channels regardless of the algorithms. The ACA for two channels
increased significantly compared to that for one channel in MSI
and EMSI.

Table 3 shows the results of the paired t-test among the
algorithms with respect to the number of channels and window
lengths. In the case of one channel, the ACA of EMSI was
significantly higher than that of CCA (window length: 4, 4.5,
and 5 s) and MSI (window length: 2.5, 4, 4.5, and 5 s). The ACA
of ECCA was significantly higher than that of MSI in the case
with a window length of 2.5 s. In the case of two channels, the
ACAs of ECCA, MSI, and EMSI were significantly higher than
that of CCA (ECCA: every window length except 3.5 s; MSI and
EMSI: every window length). The ACAs of MSI and EMSI were
significantly higher than that of ECCA (MSI: 2.5, 3, and 4 s; EMSI:
every window length). The ACA of EMSI was significantly higher
than that of MSI (window length: 3.5, 4, 4.5, and 5 s). Finally,
in the case of three channels, the ACAs of ECCA, MSI, and
EMSI were significantly higher than that of CCA in each window
length. The ACAs of MSI and EMSI were significantly higher
than that of ECCA (MSI: 3 s; EMSI: each window length except
2 s). The ACA of EMSI was significantly higher than that of MSI
(window length: 3.5, 4, 4.5, and 5 s). Taken together, ACAs of
MSI and EMSI were significantly higher than that of CCA and
ECCA in the multichannel condition. The ACA of EMSI was
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TABLE 4 | Bonferroni corrected p-values of post-hoc analysis among the robustness to the electrode shift (RES) in the cases with the number of channels as 1, 2, and 3

for classification algorithm and window length.

Algorithm Number of channels (left vs. right) Window length (s)

2 2.5 3 3.5 4 4.5 5

CCA 1 vs. 2 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

1 vs. 3 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

2 vs. 3 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

ECCA 1 vs. 2 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

1 vs. 3 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

2 vs. 3 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

FBCCA 1 vs. 2 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

1 vs. 3 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

2 vs. 3 n.s. n.s. n.s. n.s. 0.023 0.007 0.001

MSI 1 vs. 2 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

1 vs. 3 0.004 0.043 0.018 0.015 0.007 0.013 0.011

2 vs. 3 0.000 0.000 0.000 0.000 0.000 0.001 0.000

EMSI 1 vs. 2 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

1 vs. 3 0.002 0.013 0.008 0.013 0.006 0.008 0.009

2 vs. 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n.s. indicates non-significant (Bonferroni corrected p > 0.05).

A positive value indicates that the RES of the right is higher than that of the left.

significantly higher than that of the other algorithms except for
FBCCA regardless of the number of channels.

Robustness to the Electrode Shift
Figure 3 and Supplementary Table 2 show the average and
standard deviation of RES across the 21 subjects with respect
to the number of channels and classification algorithm. Table 4
shows the results of the post-hoc analysis among the RESs in the
case of three channels for each classification algorithm. There was
no significant difference among the RESs of the three different
numbers of channels for CCA and ECCA. In the case of FBCCA,
the RES for three channels was significantly higher than that for
two channels (window length: 4, 4.5, and 5 s). For MSI and EMSI,
the RESs increased with an increase in the number of channels,
and the RES for three channels was significantly higher than those
for one channel and two channels in every window length. To
sum up, the RES for three channels was higher than that for both
one and two channels when MSI and EMSI were used.

Table 5 shows the results of the post-hoc analysis of the RESs
of five classification algorithms for the number of channels. In
the single-channel, there was no statistically significant difference
among the RESs of the five algorithms. The RESs of MSI and
EMSI were significantly higher than that of CCA, ECCA, and
FBCCA for every window length when using multiple channels
(two channels and three channels). In addition, in the case of
three channels, the RES of ECCA was significantly higher than
that of CCA (window length: 4 and 5 s), and the RES of EMSI
was significantly higher than that of MSI (window length: 3.5,
4.5, and 5 s). In summary, the RESs of the five algorithms were
similar under the single-channel condition. However, the RESs
of MSI and EMSI were significantly higher than those of the
other algorithms under multichannel conditions. In the case of

three channels, the RES of EMSI was significantly higher than
that of MSI.

Optimal Configuration for the Robustness
to the Electrode Shift
Comparisons of two measures, i.e., the ACA and RES, with
respect to the number of channels showed that the ACA increased
significantly regardless of the algorithms and the RES increased
significantly when MSI and EMSI were used in the case of
three channels. Comparisons of two measures with respect to
the algorithms showed that the ACA and RES of MSI and
EMSI were superior to those of the CCA and ECCA under
multichannel conditions. In particular, in the case of three
channels, the RES of EMSI was superior to that of the other
four algorithms. Therefore, the optimal conditions that make
the SSVEP-based BCI robust to the electrode shift were the
multichannel configurations (especially three channels) and the
employment of the EMSI algorithm.

DISCUSSION

The classification accuracy of SSVEP-based BCI is closely related
to the signal-to-noise ratio (SNR) (Zhang et al., 2014; Kumar
and Reddy, 2018). With an increase in the window length, the
SNR of the SSVEP components increases, thereby leading to a
higher classification accuracy (Xing et al., 2018). Similarly, as the
number of channels increases, SNR of the SSVEP components
can be enhanced by employing spatial filtering, also resulting
in higher classification accuracy (Bin et al., 2009). Therefore,
the variation in the accuracy owing to the electrode shift could
decrease as the number of channels increases. In the MSI
and EMSI, the S-estimator algorithm was used to measure
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TABLE 5 | Bonferroni corrected p-values of post-hoc analysis among the robustness to electrode shift (RES) in four different algorithms for the number of channels and

window lengths.

Number of channels Algorithm (left vs. right) Window length (s)

2 2.5 3 3.5 4 4.5 5

1 CCA vs. ECCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

CCA vs. FBCCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

CCA vs. MSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

CCA vs. EMSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

ECCA vs. FBCCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

ECCA vs. MSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

ECCA vs. EMSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

FBCCA vs. MSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

FBCCA vs. EMSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

MSI vs. EMSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

2 CCA vs. ECCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

CCA vs. FBCCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

CCA vs. MSI 0.002 0.000 0.000 0.000 0.000 0.000 0.000

CCA vs. EMSI 0.001 0.000 0.000 0.000 0.000 0.000 0.000

ECCA vs. FBCCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

ECCA vs. MSI 0.003 0.000 0.000 0.000 0.000 0.000 0.000

ECCA vs. EMSI 0.002 0.000 0.000 0.000 0.000 0.000 0.000

FBCCA vs. MSI 0.000 0.000 0.000 0.000 0.001 0.004 0.016

FBCCA vs. EMSI 0.000 0.000 0.000 0.000 0.000 0.001 0.002

MSI vs. EMSI n.s. n.s. n.s. n.s. n.s. n.s. n.s.

3 CCA vs. ECCA n.s. n.s. n.s. n.s. 0.022 n.s. 0.047

CCA vs. FBCCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

CCA vs. MSI 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CCA vs. EMSI 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ECCA vs. FBCCA n.s. n.s. n.s. n.s. n.s. n.s. n.s.

ECCA vs. MSI 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ECCA vs. EMSI 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FBCCA vs. MSI 0.000 0.000 0.000 0.000 0.000 0.001 0.001

FBCCA vs. EMSI 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MSI vs. EMSI n.s. n.s. n.s. 0.007 n.s. 0.018 0.009

n.s. indicates non-significant (Bonferroni corrected p > 0.05).

A positive value indicates that the RES of the right is higher than that of the left.

the synchronization between the EEG signals and reference
signals. Because the S-estimator is a non-linear measure of
synchronization, both MSI and EMSI are known to have a lower
probability of losing some useful information compared with
CCA, ECCA, and FBCCA (Zhang et al., 2014; Zerafa et al., 2018).
Additionally, the S-estimator has been proven robust to dynamic
noises (Boccaletti et al., 2002; Carmeli et al., 2005; Jalili et al.,
2007). Therefore, it is possible that MSI and EMSI based on S-
estimator could classify the frequency of SSVEP more accurately
at the surrounding positions of the original position compared
with the other three algorithms.

Under the single-channel condition, the RES values of the five
algorithms were similar as shown in Table 5. This result implies
that the spatial filtering effect of five algorithms for strengthening
the SSVEP components and suppressing the noises (Wong et al.,
2020) was similar to each other in the case of a single channel.

However, under the multichannel conditions, the RES values of
MSI and EMSI were significantly higher than those of the other
CCA-based algorithms.

Interestingly, we found that the variation in the classification
performance due to the electrode shift increased as the number
of channels increased when CCA and its variants (i.e., ECCA
and FBCCA) were employed. As shown in Figures 2, 3, the ACA
increased as the number of channels increased, but the RES
for a single channel was higher than that for a multichannel.
Particularly, this trend became more distinct for shorter window
lengths with lower SNR. Bin et al. (2009) reported that the
CCA weights from the parietal region and occipital region
had the opposite sign, and thus the noise that these signals
commonly have could be eliminated by employing the CCA
weights. On the contrary, common noises may be enhanced
if the CCA weights from different channels have the same
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FIGURE 4 | Nine channel combinations corresponding to the cases, in which all the electrodes shift to the same direction and the mean accuracies across the

subjects of the nine-channel combinations (accuracies were calculated using EMSI and the nine mean accuracies all the cases with various number of channels and

each window length were min–max normalized).

sign. When two or three electrodes were shifted simultaneously,
the SNR of SSVEP components could be either increased or
decreased depending on the signs of the CCA weights, making
the variation of the classification performance increased. As
shown in Tables 2, 4, in the case of CCA-based algorithms, the
ACA for three channels was significantly higher than those for
single and two channels, while the RES did not increase as the
number of channels increased. These results suggest that the
CCA-based algorithms are not suitable for reducing the variation
of classification performance due to the electrode dislocation.

Recently, BCI studies with portable EEG devices have been
actively investigated with the aim of enhancing the practical
usability of BCIs (Casson, 2019). When using portable EEG
devices, it is generally difficult to place the EEG electrodes
consistently on the designated locations because most portable
devices are not customized to be fitted to the head shape
of a specific user. Because the distance between adjacent
electrodes in portable EEG devices is usually fixed, we further

compared the classification accuracies when all the electrodes
moved in the same direction. Figure 4 shows the nine-channel
combinations corresponding to the cases in which all the
electrodes shifted in the same direction, where the numbers
in each element represent the EEG channel numbers. The
three rows with colored matrices show the mean classification
accuracies across the subjects for the nine-channel combinations
with respect to different window sizes. The accuracies were
calculated using EMSI, and the nine mean accuracies were
min-max normalized. Notably, it could be seen from the
figures that horizontal electrode shifts resulted in a relatively
smaller decrease in the classification accuracy than vertical
electrode shifts.

One of the limitations of our study is that we investigated
the performance robustness to a slight electrode shift only
for training-free SSVEP detection algorithms. According to
a previous study (Zerafa et al., 2018), algorithms detecting
SSVEP can be categorized based on training requirements
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into three categories: training-free, subject-specific, and subject-
independent. Training-free algorithms are more practical than
the ones included in the other two categories because they
do not require any training data for SSVEP classification.
However, classification algorithms using training data generally
outperform the training-free algorithms because the inter-subject
variability of the EEG activity is reflected in the classification.
Algorithms belonging to the subject-independent category are
expected to be a satisfactory compromise between performance
and training effort. Therefore, evaluating the RES of various
subject-independent algorithms would be one of the promising
topics that we plan to pursue in future studies. Recently, SSVEP-
based BCIs employing high-frequency bands have been actively
studied because they could effectively reduce visual fatigue,
compared to those employing low- and mid-frequency bands
(Liang et al., 2019; Hsu et al., 2020). Despite its improved
usability, however, its performance was not as high as that of
the low- and mid-frequency SSVEP-based BCIs. Therefore, it
would be a promising topic to investigate the influence of slight
electrode displacement on the performance of high-frequency
SSVEP-based BCIs.

CONCLUSION

In this study, we investigated the changes in the performance
of SSVEP-based BCIs by minor electrode shifts to discover the
optimal conditions that minimize the variations in classification
accuracy while maintaining high classification accuracy. The
performance robustness of SSVEP-based BCIs to the electrode
shift with respect to the numbers of channels and classification
algorithms was quantitatively investigated using two measures
(ACA and RES). Our results suggested that the use of
multichannel electrode configurations and employment of the
EMSI algorithm could make the performance of SSVEP-based
BCIs robust to the electrode shift from the optimal electrode
locations. To the best of our knowledge, this was the first study
that quantitatively evaluated the influence of electrode shift on
the performance of SSVEP-based BCIs.

Recently, commercial wearable EEG devices that can
record SSVEP responses in a more convenient manner have
been released to the market. The representative examples
include NextMindTM (https://www.next-mind.com) and

BrainBit (https://www.brainbit.com), both of which employ
dry electrodes and elastic headbands. Therefore, investigation
on the robustness of BCI performance to the minor electrode
shift for commercial wearable EEG devices would be necessary
to assess the practicality of these devices. Additionally, it
would be an interesting future topic to investigate optimal
electrode configurations that are most robust to electrode shift in
SSVEP-based BCIs.
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