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Abstract: This paper deals with the assessment of the contribution of the second bending mode to the dynamic behavior of simply 
supported railway bridges. Traditionally the contributions of modes higher than the fundamental have been considered of little importance 
for the computation of the magnitudes of interest to structural engineers (vertical deflections, bending moments, etc.). Starting from the 
dimensionless equations of motion of a simply supported beam subjected to moving loads, the key parameters governing the dynamic 
behavior are identified. Then, a parametric study over realistic ranges of values of those parameters is conducted, and the influence of the 
second mode examined in detail. The main purpose is to decide whether the second mode should be taken into account for the 
determination of the maximum displacement and acceleration in high-speed bridges. In addition, the reasons that cause the contribution 
of the second bending mode to be relevant in some situations are highlighted, particularly with regard to the computation of the maximum 
acceleration. 

Introduction 

The dynamic behavior of railway bridges constitutes a subject of 
research for scientists and engineers since the 19th century, but a 
particular growth of the interest on this topic has occurred during 
the last decades. The main reason for this is the extensive con­
struction of new high-speed lines in developed countries, where 
the operating speed of the trains (83.33 m/s, equal to 300 km/h, 
or even faster) is likely to give rise to resonance phenomena, 
specially in simply supported bridges. 

Two different kinds of resonance phenomena are described in 
the technical literature related to moving loads. Since only one of 
them is analyzed in the present paper, an initial distinction regard­
ing the meaning given of the term "resonance" should be made: 
In the rest of the paper this word will be used only to designate 
the rhythmic vibration of a bridge due to the passage of repeated 
groups of loads. The other type of resonance, which is related to 
the dynamic stability of beams when the speed of the moving 
loads reaches a certain limit (Fryba 2001), will not be investigated 
in this work. 

When a structural engineer faces the dynamic analysis of a 
railway bridge, it is most likely that he will create a numerical 

model of the structure and, subsequently, analyze it by the mode 
superposition method. The minimum number of modes required 
for an accurate analysis, however, is an issue that creates some 
controversy. 

The present paper deals with this important matter. The scope 
of the investigation is intentionally restricted to simply supported, 
beam-like structures such that they can be idealized as Euler-
Bernoulli beams. It is believed that the conclusions presented 
herein will give enhanced understanding of the resonance behav­
ior of railway bridges, as well as help structural engineers to 
decide how many modes should be included in their analyses. 

Purpose of Investigation 

In many developed countries of Western Europe, as well as in 
other parts of the world, an effort has been launched by national 
authorities with the purpose of updating the existing building 
codes for railway bridges. One of the most important reasons for 
this initiative was the repeated occurrence of resonant oscillations 
in several simply supported bridges located in the first French 
high-speed lines, as reported by the D-214 Committee of the Eu­
ropean Rail Research Institute (ERRI D-214 2001). 

Among the different factors that are to be considered for the 
design of bridges, special attention is now being paid to the veri­
fication of the serviceability limit states. As it is known, underly­
ing these limit states are the strict requirements associated with 
both the passenger comfort and the security levels imposed on 
modern high-speed trains; as a matter of fact, in a large number of 
situations the serviceability requirements are the most demanding 
ones and become crucial for the design of railway bridges. Per­
haps the most classic serviceability verification is the one con­
cerning the vertical deflection of the deck; during recent years, in 
addition, the vertical acceleration of the deck has emerged as a 
variable that must be kept under certain limits in order to ensure 



Fig. 1. Simply supported beam traversed by series (train) of 
concentrated loads 

the stability of the track. Hereafter the attention of the paper will 
be focused on these two factors due to their paramount impor­
tance. 

Yang et al. indicate that the contribution of the fundamental 
bending mode suffices for an accurate computation of the dy­
namic deflection of a simply supported beam (Yang et al. 1997); 
the classic text (Biggs 1964) is cited in this reference as the pri­
mary source. Similarly, Li and Su (Li and Su 1999) cite the text 
(Smith 1988) to affirm that the bending moment, as well as the 
deflection, can be computed correctly neglecting the contribution 
of bending modes higher than the first one. 

However, the ERRI D-214 committee proposes that the second 
mode should also be included if the associated natural frequency 
is lower than 30 Hz (ERRI D-214 2001). This recommendation is 
based on the fact that accelerations up to that frequency could 
negatively influence ballast stability. 

The purpose of the paper is to further investigate the necessity 
of including the second bending mode in the dynamic analysis of 
railway bridges, not only for the evaluation of the maximum ac­
celeration, but also for the computation of the maximum displace­
ment. The reason that the authors have found for pursuing this 
question is the possibility that the second bending mode of a 
simply supported bridge could be excited at resonance during the 
passage of a high-speed train. The present investigation will show 
that indeed such a situation could take place, which creates an 
uncertainty regarding the influence that the second mode could 
have on the assessment of the maximum displacements of high­
speed bridges. 

Equation of Motion and Similarity Formulas 

Mathematical Model 

The approach adopted in the present investigation is based on the 
so-called similarity formulas. These formulas have been used by 
the ERRI (ERRI 2001), and were also exploited by the authors in 
several previous works (Museros et al. 1999; 2002; Museros and 
Alarcón 2002). 

The validity of the similarity formulas can be proved on the 
basis of the equation of motion of a simply supported beam of 
constant mass per unit length and constant cross-section proper­
ties, traversed by a series of concentrated loads (see Fig. 1). This 
equation has been presented by a number of authors (Klasztorny 
and Langer 1990; Olsson 1991; Fryba 1999; Li and Su 1999 
among others). The following dimensionless form has been used 
previously by the authors (Museros 2002); the derivation is also 
included in the Appendix: 
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In Eq. (1) the following notation is used: T=dimensionless 
time T=t/T, where f=real time and T symbolizes the period of 
the first bending mode (i.e., the fundamental period); primes de­
note derivation with respect to dimensionless time; 
w0

=2Tr/7,=fundamental frequency; n indicates the number of the 
mode; and 4 „ ( T ) = dynamic amplitude of the «th mode at time T; 
t,n represents the damping ratio of the «th mode; L and m=length 
and constant mass per unit length of the bridge, respectively; Pk 

and dk stand for the value of the Mi concentrated load and its 
initial distance from the beginning of the bridge (usually d^ is 
given a zero value); NP=total number of concentrated loads of 
the train; and finally a=dimensionless speed parameter represent­
ing the fraction of the length L traveled by the train during one 
fundamental period: a = VT/L, where V= speed of the train. 

Also, in Eq. (1) H(T-T0) denotes the Heaviside unit function 
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The deformed shape of the beam y(x,t) is obtained to the 
desired degree of accuracy by superposition of the required modal 
contributions, and the modes of vibration are given by the usual 
family of sines: §n(x) = $,m{nrnxlL). The abscissa along the span 
of the bridge is represented by x. After conversion from dimen­
sionless time to real time, the expression of the deformed shape is 
as follows: 

y(x,t) = 2 L(f)4>»(x) = 2 LMsin-
L 

(3) 

The selection of such a simple mathematical model for the 
analysis of railway bridges deliberately neglects the influence of 
several factors. The main reason for adopting this approach is that 
high-speed bridges, particularly the ones located in international 
lines, must be designed on the basis of conservative hypotheses 
because different kinds of trains, the ones existing nowadays but 
also new ones, are likely to circulate the bridges during its life. 
Therefore, the analysis of the structure should not be carried out 
considering the particular characteristics of the vehicles (e.g., sus­
pension system, unsprung wheel masses, etc.). This is of great 
importance with regard to train-bridge interaction, which the au­
thors have investigated in previous works showing that it has 
beneficial effects on the bridge response (Museros and Alarcón 
2002; Museros et al. 2002), but verifying simultaneously that 
these beneficial effects are strongly dependent on the primary 
suspension system of the vehicle. Particularly, from the numerous 
real cases considered during the investigations presented in Mu­
seros and Alarcón 2002, the authors found that, due to the train-
bridge interaction effects, the response of the bridge at resonance 
was almost always reduced and sometimes very slightly in­
creased. Therefore, it was felt that neglecting the influence of the 
vehicle sprung masses and suspension system was a conservative 
approach convenient for the analysis of high-speed bridges. This 
point of view is also present in Eurocode 1 (CEN 2002a), which 
suggests that the dynamic analyses should be based on moving 



loads models. If desired, the beneficial effect of train-bridge in­
teraction can be taken into account by means of a suitable incre­
ment of the structural damping ratio. Nevertheless, a different, 
more sophisticated approach based on vehicle-bridge interaction 
models, could be more adequate if the characteristics of all ve­
hicles allowed to circulate over a bridge were reliably known a 
priori. 

Another factor that is neglected by the mathematical model 
adopted in this paper is the load distribution due to the presence 
of the sleepers and the ballast layer. This effect tends also to 
reduce the response of the bridge, but the authors (Museros 2002; 
Museros et al. 2002) and the ERRI (ERRI D-214 2001) have 
shown that it is significant to some extent only for the shortest 
spans (L< 15 m, approximately). Consequently, ignoring such ef­
fect has no consequence for the vast majority of simply supported 
bridges, while implies a slightly conservative approach in the 
analysis of the shortest ones. 

Also, according to Yang et al., the Coriolis effect created by 
the passage of the wheels over the deflected bridge can be ne­
glected as a result of the great stiffness of the structures used in 
high-speed lines (Yang et al. 1997). 

Finally, the track irregularities can excite the vibration of some 
modes depending on their position along the bridge. In the present 
investigation this effect will not be taken into account and atten­
tion will be focussed on the rhythmic vibrations induced by the 
traveling loads, which are the subject of main concern when reso­
nant behavior occurs. The increase of the structural response due 
to the presence of track irregularities can be accounted for ap­
proximately following the recommendations oîEurocode 1 (CEN 
2002a). 

Similarity Formulas and Fundamental Parameters 

In the present section two systems, each of them consisting of a 
simply supported bridge and a train of NP concentrated loads 
crossing over it, will be considered. Furthermore, it will be as­
sumed that the values of the loads Pk are equal in both trains. If 
the values of some particular parameters shown in Eq. (1) are the 
same in both systems and, besides, dimensionless time T is used 
as the independent variable, then the time-histories of every pair 
of corresponding modal amplitudes £,„ turn out to be proportional. 
These parameters are the following: modal damping ratios t,„, 
dimensionless speed a, and dimensionless ratios between the load 
distances dk and the bridge span L (i.e., dkIL ratios). 

In such conditions it is apparent from Eq. (1) that the values of 
all terms are the same for both train-bridge systems except for 
WQ • mL on the right-hand side (generally this term will vary from 
system to system). Therefore the «th modal amplitude at time T, 
4„(T), will be inversely proportional to WQ-OTL. 

In conclusion, if the values of the parameters mentioned above 
( t,„, a, and dkIL) are the same in two train-bridge systems, these 
systems are said to be similar, and the following relation between 
their responses can be formulated: 
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where «0i
 a n d «02 symbolize the fundamental frequencies of both 

bridges in Hertz. The rest of the variables retain their meaning, 
and subscripts 1 and 2 are used to denote whether they are related 
to the first or the second train-bridge system. The responses 
y-i(x-i,t-i) and y2(x2,t2) are computed according to Eq. (3). If Eq. 

(4a) is differentiated twice with respect to dimensionless time, a 
relation between the vertical accelerations a(x,t) is obtained 
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In Eq. (4b) the vertical accelerations must be computed by 
differentiation with respect to real time 
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By virtue of Eqs. (4a) and (4b), the maximum responses of 
two similar train-bridge systems are related by the expressions 
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Eqs. (4a), (4b), and (6) form the theoretical basis of this in­
vestigation and will be referred to as the similarity formulas. 
More precisely, this research work is based on the fact that, as the 
above formulas reveal, if resonance condition takes place in a 
bridge traversed by a train of moving loads, the same will happen 
in all similar train-bridge systems. 

Finally, one restriction of the similarity formulas should be 
mentioned. Since the distances between the loads of real trains 
have fixed values, the application of these formulas is restricted in 
practice to bridges of equal length (otherwise the values of the 
ratios dkIL would not be the same). In the next sections this 
limitation will be overcome by means of a parametric analysis 
over a realistic range of span lengths. 

Hypotheses for Parametric Study 

As mentioned previously, the purpose of this investigation is to 
analyze the influence of the second bending mode on the dynamic 
behavior of railway bridges. This will be accomplished by means 
of a parametric study of which the hypotheses are described 
below. 

Structural Damping 

The selection of appropriate damping ratios for the different 
modes of vibration is of great importance in structural dynamics. 
Following the recommendations of the ERRI (ERRI D-214 2001), 
1 % damping has been selected since it represents a typical value 
for many prestressed concrete bridges. Values higher than 1% are 
expected in short span bridges but, since the span length is not a 
primary variable in this study (this will be shown in the following 
sections), it is not straightforward to associate different lengths 
with different damping ratios, as it is customary. On the contrary, 
one of the primary variables is the dimensionless ratio between 
the span length L and the characteristic distance d; accordingly, it 
proves more convenient to use a single value of the damping ratio 
in order to obtain more consistent results. 

The recommendations of ERRI D-214 follow from a number 
of experimental results obtained in field tests. Nevertheless, the 
results furnished by most of the tests carried out in practice are 
related to the fundamental bending and torsional modes only. 



Therefore, there is little information available regarding damping 
ratios of higher modes. In this study it is assumed that the damp­
ing ratios of the first and second mode are the same: £=1%; 
according to the ERRI and Fryba it is expected that higher modes 
exhibit higher damping ratios and, consequently, this should be a 
conservative hypothesis (Fryba 1996; ERRI D-214 2001). 

Type of Train 

In normal operation (i.e., excluding seismic or abnormal excita­
tion), the most demanding situation for a simply supported bridge 
is the development of resonant response during the passage of a 
train. Therefore, a train consisting of equally spaced, constant-
valued loads, capable of exciting a bridge at resonance, has been 
selected for this parametric study. After consideration of the num­
ber of repeated groups of loads of actual high-speed trains (usu­
ally equal to or very close to the number of passenger coaches), 
the number of loads chosen for the train is NP= 15, each of them 
having a value of 1 N. The distance between every two consecu­
tive loads d has been adjusted so as to reproduce a variation over 
a range of one of the fundamental parameters, as will be ex­
plained later. 

This simple type of train does not match exactly the patterns of 
loads of most real trains, but it is suitable for exciting bridges at 
resonance and, therefore, is adequate for capturing the essential 
features of the dynamic behavior of railway bridges in such con­
ditions. Besides, as will be explained in the next section, this type 
of train with concentrated loads represents a conservative ap­
proach compared to real trains. 

Fundamental Parameters 

Having fixed the type of train and the damping ratios for the first 
and second modes, only two independent parameters characterize 
the equation of motion. These are the dimensionless speed a and 
the dimensionless ratios dkIL. Since the train consists of equally 
spaced loads, the distances dk can be expressed simply as 

Conventional train 

dk=(k-\)d ¿ = 1 , 2 , . . . 1 5 (7) 

where d symbolizes the distance between two consecutive loads, 
as mentioned before. Therefore, dk/L = (k-l)d/L, and the differ­
ential equation of motion depends solely on the values of a and 
dIL. In what follows the inverse relation Lid will be used, but 
this is simply a matter of personal preference. 

The parametric study, in conclusion, can be carried out pro­
vided that suitable ranges of values are defined for a and Lid. 
The results of this study will enable a comparison between the 
relative influence of the first and second bending modes. The next 
two sections are devoted to the determination of realistic ranges 
of values for Lid and a. 

Range of Values oiL/d 
A realistic range of values of Lid can be defined by assuming 
maximum and minimum values of both variables. 

With regard to the length of the bridge, the usual values in 
simply supported structures for high-speed lines are greater than 
10 m and smaller than 50 m. These can be considered de facto 
limits in common practice. 

The determination of a range of values for the characteristic 
distance d requires more sophisticated considerations. Modern 
high-speed European trains can be classified in three groups (see 
Fig. 2). Conventional trains adhere to the classic configuration 
where the weight of each passenger car is supported by two bo-
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Fig. 2. Different types of modern high-speed trains: L=locomotive; 
P = passenger car 

gies, a front one and a rear one, each of them carrying two axles; 
examples of conventional trains are the ICE, ETR-Y-500 (also 
known as Pendolino) and Virgin Express. The pattern of loads of 
articulated trains is derived from the former by merging every 
pair consisting of a rear bogie and the front bogie of the next car 
into a single bogie (which is shared by both cars); among the 
articulated trains one can mention the TGV, Thalys, Eurostar, and 
AVE. Finally, regular trains differ from articulated trains essen­
tially in that the two axles of every bogie are merged into one; an 
example of such trains is the Spanish Talgo. The locomotives are 
excluded from this classification since, regardless of the type of 
train, they usually consist of a car-body supported in front and 
rear bogies, each of them incorporating two axles. 

Resonance is produced by the periodic repetition of isolated 
loads or groups of loads circulating along the bridge. Thus, it can 
be deduced from Fig. 2 that the most important distance related to 
the appearance of resonance must be the length of the passenger 
cars. Although there is also a possibility of resonance due to the 
consecutive passage of the two bogies of a locomotive, and also 
due to other combinations of intermediate loads, these are always 
resonance situations with a very limited duration, and their im­
portance is usually small compared to the main resonance created 
by the rhythmic passage of the cars. This is a fact that the authors 
have confirmed during the development of numerous studies re­
lated to the PhD thesis (Museros 2002). Therefore, in the present 
study the length of the passenger cars is considered to be the main 
characteristic distance between repeated groups of loads and, con­
sequently, will be associated with the distance d between con­
secutive loads of the theoretical train defined previously. 

Identifying the car length and the distance d is truthful regard­
ing regular trains, but on the other hand introduces an approxima­
tion in the modeling of conventional and articulated trains. It is 
well known that in simply supported beams the static effects of a 
concentrated load diminish if the load is distributed over a certain 
distance; the authors have shown in previous works (Museros et 
al. 2002) that the same happens when the loads travel over the 
beam at a constant speed. Therefore it is expected that, if the two 
loads of a bogie of an articulated train, or the four loads corre­
sponding to the rear and front bogies of two consecutive cars of a 
conventional train are merged into a single load, the dynamic 
effects during the passage of the train will be increased. This is a 
fact that has also been confirmed by numerical simulations carried 
out during the development of the present investigation. 

Hence, it turns out that analyzing the resonant effects induced 
by conventional and articulated trains by means of theoretical 
trains of equidistant loads is a conservative approach, providing 
that the length of the passenger cars is identified with the charac­
teristic distance d and the corresponding loads are merged into 



Table 1. Minimum and Maximum Span Length as Function oí Lid, Dimensionless Speeds a2i, and Maximum Values of a and A in High-Speed Range 

Lid ,(m) ¿max M 

7.9 
13.2 
19.8 
26.4 
33.0 
39.6 
46.2 
52.8 
59.4 
66.0 
72.6 
79.2 
85.8 
92.4 
99.0 

105.6 

«2,1 «2,2 *2,3 «2,4 A„ 

0.30 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 
3.25 
3.50 
3.75 
4.00 

3.9 
6.6 
9.9 

13.1 
16.4 
19.7 
23.0 
26.3 
29.6 
32.9 
36.1 
39.4 
42.7 
46.0 
49.3 
52.6 

1.46 
1.46 
1.46 
1.46 
1.46 
1.46 
1.38 
1.31 
1.25 
1.19 
1.15 
1.11 
1.07 
1.04 
1.01 
0.99 

13.33 
8.00 
5.33 
4.00 
3.20 
2.67 
2.29 
2.00 
1.78 
1.60 
1.45 
1.33 
1.23 
1.14 
1.07 
1.00 

6.67 
4.00 
2.67 
2.00 
1.60 
1.33 
1.14 
1.00 
0.89 
0.80 
0.73 
0.67 
0.62 
0.57 
0.53 
0.50 

4.44 
2.67 
1.78 
1.33 
1.07 
0.89 
0.76 
0.67 
0.59 
0.53 
0.48 
0.44 
0.41 
0.38 
0.36 
0.33 

3.33 
2.00 
1.33 
1.00 
0.80 
0.67 
0.57 
0.50 
0.44 
0.40 
0.36 
0.33 
0.31 
0.29 
0.27 
0.25 

0.44 
0.73 
1.10 
1.46 
1.83 
2.19 
2.42 
2.61 
2.80 
2.98 
3.16 
3.32 
3.49 
3.64 
3.79 
3.94 

one. Conversely, in out-of-resonance conditions the heavier axles 
of the locomotives are most often predominant, and thus the sim­
plified model used in this investigation would not be an adequate 
representation of the actions caused by real trains. 

There is the possibility that the presence of intermediate or 
rear locomotives modifies the amplitude of the resonant vibration. 
This effect can be either advantageous or disadvantageous, and 
requires specific calculations for each type of train. Nevertheless, 
in the present paper this effect will not be investigated and atten­
tion will be focused on the resonant behavior of railway bridges 
generated by the rhythmic passage of loads. 

Bearing these simplifications in mind, maximum and mini­
mum values of d can be easily established: The shortest coaches 
are those of the Talgo train, where d= 13.14 m. Conversely, the 
longest ones correspond to the ICE, with d=26A m. Accordingly, 
the resulting range of values for the Lid ratio is 

10 

26.4 

L 50 

d ~~ 13.14 
0.38 = 

L 

d 
3.: (8) 

For convenience, this initial range has been expanded to a final 
interval 0.3=SL/¡i=s4, and 16 discrete numerical values have 
been selected in order to cover it adequately. These numerical 
values are shown in Table 1 along with the corresponding values 
of the dimensionless speed parameter a. 

Range of Values of a 
The estimation of a range of values for a is somewhat more 
involved than it was for the Lid ratio. 

According to the purpose of the present investigation, the 
speed range of the parametric analysis must be selected so as to 
embrace the most important resonances of the first and second 
modes. The rth resonance of the «th mode is defined as the situ­
ation in which the «th mode completes i cycles of oscillation 
between the passage of two consecutive loads. The corresponding 
speed is denoted as Vni, and can be computed as follows: 

V„ 
T 

d « 

T 

d 
1,2 1,2,3,4 (9) 

In Eq. (9) the number of modes is intentionally limited to two, 
and only the first four resonance situations of each mode are 
considered. The dynamic amplification associated with a number 

of cycles greater than four (i.e., ¿5=5) is of little importance and 
need not be considered here. Also, in Eq. (9) T„ stands for the 
period of the «th mode, while T stands for the period of the 
fundamental mode (T=T-i). 

The dimensionless speed associated to each resonance situa­
tion is, according to the definition of a 

V T 

L '• L 
1,2 ¿=1,2,3,4 (10) 

Whether the eight values of a that one can obtain from Eq. 
(10) are attainable for modern high-speed trains is a question that 
requires further investigation. An answer can be obtained if the 
band in Fig. 3, included in the monograph (Fryba 1996), is as­
sumed as the most usual range of pairs {span length, fundamental 
frequency} in railway bridges. Relying on this hypothesis a maxi­
mum value of a for each Lid can be estimated. This is accom­
plished as follows. 

First, realistic minimum and maximum values of span length 
are computed for each Lid ratio. This is a straightforward calcu­
lation considering the realistic limits assumed for d in the previ­
ous section 

Upper limit: n 0 = 94.76 • L ' 

Lower limit: 
n0 = 80/i 
n0 = 23.58 L' L >20m 

1 10 
i (m) 

Fig. 3. Assumed range of usual spans and frequencies 

too 



(11) 

Eqs. (11) define an interval [Lmln, Lmax] in the horizontal axis 
of Fig. 3. The maximum dimensionless speed in that interval is 
obtained when V is maximum and the product (riçL) is minimum. 
From the mathematical expressions of the upper and lower limit 
of the band in Fig. 3, it can be shown that, within an interval of 
spans [Lmm, Lmax], the minimum value of (riçL) corresponds to the 
point defined by the minimum length Lmln lying on the lower limit 
of the band. In other words, if Lmir,sSL=SLm„, then the minimum 

? m m iiidx? 

value of («oL) is 

(«0¿)n 
80 

(12) 
(«o¿)mm = (23.58 • Lm^92) • Lmm Lmm > 20 m 

As a result, if a maximum speed at the site of 
97.22 m/s (350 km/h) is considered and the maximum design 
speed is computed according to the recommendations of Euro-
code 1 (CEN 2002a), which leads to Fmax= 1.2 X 97.22 
= 116.67 m/s (420 km/h), the steps required for computing the 
maximum dimensionless speed for each Lid ratio are as follows: 

Fix a value of LI d^ Compute Lmm and Lmax from Eqs. ( 1 1 ) ^ 
Compute (M(|L)nm from Eqs. (12) —> Determine amax 

= * m a x ' ( w O ^ ) m i n 

Table 1 shows the values of the Lid ratio selected for the 
analysis, along with the corresponding values of Lmln and Lmax 

[obtained from Eqs. (11)], amax, a2i (resonance situations of the 
second mode), and Amax. A bold italicized entry in Table 1 indi­
cates that, for that particular value oí Lid, a 2 l < a m a x and there­
fore the associated resonance of the second mode takes place at 
speed higher than Vmsx. A is the normalized wavelength, a useful 
parameter that represents the ratio of the distance traveled by the 
train during one fundamental period (VT) and the characteristic 
distance between axle loads (d) 

VT L 
A = — = a -

d d 
A„ 

L 
•-n2li « = 1,2 ¿=1,2,3,4 

(13) 

The values of A at resonance (A„,) depend only on the mode 
number (n) and resonance number (i). The first four resonances of 
the second mode correspond to A = 4 , 2 , 4 / 3 , and 1, respectively. 
As for the resonances of the first mode, the associated values of A 
are 1, 1/2, 1/3, and 1/4. Comparing these values with Amax 

= amsx-(L/d) is an alternative way of determining which reso­
nance situations can be attained at speed lower than Vmsx. 

In the next sections, A will be used as abscissa in several 
graphics displaying results of the analysis. Furthermore, for each 
value of Lid in Table 1, 1,000 different values of speed V have 
been selected for the analysis; these values have been equally 
distributed between 0.9J7! 4 and 1.1 V2y\ in order to include the first 
four resonances of the first and second mode. Accordingly, the 
values of A in the horizontal axis of the graphics mentioned 
above will range from 0.9A14=0.225 to 1.1A21 = 4.4. The reason 
for using such a large number of different speeds was the need for 
computing the maximum response at resonance accurately, which 
in some cases proved rather tedious from a computational point of 
view due to the presence of very sharp resonance peaks. Eventu­
ally, this caused the selection of a very small interval in the speed 
range. 

Finally, in Table 1 it should be also noted that, since the initial 
range specified for Lid [see Eq. (8)] was expanded to 0.3 =SL/'d 
=S4.0, the span lengths associated with the extreme values are, 
respectively, shorter than 10 m and longer than 50 m. 

Selection of Several Representative Sections 
for Evaluation of Response 

If the maximum response of the bridge is to be obtained, several 
values of the abscissa x must be selected in order to ensure that 
the overall maximum is computed with accuracy. To this end, 21 
different values of x have been selected. These values are equally 
spaced between two extreme sections corresponding to x/L = ^ (at 
the first quarter of span) and x/L=^ (third quarter of span), i.e., 
every two consecutive values of x are separated by Mx/L) 
=0.025. Regarding the verification of the serviceability limit 
states defined in Annex A2 of the basic Eurocode (CEN 2002b), 
the signs of the maximum displacement and acceleration are not 
of concern (i.e., absolute values are to be computed); as a conse­
quence, the maximum response will surely occur between the two 
mentioned sections. 

Characteristics of Bridge 

Because the response of similar train-bridge systems is propor­
tional, unitary values have been selected for the main character­
istics of the bridge, i.e., the length of the bridge has been taken 
equal to 1 m, its mass per unit length equal to 1 kg/m, and the 
bending stiffness has been tuned so as to produce a fundamental 
frequency n0=l Hz. 

Distance Between Consecutive Loads (d) 

Since the length of the bridge is equal to 1 m, as mentioned in 
"Characteristics of the Bridge," the 16 different L Id ratios listed 
in Table 1 are obtained by means of an appropriate modification 
of the distance d between consecutive loads. Thus, 16 different 
trains have been used, each of them associated with one of the 
following values of d: 1 /0.3,1 /0.5,1 /0 .75,1/1 ,1/1 .25, . . . ,1/4. 

Results 

In this section the results of the analysis are presented. First, the 
influence of the second mode on the maximum response of the 
bridge is analyzed. Afterwards, a brief discussion regarding the 
conditions for the cancellation of resonance is included. Present­
ing plots of the results for all values of Lid ratio included in Table 
1 requires an amount of space that would exceed the reasonable 
size of a paper. Therefore, figures of the results will be shown 
only for the most relevant cases. 

Influence of Second Bending Mode on Response 
of Bridge 

Since the investigation presented in this paper is based on a nu­
merical analysis over a range of variation of several parameters, 
the conclusions that can be extracted, if affirmative, cannot be 
guaranteed to hold for values of such parameters different than 
the ones considered herein. Therefore, the approach taken is to 
establish whether certain statements are not valid in some particu­
lar cases. 

As explained in previous sections, the bridge response has 



been computed for two different quantities, each of them related 
to a different serviceability limit state. These quantities are the 
vertical displacement and vertical acceleration of the deck. Six­
teen values of the Lid ratio have been considered, and the maxi­
mum absolute values (i.e., regardless of sign) of both response 
variables have been computed for 21 different locations along the 
span of the bridge; the analysis has been performed for 1,000 
different values of the speed, equally spaced between 0 . 9 ^ 4 and 

1-1*2,!. 
Specifically, the purpose of the analysis is to give an answer to 

three different questions. Considering that the maximum design 
speed is Fmax= 116.67 m/s , and therefore the values of A 
= VTId must be less or equal than Amax (see Table 1), the ques­
tions to be answered for each value oí Lid ratio are as follows: 
1. Is the maximum response obtained at mid-span? 
2. In case that the answer to question (1) were negative, is the 

maximum response obtained at the first quarter of span or at 
three quarters of span? 

3. Regardless of the answers to questions (1) and (2), are the 
maximum values of the response computed at first and third 
quarters of span identical? 

If the answer to question (1) is negative in a particular case, 
the influence of the second bending mode in that case cannot be 
ignored. 

With respect to question (2), if the maximum response is not 
obtained at mid-span, this is obviously due to the contribution of 
the second mode. Since the maximum displacement and accelera­
tion associated with this contribution are obtained at x/L = ^ and 
x/L=4, it is of interest to establish whether the overall maximum 
(sum of the effects of first and second mode) is also obtained at 
those sections. If this were not so, the computation of the re­
sponse at intermediate locations (such as x/L=0.3, 0.4, etc.) 
would reveal as a crucial part of the analysis. 

Finally, with question number (3) it is investigated whether 
there are cases such that the maximum response at the section 
located at the first quarter of span is significantly different from 
the response at 3/4 of the span. 

The answer to all three questions is given within a tolerance of 
5%, i.e., if the maximum response is not obtained at mid-span but 
the response obtained at mid-span is 95% of the maximum or 
greater, an affirmative answer is given to question (1). Similar 
treatment is given to questions (2) and (3). 

The results of the analysis allow to extract the following con­
clusions: 
1. At speed lower than ^ ^ ( A < Amax) the maximum displace­

ment is obtained at mid-span for all 16 values of the Lid 
ratio. Therefore, in all cases the answer to question (1) is 
affirmative with regard to displacements. 

2. On the contrary, there are five values oí Lid such that the 
maximum acceleration at speed lower than Vmax is not ob­
tained at mid-span. These values are 1.5, 1.75, 2.25, 2.5, and 
3.75. In all these cases the maximum acceleration is com­
puted accurately at both sections x/L=^ and x/L = ^, and 
therefore question (2) is answered affirmatively. A more de­
tailed analysis of these five situations reveal the following 
facts: (1) ForL/(i=1.5 and 2.5 cancellation of the first reso­
nance of the first mode occurs and the third resonance of the 
second mode (A = 4/3) becomes prevalent (see the next sec­
tion for a more detailed explanation of cancellations). Re­
spectively, the maximum acceleration is approximately 15 
and 11 % greater than the maximum value obtained at mid-
span. Fig. 4 shows the response corresponding to L/d=l.5. 

—x/L = 1/2 -x/L = 3/4 

0.2 0.5 0.8 1.1 1.4 

Fig. 4. Maximum acceleration &XxlL = ^ and X/L = T ior L/d=1.5 

(2) For L/d= 1.75, 2.25, and 3.75 the second resonance of the 
second mode (A=2) is predominant notwithstanding that 
there is no cancellation of the first resonance of the first 
mode. In these three cases the maximum acceleration out­
weighs the maximum value computed at mid-span by 11,6, 
and 6%, respectively. Fig. 5 shows the maximum accelera­
tions for L/d=2.25. One example of this behavior would be 
that of a bridge of length L = 36m and fundamental fre­
quency n0=3.5 Hz traversed by a regular train with charac­
teristic distance ¡i=16 m. For these bridges the second reso­
nance of the second mode is attained at F r

22
=2-3.5-16 

= 112 m/s. (3) During the development of the PhD thesis 
(Museros 2002), the authors also found real cases such that 
the maximum acceleration at the first and third quarters of 
the span was greater than the acceleration at mid-span. One 
of such cases is shown in Fig. 6. The plot corresponds to the 
maximum acceleration at mid-span and at 3/4 of the span for 
a bridge with the following characteristics: L= 18.5 m, m 
= 18,500 kg/m, «o=4-32 Hz. The bridge is traversed by a 
Talgo train. The characteristics that define this type of train 
are available from the works of the ERRI (ERRI D-214 
2001) and can also be downloaded as an ASCII text file from 
http://estruct7.ugr.es/~pmuseros. As can be seen, the peak 
acceleration is obtained at 3/4 of span at 

—x/L = 1/2 

—x/L = 1/4 i (1 

J lL^ JuX 
0.5 1.5 2.5 

Fig. 5. Maximum acceleration at xlL=^ and x/L = ^ for L/d=2.25 
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Fig. 6. Maximum acceleration at xlL = ̂  and x/L=^ in bridge of L 
= 18.5 and n0=432 Hz traversed by the Talgo high-speed train 

115.83 m/s (417 km/h). The peak value is 3.64 m/s2 , while 
the maximum mid-span acceleration is 2.8 m/s2 , i.e., 30% 
less. Though not shown in the figure, the acceleration at the 
first quarter of the span is only slightly lower than at 3/4 of 
the span. It should be emphasized that, if the maximum 
speed at the site is fixed at 97.22 m/s (350 km/h), the maxi­
mum design speed according to Eurocode 1 (CEN 2002a) is 
Vmax= 1.2 X 97.22=116.67 m/s , and thus the peak accelera­
tion at 115.83 m/s would be relevant for the verification of 
the serviceability limit states. 
With reference to question (3), the answer is affirmative with 
regard to displacements and accelerations for speeds lower 
than Vmax and for all 16 values oí Lid. 
Finally, if the limitation F=S Vmax is removed and the results 
are examined for 0.225 =S A=S4.4, the maximum displace­
ment is obtained at mid-span for the 16 different values of 
Lid. On the contrary, most of the times the maximum accel­
eration is not obtained at mid-span. The reason for this is the 
large acceleration associated with the first resonance of the 
second mode, as shown in Fig. 7 for L/d=3.75. 
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Cancellation of Resonance 

Yang et al. derived the mathematical condition of cancellation for 
the resonances of the first mode in simply supported bridges 
(Yang et al. 1997), and more recently presented a study of the 
cancellation condition for bridges on elastic bearings (Yang et al., 
2004). Restricting the discussion to the first four resonances of the 
fundamental mode of simply supported bridges, this condition can 
be expressed as 

L 

d 

2 / - 1 
2i 

1,2,3,4 j= 1,2,3, (14) 

Fig. 7. Maximum acceleration at x/L=~ and xlL = j for L/d=3.75 

In Eq. (14) all the variables retain their usual meaning, and 
thus i represents the resonance number; in addition, j=integer 
number taking values equal to or greater than unity. If Eq. (14) is 
satisfied exactly the rth resonance of the first mode will not take 
place even if the velocity of the train is equal to the theoretical 
resonance speed V-¡ ¿. If it satisfied approximately, the resonant 
amplification will be kept to a low level. As explained in (Yang et 
al. 1997), the physical reason for this phenomenon is the suppres­
sion or cancellation of the free vibrations associated with the 
loads that in any given instant have abandoned the bridge; as a 
consequence, the oscillations do not accumulate and the behavior 
of the structure is governed solely by the effects of the last load. 

Eq. (14) explains satisfactorily why high-speed trains cannot 
induce resonance situations in some railway bridges; an example 
of such behavior is the passage of an ICE over a 40 m simply 
supported bridge: for this train, the characteristic distance be­
tween consecutive groups of loads is equal to 26.4 m, leading to 
L/d=40/26.4=1.515. This value corresponds approximately to 
the ratio Lid predicted by Eq. (14) for i=\ andj'=2. 

Similarity formulas (4a) and (46) guarantee that if cancellation 
of resonance of any mode occurs for a certain train-bridge sys­
tem, it will also occur for all similar systems. Based on this fact, 
some interesting conclusions can be drawn from the calculations 
carried out in "Influence of Second Bending Mode on Response 
of Bridge." As explained in that section, a train consisting of 15 
equally spaced loads has been considered and the closed-form 
solution of Eq. (1) has been obtained for all Lid ratios contained 
in Table 1. The results of this analysis have furnished the values 
of Lid such that cancellation occurs. These values have been 
collected in Table 2 for the resonances of the second mode. Re­
garding the resonances of the first mode, Eq. (14) suffices for 
predicting the cancellation situations. It should be emphasized 
that Table 2 does not contain all possible values of Lid causing 
cancellation of resonance; instead, it contains only those values 
causing cancellation among the 16 different Lid ratios listed in 
Table 1. 

Conclusions 

The results of the investigation presented in this paper can be 
summed up in the following general conclusions: 
1. The resonant behavior of simply supported bridges under the 

passage of trains of equally spaced loads has been analyzed. 
A type of train consisting of 15 equally spaced loads has 
been utilized in order to excite the structures at resonance 
and compare the relative influence of the first and second 
bending modes. 

2. At speeds lower than 116.67 m/s (420 km/h), for 16 differ­
ent values of the Lid ratio comprised in the interval 0.3 



Table 2. Values of Lid Such That Cancellation of Resonance Occurs for Second Bending Mode 

0.30 — — — — 
0.50 — — — X 
0.75 — — — X 
1.00 — X X X 
1.25 — — — X 
1.50 — X — X 
1.75 — — — X 
2.00 X X X X 
i= resonance number; cancellations marked with X. 

=SL/¡i=s4.0, no case has been found such that the maximum 
displacement is not obtained at mid-span. 

3. Conversely, it has been confirmed that in several cases the 
maximum acceleration at speeds lower than 116.67 m/s does 
not correspond to the mid-span section. This is due to the 
development of resonance situations associated with the sec­
ond bending mode, and consequently the contribution of this 
mode cannot be disregarded. In these cases the maximum 
acceleration could be computed accurately either at the first 
quarter of the span or at 3/4 of the span since there was very 
little difference between the results at these two sections. It is 
of interest to mention that, since in many cases the maximum 
value at mid-span is not exceeded by a large amount, it is 
likely that the maximum accelerations would take place at 
this section providing that the damping ratio assigned to the 
second mode was higher than the one assigned to the first 
mode. 

4. If the speed range is extended in order to encompass the first 
four resonances of the first and second mode, the maximum 
displacement is still obtained at mid-span for all 16 values of 
Lid. On the contrary, in only a few cases does the maximum 
acceleration correspond to the mid-span section: this is a 
consequence of the high accelerations produced by the first 
resonance of the second mode. 

5. The maximum displacements obtained at the first quarter of 
the span and at 3/4 of the span have been found to be very 
similar (difference less than 5%) for all speeds up to the first 
resonance of the second mode. The same behavior has been 
observed for the accelerations at speeds lower than 
116.67 m/s. Conversely, when speeds up to the first reso­
nance of the second mode are considered some cases have 
been identified such that the maximum accelerations differ 
significantly (more than 5%). 

6. The results of the present investigation show no contradic­
tion with the usual assumption that the fundamental bending 
mode suffices for the determination of the maximum vertical 
displacement, as indicated by other authors (Biggs 1964; 
Smith 1988; Yang et al. 1997; Li and Su 1999). On the con­
trary, assigning the same damping ratio to the first and sec­
ond modes several cases have been identified such that the 
maximum acceleration is not obtained at mid-span. This im­
plies that, in general, the contribution of the second bending 
mode cannot be neglected for the determination of the maxi­
mum acceleration in simply supported bridges. 

7. The resonant vibration of the first and second modes is can­
celled for particular values of the Lid ratio. The cancella­
tions of the first mode were analyzed previously by other 
authors. A number of values of Lid such that cancellation 

Lid i=\ i=2 ¿ = 3 i=4 

2.25 — — — X 

2.50 — X — X 

2.75 — — — X 

3.00 X X X X 

3.25 — — — X 

3.50 — X — X 

3.75 — — X 

4.00 X X X X 

occurs for the second mode have been identified in the 
present investigation. 
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Appendix: Derivation of Dimensionless Equation 
of Motion 

The partial differential equation governing the behavior of the 
simply supported beam of Fig. 1 can be found in the works of a 
number of authors as, for instance, Fryba (1999). This well-
known equation is as follows: 

êy d2 I d2y\ / N 
mT72 + T~ÀEI,2 = *M (15) 

dt dx \ dx• I 

In Eq. (15) it is assumed that the 7 axis is a vertical axis of 
symmetry of the cross section of the beam, and the shear defor­
mation and rotary inertia of the beam are neglected. The follow­
ing notation is used: m = constant mass per unit length; 
y=y(x,t)= deformed shape of the beam at time f; and x=abscissa 
corresponding to a particular section; also, ,E=modulus of elas­
ticity and 7 = second moment of area of the cross section (both are 
assumed to be constant along the span); finally, q(x,t) stands for 
the distributed load per unit length acting on the beam at the 
section corresponding to x and at time t (according to the 7 axis, 
q is positive if directed upwards). 

The deformed shape of a simply supported beam is expressed 
as a linear combination of the family of sines fyÂx) as in Eq. (3), 
and the load is represented by means of Dirac delta functions 
acting at the point x=Vt-dh where V is the speed of the train and 
dk is the distance from the Mi load to the beginning of the bridge 

q(x,t) = - 2 \H\t- ^ j -H\t-^y^yj Pk 8(* " (Vt~dk)) 

(16) 

In Eq. (16) JVP=total number of loads; P¿=value of the Mi load; 
8(x-x0)=Dirac delta, and ir(f-f0)=Heaviside unit function act­
ing at time t0. 
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If the Eqs. (3) and (16) are introduced in Eq. (15), after mul­
tiplication by the «th sine fy„(x) and integration along the span of 
the beam (L) the equation of motion for the «th mode is obtained. 
In addition, if a viscous damping t,„ is introduced to account for 
the energy dissipation, the equation of motion for the «th mode 
transforms into 

^|(4-f)-4-^))n»=^ 
Jk=\ 

(17) 

In Eq. (17) a>„ represents the frequency of the «th mode in 
radians/second 

«IT 

L 
(18) 

The fundamental frequency in Hertz («0) and the fundamental 
period (T) are computed straightforwardly from Eq. (18) . Though 
it corresponds to the first mode, the natural frequency is denoted 
quite often by a subscript " 0 " : «O=W ( ) / (2 ' 7T) = CÍ>1/(2'7T); T=l/n0. 

Eq. (17) can be written in dimensionless form using a dimension-
less time T=t/T=cù0t/(2Tr). In such a case, the time derivatives of 
the modal amplitude 4„ with respect to real time (denoted with 
dots) and with respect to dimensionless time (denoted by primes), 
follow relations similar to Eq. (5). 

The following relations are also useful: 

Hit 
du 

--H\T 
¿k_ 
VT 

--H\T 

H\t 
dk + L 

V 
--H\T 

dk + L 

VT 
--H\T 

mi(Vt — dk) 

L 
r e 

L 

_4 
OLL 

OLL 

:«2w0 

(19) 

Finally, substituting Eqs. (19) into Eq. (17), and taking into 
account the definition of dimensionless time and the relations 
between the real and dimensionless time derivatives, the equation 
of motion (1) is obtained immediately. 

Notation 

The following symbols are used in this paper: 

a = vertical acceleration of section of bridge; 

d = distance between consecutive loads, or distance 
from load to origin of train; 

E = modulus of elasticity of bridge; 
H = Heaviside unit step function; 
/ = second moment of area of cross section of 

bridge; 
i = resonance number; 
j = positive integer index; 
L = span length; 

L m a l = maximum length associated to particular value of 

Lid ratio; 
L m m = minimum length associated to particular value of 

Lid ratio; 
m = mass per unit length; 

N = number of bending modes considered in series 
expansion; 

NP = number of loads of train; 
« = integer indicating «th bending mode; 

«o = fundamental frequency (Hz) (first bending 

mode); 
P = value of axle load; 
q = distributed load acting on bridge; 

T,T\ = fundamental period (first bending mode); 
t = real time; 

V = speed of train; 
F m a x = 116.67 m / s (420 k m / h ) ; 

Vni = speed of train corresponding to rth resonance of 
«th bending mode; 

x = abscissa; 

y = vertical displacement of section of bridge; 
a = dimensionless speed; 

a m a x = dimensionless speed corresponding to Vmsx, 

an j = dimensionless speed corresponding to rth 
resonance of «th bending mode; 

8 = Dirac delta function; 
t, = damping ratio; 

A = normalized wavelength; 
Am a x = normalized wavelength corresponding to Vmsx, 

A„j = normalized wavelength corresponding to rth 
resonance of «th bending mode; 

4 = amplitude of bending mode; 
T = dimensionless time; 

T 0 = particular value of dimensionless time; 
4> = bending mode; 

w = frequency of bending mode ( rad/s) ; and 
(o0,(Oi = fundamental frequency (rad/s) (first bending 

mode). 

Subscripts 

k = values corresponding to kth load; 
« = values corresponding to «th bending mode; and 

1,2 = values corresponding to two different t ra in-
bridge systems. 

Biggs, J. M. (1964). Introduction to structural dynamics, McGraw-Hill, 
New York. 

European Committee for Standardization (CEN. (2002a). "Actions on 
structures. Part 2: General actions—Traffic loads on bridges. Final 
Draft prEN 1991-2," Eurocode 1, Brussels, Belgium. 

European Committee for Standardization (CEN. (2002b). "Basis of Struc­
tural Design. Annex A2: Application for bridges. Final PT Draft EN 
1990-prAnnex A2." Brussels, Belgium. 

European Rail Research Institute, D-214 Committee (ERRI D-214. 
(2001). "Ponts-Rails pour vitesses >200 km/h. Rapport Final." Rep. 
No. 9, Utretch, France (in French). 

Fryba, L. (1996). Dynamics of railway bridges, Thomas Telford, London. 
Fryba, L. (1999). Dynamics of solids and structures under moving loads, 

3rd Ed., Thomas Telford, London. 
Fryba, L. (2001). "A rough assessment of railway bridges for high speed 

trains." Eng. Struct, 23, 548-556. 
Klasztorny, M., and Langer, J. (1990). "Dynamic response of single-span 

beam bridges to a series of moving loads." Earthquake Eng. Struct. 
Dyn., 19, 1107-1124. 

Li, J., and Su, M. (1999). "The resonant vibration for a simply supported 
girder bridge under high-speed trains." J. Sound Vib., 224(5), 897-



Museros, P. (2002). "Vehicle-bridge interaction and resonance effects in 
simply supported bridges for high speed lines." PhD thesis, Superior 
School of Industrial Engineering, Technical Univ. of Madrid, Madrid, 
Spain (in Spanish). 

Museros, P., and Alarcón, E. (2002). "An investigation on the importance 
of train-bridge interaction at resonance." Proc, 6th Int. Conf. on Com­
putational Structures Technology, Civil-Comp Press, Stirling, Scot­
land, 335-336. 

Museros, P., Romero, M., Poy, A., and Alarcón, E. (2002). "Advances in 
the analysis of short span railway bridges for high speed lines." Corn-
put. Struct, 80(27-30), 2121-2132. 

Museros, P., Vivero, G., and Alarcón, E. (1999). "Moving loads on rail­

way bridges: the Spanish Code approach." Proc, 4th European Conf. 
on Structural Dynamics (Eurodyn '99), A.A. Balkema, Rotterdam, 
The Netherlands, 675-680. 

Olsson, M. (1991). "On the fundamental moving load problem." J. Sound 
Vib., 145(2), 299-307. 

Smith, J. W. (1988). Vibration of structures: Applications in civil engi­
neering design, Chapman & Hall, London. 

Yang, Y. B., Lin, C. L., Yau, J. D., and Chang, D. W. (2004). "Mechanism 
of resonance and cancellation for train-induced vibrations on bridges 
with elastic bearings." J. Sound Vib., 269(1-2), 345-360. 

Yang, Y B., Yau, J. D , and Hsu, L. C. (1997). "Vibration of simple 
beams due to trains moving at high speeds." Eng. Struct, 19(11), 
936-944. 


