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Abstract

This paper deals with the influence of thermal anisotropy on the

estimates of interplanetary shock parameters and the associated normals

and presents a practical theorem for quantitatively correcting for anisotropic

effects by weighting the before and after magnetic fields by the same "aniso-

tropy parameter" h. The ouantity h depends only on the thermal anisotropies

before and after the shock and on the angles between the magnetic fields

and the shock normal. It is shown that for fast shocks and for a liberal

range of realistic conditions the auantity h lies in the range 0.90 < h < 1.22:

this includes pre-shock anisotropy factors as low as ~1 - 0.5. The theorem

can also be applied to most slow shocks but in those cases h usually should

be lower, and sometimes markedly lower, than unity. The previously studied

fast shock of January 26, 1968, from plasma and magnetic field measurements

made on Explorers 33 and 35, is reexamined in light of this field-weighting

theorem. Even for the extreme values of h given above little change results

in the shock parameters or in the shock normal, which over the full range of h

is estimated to deflect by only 1.70 for Explorer 33 and 2.00 for Explorer 35.

In no case of the recalculated normal did it deflect more than 1.50 from the

h - 1 normal, for either spacecraft. These deflections are well within the

(95% certainty) error cone angle, which was 7.6° in this case.
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Introduction

This study explores the question of the influence of solar wind ther-

mal anisotropy on least squares estimates of interplanetary shock parameters

and normals, using a select subset of the eight Rankine-Hogoniot con,

servation equations. The six equation subset is chosen to avoid using

those equations which explicitly involve thermal pressure (or tempera-

ture), i.e. except for the dependence of the aniosotropy factors on such

ctuantities. In this manner the normal momentum flux equation and the

least well understood of the conservation equations, the energy flux equa-

tion, are not used in the best fit analysis. Other perhaps eoually

important reasons may be present to justify such a truncation of the full

set of equations (Lepping, 1971). To simplify matters further it is common

to use this subset of equations expressed for an isotropic medium, that is

for ~1' %2 = 1, where

4H (P -P 

2 )i (1)
B i

and where the subscripts refer to before (1) and after (2) the shock, and

P and P are the thermal pressures (ion plus electron) parallel and perpen-

dicular to the magnetic field direction. Then the new subset of equations is

independent of thermal pressure. This approximation was employed by

Ogilvie and Burlaga (1969), Chao (1970), and Lepping and Argentiero (1971).

This paper is also restricted to the consideration of only the six

eouation subset but allows for non-unity anisotropy factors. These more

general equations, cast in a shock frame of reference, are as follows

(Jeffrey and Taniuti, 1964):
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[p Un]l = o (2)

[p UnUt - nBt/4T]2 = 0 (3, 4)

[UnB
t

- UtB] = 0 (5, 6)

where t = t1 or t
2

and

[B n] = 0 (7)

where p is the plasma mass density, Un is the plasma bulk velocity

component normal to the shock surface, U t (t=tl or t2) are the velocity

components tangential to the shock surface, Bn and B
t

(t=t1 or t
2
) are

the associated normal and tangential components of the magnetic field.

The symbol [A]2 = A2-A
1
refers to the difference between the pre-shock

state (A1) and post-shock state (A2 ). Notice only equations (3) and (4)

contain the anisotropy factors 5l and g2.

Generalization of the Problem

Guided by the magnetic field coplanarity theorem, which has been shown

independently by several investigators to hold for the general case of an

anisotropic medium (Hudson, 1970, Neubauer, 1970 and Chao, 1970), we use

the following identifications for the shock front tangential and normal

unit vectors (Lepping and Argentiero, 1970):

AB
ABS (8)

B 1xB

2 1 (9)
| BlxB2 2

- -4 -x t(10)

n = 'tl X t2
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where AB =- B2 B1 (11)

These are used along with the transformation equation

Ui Vi - V (i = 1,2) (12)

in order to separate equations (2) to (7) into two convenient sets, three

equations each. Notice that Vs is the local shock velocity as measured

in some "fixed" frame of reference, such as an inertial system at rest

with respect to the sun. Then V
i

is the bulk plasma velocity measured in

the same reference system.

These two sets of three equations each are the following:

a). the shock velocity set

V = V n (13)
s s

where the shock normal is given by

AB x (B
1
xB2)

n = i - - )(14)
|AB x (B1xB2) 

from (8-10) [Note that tl.t2 = 0],

and the shock speed is

P2 W'n
Vs = _p + V1On (15)

where W V2 - V
1. (16)

b). the general overdetermination equations

W . S= (17)

P2 
(p B1 - B2) (W x S) = 0 (18)

PlP2 B1q
P-l W (W B) + (ABxS) =0 (19)

22P r
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where S - B1 X B2 (20)

1 2
and Q 1B 1

2 + B
2 (~ 1 +§

2
)(B1 . 2 )

For the isotropic case, where 1 and g2 are equal to unity, Q

becomes IAB 12 and equation (19) becomes

[P2P_ W (W.AB) + 4 ] . (B x S) = 0 (22)

Equations (17), (18), and (22) are presently used to obtain estimates

of the eleven shock parameters (B1, B
2
, W, pI, P

2
). and, in turn, the

associated normal, (14), by using a least squares fit of these measured

field and plasma data. Equation (15) then is used, for an

average value of V1 over a reasonable time interval, to obtain the local

shock speed.

For the general, i.e., anisotropic, problem the situation is similar

except that 1, g2 l1, and this affects Q which appears in equation

(19). To study this influence we proceed as follows. Let us define

e =- 2/1l - 1 (23)

and assume that

(0<) l < ~2' (24)

It is expected that only under very unusual circumstances will this

inequality be violated and there is no observational evidence, in the

case of interplanetary shocks ( or in any other case of which the author

is aware), for which it is violated. The condition that g1>0 is equivalent

to assuming that the plasma does not experience the firehose instability

(Eviator and Shultz, 1970, and Burlaga, 1971).

Using (23) we see that Q can be written

Q = l f 1AB1 (25)
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where f = 1 + ge (26)

B2' AB
and where g - I 2 . (27)

With the aid of (8) g can be written

B2tl _ 1
9 (28)

g= 1 I - tan 01
tan 8

2

where (7) was used to obtain the second equality and where 9i(i = 1,2)

is the angle between Bi (i = 1,2) and the shock normal n. Notice that

g does not depend on the magnitude of either B1 or B2 but only on their

directions relative to n. From (1) we see that 51 and g2 ( and therefore

e from (23)) depend on the magnitude of B1 and B2, respectively. Hence,

Q depends on the vector quantities B1 and B2.

It will be assumed temporarity that

e << 1, (29)

where from (24) e > 0.

We will exclude discussion of the cases of the so-called switch-on

shock (where 91=0, 0 < 82< T/2 , and g = 1) or the switch-off shock

(where 0 < 81 < 9/2, 02 = 0, g = 0), which are special cases of fast

and slow shocks, respectively, because of their expected nonevolutionary

characteristics (Jeffrey and Taniuti, 1964). These special cases have

never been observed in interplanetary space and would be difficult to.identify

in any case due to the naturally occuring fluctuations around interplanetary

shocks. Parallel (B 1 n) or perpendicular (B I n) shocks will also not

be considered here. Then the sign of g depends on whether the oblique

shockl under consideration is fast (+) or slow (-). Temporarily we
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restrict our discussion to oblique fast shocks only. Since 0<e <82<~/2

in all cases of such shocks, where n is defined here in such a way that

O
1

and 92 are acute angles, and since e¢0, then ge is always >0, but

it is expected to be usually <<1; i.eo 0•e<ge<<1 for most realistic

cases. Hence f, from (26), will usually be slightly greater than unity.

Since glis usually slightly less than unity, the product (%lf) in (25),

which must always be positive by our assumptions, is usually closer to

unity than ~l' In fact, for all oblique fast shocks (since f is always

>0 in those cases) jlf > 0. Then for such shocks we can define a

positive real parameter h to be

h f (lf) (30)

which we will refer to as the "anisotropy parameter".

To estimate this parameter we use the results of Ghao and Goldstein

(1971) from their application of the R-H conservation equations to find

1 and 2. C[Also see Hundhausen et al., 1967] They use the entire

eight equation set and retain only those values which give reasonable

electron temperatures as a by-product of their analysis; this turns out

to be sufficiently restrictive. Their method of finding the g's from

the characteristics of Alfven waves around the shock is probably not as

reliable and its results will not be considered here. Taking averages

of the g-values that they obtain for four shocks (two fast and two slow),

we find that 51 = 0.77 + 0.10 and t2 = 0.80 + 0.11. Hence, we arrive

at characteristic e's between 0o00 and 0.19, and we retain e = 0.04 as

a most probable value. Since tan /tan e2 ~ 1/3 is a reasonable

characteristic value for this ratio, we find that f w1.06, and hence
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h w 0.90 using ~1 ; 0,77.

For the remainder of this study, restriction (29), that e<<l,

will no longer hold. It was employed only to facilitate discussion of

the most common cases of oblique fast shocks.

The Field Weighting Theorem

We now proceed to show, for fast and slow shocks, the significance

of the anisotropy parameter, h, and the reason for choosing a 1/2-power

functional relation in its definition (30). Note that (30) will hold

for slow shocks, provided f > 0. If f < 0 then h becomes imaginary and

(22) below changes structure (second term assumes an explicit negative

sign). Hence, the following theorem fails for slow shocks with f < 0.

Such cases can be easily handled by a simple modification of the theorem.

We begin by defining an effective magnetic field H
i

(i=1,2) by

H.i = h Bi (i=1,2). (31)

That is, it is the true magnetic field multiplied by the weight factor h,

which as we have seen contains the effects of the pressure anisotropy and

the influence of the shock normal's direction through 81 and 02. By

multiplying the general equations (17), (18), and (19) by h , h , and h4

respectively, and using the defining equations (25), (30), and (31) we

obtain a new set of overdetermination equations, which are identical to

the "isotropic" equations (17), (18), and (22) except now B. is replaced

by Hi (i=1,2) and the new quantities S and AH become S--HtxH2 and

AH = H2-H1. Also multiplying top and bottom of the right side of equation'

(14) by h3 yields, in the same manner, an identical equation for n except

in terms of H's instead of B's. Equations (13), (15), and (16) remain

unchanged. Henceforth, for future reference equations (14), (17), (18),
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and (22) in the H-domain will be designated as (14)', (17)', (18)'

and (22)'. So by considering the effective field Hi instead of the real

field Bi our general six-equation set (i.e. including anisotropy) transforms

into the same functional forms previously used in the isotropic case,

and thus the expression for the normal, (14)', is also formally identical

for the isotropic and anisotropic cases. The latter result is, of course,

a trivial consequence of the fact that the magnetic field coplanarity theorem

holds for the general anisotropic case. The ability to homologously transform

the field by (31) and obtain "anisotropic" equations in the H-domain

corresponding identically to the "isotropic" equations in the B-domain

has important practical significance with regard to a least-squares best-

fit program of estimating shock normals based on the isotropic equations

(Lepping and Argentiero, 1971) for fast shocks, and for slow shocks

provided f > 0. Without modification of such a program, it can be used

for those shocks (with f > 0) in whose cases the isotropic approximation

does not hold by applying a preconditioned weighting of the B-field by

(31) before use of the program. This we refer to as the Field Weighting

Theorem.

In practice it might be necessary to carry out the scheme with h

initially set equal to unity (or some other first trial) and obtain a

first rough estimate of the shock parameters and the normal. The resulting

normal, as well as the various shock parameters, will then reflect the

inaccuracy of using an inexact value for h even though (14) and (14)'

are formally identical (i.e. even though n does not explicitely depend

on h). This inaccuracy stems from the implicit dependence of the field

components (as well as the plasma parameters) on the value of h through

the least-squares best-fitting process; as h changes the components of
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the H's in (14)' (or equivalently the B's in (14)) change

with respect to each other. After this first computation with

a trial h it is a simple matter to use the resulting

"best-fit" estimates of the quantities B
1
and B

2
along with the estimate

of n to obtain first "best-fit" estimates of 81 and 02. These combined

with estimates of 1l and g2 (either from an educated guess or through

the use of the remaining conservation equations or from reliable direct

measurements) enables one to calculate a better "best-fit" estimate of

h. Then all of the input B-field data can be altered by multiplication

by h, as in (31), and the effective field H used in a repeated operation

of the least-squares process to obtain an updated set of shock parameters.

This process can be repeated as often as one wishes, but presently a

single iteration beyond h=h(trial) is probably sufficient since the factors

t1 and t2 are usually estimated only roughly. For fast shocks h is

not a very sensitive function of tan O1, 1 and g2 provided t 1<2<1 and
tan e2

g2>O.8, as we will show below.

Expected Range of h for Fast Shocks

We now wish to examine for fast shocks the range of h, which from

(23), (26), (28), and (30) can be expressed as

2- 1R 1/2

h =( 1-R ) (32)

tan E1
where R t (33)tan e

2

First we consider it reasonable to expect unity for an upper bound on

t2' and retain %1<t2 . Table la gives h as a function of t1 for g2 = 1.0

111 1
and for the cases where R = , 4, and 3. Notice that for this

104' 3' 2

condition (i.e. g2=1) h 2 1. Tables lb and lc give h as a function of

51 for F2 equal to 0.9 and 0.8, respectively, for the same values of R.
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TABLE 1

Values of h for g2=1.0 (a),

1
10

1
4

0.9 (b),

1
3

0.8 (c) and

1
2

for l 0.501'

0.50 1.027 1.080 1o118 1.225 (a)

0.75 1.014 1.041 1.061 1.118 2 0= 1.0

1.00 1.000 1.000 1.000 1.000

0.50 0.972 1o017 1.049 1.140
(b)

0.70 0.960 0.983 1.000 1.049 g2 = 0.9

0.90 0.949 0.949 0.949 0.949

0.50 0.913 0.949 0.975 1.049
(C)

0.65 0.904 0.922 0.935 0.975 g2 = 0.8

0.80 0.894 0.894 0.894 0.894

R_
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In these tables, for intermediate values of ~1 and fixed R, values of

h can be linearly interpolated to better than 0.2% accuracy. For the

extreme case of a negligible R (or R 0O) h--g2, independent of 1l, and

therefore h = 1.000, 0.949, and 0.894 for g2 = 1.000, 0.900, and 0.800,

respectively. From an examination of actual interplanetary shocks the

value R = 1/2 appears to be a reasonable arbitrarily chosen upper limit.

Many very weak fast shocks are expected to have R > 1/2 but these are

difficult to observe. Hence, for these rather extreme ranges of 1', g2,

and R we see that for fast shocks h is restricted to h = 1.06 + 0.17

provided that Sf 2 • 1 is a reasonable assumption. The value of

h = 0.90 which we have derived from the Chao and Goldstein (1971) results

lies at the lower end of this range. Similar tables can, of course, be

generated for slow shocks where h would be shown in general to deviate

much more markedly from unity due to the fact that R>l for such shocks.

Hence, the influence of anisotropy on slow shocks is greater.

A Fast Shock Example: January 26, 1968, ~1430 UT

The January 26, 1968 fast shock detected by the plasma and magnetic

field sensors of Explorers 33 and 35 has been studied in terms of accurate

estimates of the shock's parameters and its normal (Lepping, 1971). In

that investigation the less general conservation equations, i.e., those

for an isotropic medium (1l' g2 = 1), were used in a least-squares best-

fit program for the estimation. We show in Table 2 the results of the

calculations repeated, using the extreme values of h given above, h=0.90

and h=1.22, respectively. The previous results of h=1.00 are also listed

for comparison. One can readily see that for this characteristic range

of h, and for both spacecraft observations of the shock, the influence

of thermal anisotropy is insignificant with regard to all parameters and

fur the normal(given by the components nR, nT, n) as well. In going
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TABLE 2

January 26, 1968 Shock Parameters
Best Fit Values for an 18 Minute Analysis Interval

Parameter* Best Fit Value Best Fit Value
for Explorer 33 for Explorer 35

h=0.90 1.00 1.22 h=0.90 1.00 | 1.22

B1R (Y) -1.60 -1.59 -1.59 -0.23 -0.24 1-0.24

B1T -3.16 -3.16 -3.16 -3.07 -3.07 1-3.07

B1N -3.49 -3.49 -3.49 -3.83 -3.83 1-3.84

B2R -5.13 -5.15 -5.20 -3.39 -3.41 1-3.43

B2T -6.61 -6.60 -6.57 -6.15 -6.09 -5.94

B
2
N -7.56 -7.54 -7.46 -8.34 -8.26 -8.05

WR(km/sec) 78.5 78.6 78°9 84.8 85.6 87.7

WT -38.1 -37.0 -34.0 -35.4 -35.0 -34°3

WN -28.6 -28.3 -27.7 -24.4 -24.2 -23.7

Nl(#/cm ) 4.18 4.19 4.19 4.43 4.45 4.50

N2 9.69 9.67 9.61 10.60 10.52 10.34

nR 0.828 0.826 0.821 0.854 0.850 0.838

nT -0.443 -0.440 1-0.434 i -0.413 -0.416 -0.423

nN -0.34452 -0.352 0.372 -0.316 -0.324 i-0.345

Quality 1.05 11.0 1.05 1.04 1.04 1.03

*Vector quantities are given in the R-T-N coordinate system, centered at the
s

spacecraft of interest, such that R points away from the sun parallel to the
A Aecliptic Aplane, N is perpendicular to the plane and "northward", and T=NxR

ecliptic plane, N is perpendicular to the plane and "northward", and T=NxRo
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from h = 0.9 to h = 1.22 the normal deflects through 1.70 for Explorer

33 and 2.00 for Explorer 35, and neither recalculated normal deviated

more than 1.50 from the h = 1 normal, in either spacecraft's case. These

deviations are all well within the calculated (95% certainty) error-cone

angle of 7.60. Since this example is believed to be representative

of oblique fast shocks in general (unless R > 1/2 or E1 < 0.5 or both),

we see that the influence of thermal anisotropy on estimating interplanetary

fast shock normals is expected to be negligible, changing it by only a

few degrees at most, and the deviations in the shock parameters due to

h $ 1 are equally unimportant. It is obvious, for instance, that the

differences between the best-fit shock parameters for Explorers 33 and

35 are not accounted for by incorrect anisotropy considerations. More

likely these differences are real and are explained by the changes

in the field and plasma conditions over distances comparable to the separation

of the two spacecraft (P43.5 earth radii) and over the associated time delay

(~89 sec) of the two observations. Since the two spacecraft at the time of

the shock sightings were located in that general vicinity of the earth's

bow shock where upstream waves and particles fluxes have been observed, such

influences could be considered as a possible specific explanation of these

differences. [The spacecraft were 76.6 (Expl. 33) and 56.9 (Expl. 35)

earth radii sunward of the earth during the shock passage.] If actually

present, such influences could markedly change the shock parameters from

one interplanetary observation point to the other and yet have a negligible

effect on the shock front's ability to remain plane on the scale of interest

here. However, the condition for expecting these influences to be present,

i.e., that the interplanetary magnetic field line (pre-shock field in this

case) passing through either spacecraft position be connected to the earth's
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bow shock (Fairfield, 1969), does not hold in this case. Therefore, these

differences are more likely related to true interplanetary conditions at

that time rather than to phenomena associated with the earth.

In table 2 a quality index for the shock estimate is also shown.

This index is defined as the square root of the ratio of the total number

of points of all shock parameters used in the analysis to the standard

a-weighted least-squares loss function at convergence (Lepping and

Argentiero, 1971). This index is commonly very near to unity for

characteristic interplanetary shocks provided reasonable a-weights (usually

rms deviations) are used in the loss function for all parameters. The

table shows that the quality of the estimates is, to three place accuracy,

nearly independent of the value of h between 0.90 and 1.22. The lowest

value of 1.03 for h = 1.22, Explorer 35, suggests (see Table la) that a

combination such as %1 iOo5 and g2_1.0 for the January 26, 1968 shock is

not likely, where R was 0.42 for this case. All that can be safely said

here is that Ag (--2- 1) was probably less than 0.4 or so for this shock

on the weak assumption that the overall best fit analysis and model was

accurate enough to resolve quality with respect to small changes in h.

The quality of the estimates of the shock parameters, in most cases, must

be insensitive to small changes of h from unity, and large changes are

expected to occur only for slow shocks.

Discussion and Conclusions

We have shown, for most realistic fast shocks, that best-fit shock

parameters and the associated normals are expected to be only weakly

dependent upon thermal anisotropy in the vicinity of the shock.
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[In theoretically estimating pre-shock electron temperatures by using

the full Rankine-Hugoniot set of equations Chao (1971) has shown, for

a sample set of 18 shocks (11 fast and 7 slow), that such estimates

also are only very weakly dependent on the values of 1 and g2] . Conversely,

the restricted subset of equations used in the best-fit procedure are

therefore, for fast shocks, unable to effectively resolve the 1 and ~2

factors even when the normal to the shock is known through other means,

for instance geometrical methods. Only reliable higher moment equations,

or other independent methods, can be used to ascertain the values of

the anisotropy factors. From the point of view of accurately estimating

shock normals, however, this is a fortunate circumstance. For slow

shocks the lower moment equations should be of greater aid in obtaining

l1 and g2' but again conversely the normals for these shocks should be

less reliably estimated due to their greater depehdence on h, which is

usually not very well known from independent sources.

For fast shocks,and slow shocks with f>O, when either of whose

value of h deviates significantly from unity and provided t1 and g2 are

estimated with acceptable accuracy, the Field Weighting Theorem should

furnish a practical means of improving the estimates of shock

normals when the best-fit technique is employed.
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