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Abstract

To improve the high-temperature capability of 718-type wrought
nickel-base superalloys, the γ′-phase (Ni3Al) can be stabilized. How-
ever, this also reduces the size of the forging window because forging
has to be done above the γ′- and below the solvus temperature of
the phase that is used to enable fine-grain forging, i. e. the δ-phase of
Ni3Nb type or the η-phase of Ni3Ti-type. Understanding the influ-
ence of alloying elements on the formation of these phases is therefore
important. In this paper, density functional theory calculations at 0K
are performed to determine the stabilizing effect of aluminium and
of the transition group elements on the stability of the δ-phase and
η-phase. Most of the transition group elements of 5th and 6th period
stabilize the δ-phase, whereas the stabilizing effect on the η-phase is
weaker. According to the calculations, Mo, Tc, W, Re, and Os may
be expected to stabilize the δ-phase but not the η-phase, whereas Al
and Zn strongly stabilize the η-phase. V, Zr, Ru, Rh, Pd, Ag, Cd, Hf,
Ta, Ir, Pt, Au, and Hg stabilize both phases. For some elements (Cr,
Mn, Fe, Co), magnetic effects in the δ and especially in the η-phase
are shown to be significant at the concentrations studied here.
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1 Introduction1

Alloys 718 and 706 belong to a special class of materials among the Ni-based2

superalloys. These so-called 718-type materials excel due to their outstanding3

manufacturability and high strength up to service temperatures of about4

650 ◦C. Therefore, they are materials of choice for highly loaded turbine5

discs in aircraft engines amongst other components [1, 2]. Alloy 718 alone6

accounts for about two-thirds of the weight of superalloys in aircraft engines7

[3].8

718-type superalloys are strengthened by the γ′ and γ′′-phases. These9

phases have to be stable at service temperature, but are dissolved during10

forging to ensure sufficient malleability of the alloy. Additional phases that11

are stable at higher temperatures are used to hinder grain growth during the12

forging process, thus ensuring a fine grained microstructure [4]. These phases13

are either the δ-phase (Ni3Nb, Strukturbericht designation DOa) or the η-14

phase (Ni3Ti, Strukturbericht designation DO24). Consequently, 718-type15

superalloys are designed such that the solvus temperature of the strengthen-16

ing phases is above service temperature but below forging temperature, while17

the δ/η-phase is stable up to the forging temperature. In other words, the18

solvus temperature of the δ/η-phase must exceed that of the strengthening19

phases.20

Due to ever increasing temperatures in gas turbines, there is demand for21

718-type alloys allowing for higher application temperatures. This requires22

improved stability of the strengthening phases, which can be readily achieved23

increasing the Al-content of the alloy as it is done in the alloy 718Plus [5] and24

VDM Alloy 780 [6]. However, if the γ′ solvus temperature is increased, the25

forging temperature has to be increased as well. This, in turn, requires raising26

the thermal stability of the δ/η-phase. In designing new wrought nickel-27

based superalloys with increased temperature stability, it is thus necessary28

to understand the influence of alloying elements on the stability of the δ- and29

η-phase.30

In this paper, DFT simulations at 0K are used to determine the solution31

energy of aluminium and transition group elements in the δ-phase and η-32

phase to understand which elements can stabilize these phases. (Detailed33
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calculations for the influence of the most important alloying elements on the34

γ′-phase can be found in [7].) These elements have been selected because the35

metallic alloying elements in nickelbase superalloys are either transition group36

elements or aluminium. The stabilizing effect on both phases is compared to37

aid the design of future alloys.38

2 Theory and Methods39

2.1 Calculation method40

Density functional theory calculations at 0K were performed using VASP41

[8, 9, 10]. A plane wave bases set with projected augmented wave (PAW)42

pseudopotentials [11, 12] was used in the simulations together with Per-43

dew-Burke-Ernzerhof [13] exchange correlation functionals. Where available,44

pseudopotentials including full simulation of s- or p-electrons (i. e. the max-45

imum valency available) have been used. The energy cutoff (ENCUT) was46

chosen as 520 eV in all simulations, a value that is 1.3 times the largest cutoff47

value provided in the PBE files of all elements simulated as recommended48

in the VASP manual to ensure that absolute energies are calculated to high49

precision. Calculations were usually spin-polarized, with some exceptions for50

calculations within the δ/η-phase where both polarized and non-polarized51

calculations were performed for some elements as explained below.52

The spacing of the k-points in the reciprocal lattice was chosen as 0.1 Å−1;53

resulting in k-point grids of 93 for the γ-cell, 8 ·13 ·7 for the δ-cell and 13 ·8 ·854

for the η-cell. (Each of the cells contained 32 atoms, see below.) For the γ-55

cell consisting of pure Ni, a smaller spacing of 0.07 Å−1 did result in an56

energy difference of less than 0.01meV per atom. For the η-cell, increasing57

the k-point grid to 18 · 11 · 11 changed the energy by less than 0.02meV per58

atom. All calculations except for the pure element energies were performed59

for 32-atom supercell to avoid effects from different atom numbers.60

The precision of the calculation was set to “accurate” to avoid wrap61

around errors; the real space operators were calculate to a precision of 10−4
62

(ROPT=1e-4). Intermediate runs to determine the optimum lattice parame-63

ters were performed with an electronic precision of 10−3 meV (EDIFF =1.E-6),64

the final runs with 10−4 meV. The ionic loop during relaxation was stopped65

when the energy change was below 10−2 meV (EDIFFG =1.E-5).66

To check the influence of the size of the chosen 32-atom supercell and67
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possible self-interaction of the atoms, calculations with a fully relaxed larger68

256-atom γ-supercell were done for two elements, V and Nb. The substitution69

energies differed by 11.6meV for V and 1.3meV for Nb. Calculations with70

a 32-atom cell therefore do not correspond to the strict dilute limit.71

For each of the considered atomic configurations, the lattice constant and72

lattice shape as well as the ionic positions were relaxed. To do so, we em-73

ployed the following two-step procedure as recommended in the VASP man-74

ual [14]: In a first step, calculations at fixed lattice volume were performed75

for five different volumes by simply changing the scale factor in the defini-76

tion of the initial grid. Each of these calculations was at constant volume77

performed with relaxation of the ions (ISIF = 2) for the γ-phase and with78

relaxation of the ions and the cell shape (ISIF = 4) for the δ and η-phase.79

These calculations were performed with Gaussian smearing and a smearing80

parameter of 0.07 eV. (These values were taken from [7].)81

A Birch-Murnaghan state equation [15] was used to fit the energies and82

determine the optimum scale factor. A final calculation using this scale83

factor was performed, using the fixed final ionic positions of the run with the84

closest scale factor. In this final calculation, a tetrahedral mesh with Blöchl85

correction was used.86

This method results in lower energies compared to those calculated by87

simply relaxing the cell shape, size and ions in one step (ISIF = 3). For88

example, for a 32-atom η-phase supercell, the energy calculated using ISIF =89

3 and then performing a final calculation with fixed lattice and ions is 21meV90

larger than the final energy obtained in the way described here; for a Ni31Nb-91

cell, the final energy is 39meV larger using the direct relaxation.92

2.2 Pure element calculations93

The main purpose of this study is the comparison between the solution en-94

ergies in the three phases considered here (γ, δ, η). In this comparison, the95

energy to transport the element under consideration from one phase to an-96

other is calculated (see eqs. (4) and (5)) and pure element energies are not97

needed. Nevertheless, pure element energies allow to report substitution en-98

ergies for single phases and are therefore helpful as reference quantities. For99

Nb and Ti, calculating the energy of the pure element also serves as a check100

on phase stability (see section 3.3 and 3.4).101

Most of the elements considered have a bcc, fcc or hcp lattice struc-102

ture. Exceptions are mercury with a rhombohedral lattice structure and103

4



manganese with a complicated, 29-atom unit cell. For fcc and bcc elements,104

a conventional unit cell was used; for hcp elements, a 2-atom cell was em-105

ployed. The initial configurations of all unit cells were taken from the open106

quantum molecular database [16] with the exception of the 29-atom Mn cell107

which was taken from [17]. For Co, both an fcc and an hcp structure were108

calculated due to the small difference in their energy.109

For all elements considered, the element lattice was relaxed as described110

in the previous section; allowing for ionic relaxation in the cubic elements111

and for ionic and cell shape relaxation for the hcp and the rhombohedral112

Hg lattice. All cells were initialized with a ferromagnetic state. The only113

exception was Cr where a 2-atom anti-ferromagnetic bcc configuration was114

used.115

2.3 Substitution in the γ-phase116

A 32-atom (23 conventional fcc) cell was used for the γ-phase; replacing one117

atom with the alloying atom under consideration. The γ-phase is ferromag-118

netic; alloying atoms may possess moment aligned with (ferromagnetic) or119

opposite to (ferrimagnetic) the nickel atoms.. To check for magnetic effects in120

Ni31X, calculations with the initial magnetic moment of the alloying element121

being aligned or opposite to that of the nickel atoms (setting the moment of122

this atom to ±1µB, that of all Ni atoms to 1µB) were performed, using a fixed123

lattice constant and slightly loosened convergence criteria to save CPU time.124

For most elements, both simulations converged to the same state. Exceptions125

were Mn and Fe, where the final configuration with an opposite moment had126

a considerably higher energy than the ferromagnetic configuration, Cr, where127

the final configuration with opposite moment is energetically favourable, and128

Co, where the computation with opposite moment did not converge.129

To calculate the final energies of the Ni31X supercells, the lattice con-130

stant was relaxed as described above. Based on the results for the ferro-131

and ferrimagnetic initialization as described in the previous paragraph, all132

configurations except for Ni31Cr were initialized with a purely ferromagnetic133

state. It should be noted that the ferrimagnetic state of the Cr atom might134

change in a larger supercell (corresponding to the dilute limit); but in the135

alloys under consideration in this study, the Chromium content is usually136

large as will be discussed further below (section 4).137
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The substitution energy of each element was calculated as

EX,γ = E(Ni31X)− (31E(Ni) + E(X)) (1)

where E( ) denotes the calculated energy of the structure or element.138

2.4 Substitution in the δ-phase139

Calculations for the pure δ-phase (Ni3Nb) were done with a 32-atom super-140

cell configuration taken from the open quantum molecular database OQMD141

[16]. The structure was relaxed as explained in section 2.1. Spin-polarized142

calculations were performed to check that the calculated end-state was un-143

magnetic.144

To calculate alloying effects for the alloying elements under consideration,145

one atom in the supercell was replaced. There are three distinct possibilities146

to substitute one atom in the δ-phase, as calculated with SOD [18]: two for147

substituting Ni, one for Nb. These configurations are shown in Fig. 1. For148

each calculation, the lattice relaxation algorithm from section 2.1 was used.149

All calculations were spin-polarized (starting from a ferro-magnetic cell)150

to check whether magnetic effects might play a role. For those elements151

where atoms in the final configuration possessed a non-negligible magnetic152

moment, non-polarized calculations were also performed to see the strength153

of the effect.154

The solution energy for an element in the δ-phase ist calculated using the
δ-phase, the pure γ-phase and the pure element as a reference state. The
energy depends on where the solution element is situated in the lattice. If the
atom sits on a Nb position, dissolving it in the δ-phase requires to transfer
three Ni atoms from the γ to the δ-phase because the Nb atom has the lowest
energy in the δ-phase and will thus not shift to another phase. To replace Ni,
a single Ni atom is shifted from the δ to the γ-phase. The solution energies
are therefore calculated as

EX,δ,Nb = E(Ni24Nb7X)− (7E(Ni3Nb) + 3E(Ni) + E(X)) (2)

EX,δ,Ni = E(Ni23Nb8X) + E(Ni)− (E(Ni24Nb8) + E(X)) . (3)

To see whether an element dissolves in the γ- or in the δ-phase, the
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(a) Substituting for Ni (Ni1) –
(Ni3Nb)7 Ni2NbX

(b) Substituting for Ni (Ni2) –
(Ni3Nb)7 Ni2NbX

(c) Substituting for Nb – (Ni3Nb)7 Ni3X

Figure 1: Substitution of one alloying atom for Ni or Nb in the δ phase (Ni
atoms in blue, Nb atoms in grey, alloying atom in red).
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difference in the solution energies is calculated:

EX,Diff, δ,Nb = EX,δ,Nb − EX,γ

= E(Ni24Nb7X) + 28E(Ni)− 7E(Ni3Nb)− E(Ni31X) (4)

EX,Diff, δ,Ni = EX,δ,Ni − EX,γ

= E(Ni23Nb8X) + 32E(Ni)− E(Ni24Nb8)− E(Ni31X) . (5)

2.5 Substitution in the η-phase155

The strategy for the calculations of the η-phase was the same as for the156

δ-phase. The initial configuration was again taken from the OQMD and157

relaxed. Afterwards, substitutions of the alloying elements were calculated.158

Fig. 2 shows the possible replacements in the 32-atom cell of the η-phase159

(two each for the Ti and the Ni substitution).160

The η-phase itself was found to be unmagnetic, but there are magnetic ef-161

fects for several alloying elements. For these, non-spin-polarized calculations162

were performed as well.163

Solution energies were calculated in the same way as for the δ-phase, see164

eqs. (2)–(5), replacing Ti for Nb.165

3 Results166

3.1 Pure elements167

Table 1 shows the calculated energy per atom for each of the considered ele-168

ments. For those elements were calculations with the same pseudopotential169

were avaliable in the OQMD [16], agreement between our calculations and the170

OQMD results was usually within less than 3meV. Exceptions were elements171

for which our lattice relaxation method yields considerably different lattice172

constants (Ag, Cd, Au, Hg). For these elements, deviations in the energies173

of up to 17meV occured, and lattice parameters differed by 1% or more.174

Since the OQMD results were obtained using a direct relaxation of the cell175

size in a single calculation, this difference can be explained by the different176

calculation method to obtain the relaxed ground state (see section 2.1).177

For Pd, initializing with a ferromagnetic state results in an end state with178

a small magnetic moment on each Pd atom. The energy of this structure is179
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(a) Substituting for Ni
(Ni1) – (Ni3Ti)3 Ni2TiX

(b) Substituting for Ni
(Ni2) – (Ni3Ti)3 Ni2TiX

(c) Substituting for Ti
(Ti1) – (Ni3Ti)3 Ni3X

(d) Substituting for Ti
(Ti2) – (Ni3Ti)3 Ni3X

Figure 2: Substitution of one alloying atom for Ni or Ti in the η phase (Ni
atoms in blue, Ti atoms in grey, alloying atom in red).

9



Table 1: Calculated energy per atom of the pure alloying elements.
Element structure Energy /

eV/atom
Al fcc -3.7461

Ti hcp -7.9461
V bcc -9.1193
Cr bcc -9.6462
Mn cub -9.1528
Fe bcc -8.4568
Co hcp -7.1084

fcc -7.0906
Ni fcc -5.7792
Cu fcc -4.0985
Zn hcp -1.2660

Zr hcp -8.5471
Nb bcc -10.2252
Mo bcc -10.8490
Tc hcp -10.3622
Ru hcp -10.3622
Rh fcc -7.3445
Pd fcc -5.3860
Ag fcc -2.8283
Cd hcp -0.8865

Hf hcp -9.9560
Ta bcc -11.8531
W bcc -12.9613
Re hcp -12.4461
Os hcp -11.2266
Ir fcc -8.8573
Pt fcc -6.0571
Au fcc -3.2723
Hg rhl -0.2956
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1.7meV lower than the energy of a Pd atom in a non-spin-polarized calcula-180

tion. In the calculations of the substitution energies, the lower energy value181

was used. For Co, both an fcc and an hcp structure were calculated because182

the energy of both phases is known to be very similar. In our calculation,183

the energy of the hcp is slightly smaller than that of the fcc structure.184

Note that the results of the pure element energies are relevant for the185

substitution energies, but not for a comparison of these energies (the question186

whether an element would transfer to δ/η from γ).187

3.2 γ-phase188

The energy of a nickel atom of the pure γ-phase is reported in Table. 1; the189

calculated lattice constant was 3.523 Å. Substituting one nickel atom by an190

alloying element in the 32-atom supercell corresponds to a concentration of191

3.125%. The calculated change in the lattice constant can be used to predict192

the influence of the alloying elements on the lattice constant. In Fig. 3, the193

change in the lattice constant is shown for all elements and compared with194

data from [19] where data is available. With the exception of Os, the agree-195

ment between the calculation and the experimental results is satisfactory.196

197

The calculated substitution energies for all elements in the γ-phase are198

shown in Fig. 4. Positive values in the diagram do not imply that the con-199

sidered element cannot be used in alloying because many of the transition200

element have a finite solubility in nickel at typical processing temperatures201

of the order of 1000 ◦C.202

3.3 δ-phase203

To check whether the δ-phase is stable, we calculate the energy of Ni3 + Nb
in three different states (dissolved in γ, as a δ cell or as isolated nickel and
niobium phases):

Esolution = E(Ni31Nb)− 28E(Ni) = −28.2496 eV

Eδ =
1

8
E(Ni24Nb8) = −28.8134 eV

Eseparated = E(Nb) + 3E(Ni) = −27.4329 eV .

Formation of the δ-phase from the γ-phase is thus energetically favorable by204

564meV per Niobium atom. Note that other phases (like NiNb) were not205
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Al Ti V CrMnFeCo Ni CuZn Zr NbMoTcRuRhPdAgCdHf TaW ReOs Ir Pt AuHg
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Figure 3: Predicted change in the lattice constant (in Å) per at.-% of an
alloying element (da/dc) compared to the experimental results reported in
[19].
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Al Ti V CrMnFeCo Ni CuZn Zr NbMoTcRuRhPdAgCdHf TaW ReOs Ir Pt AuHg
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Figure 4: Substitution energies for the considered alloying elements in the
γ-phase, calculated from eq. (1)
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Al Ti V CrMnFeCo Ni CuZn Zr NbMoTcRuRhPdAgCdHf TaW ReOs Ir Pt AuHg
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Figure 5: Substitution energies for an element in the δ-phase, calculated from
eqs. (2) and (3). Grey symbols denote lowest-energy states with a magnetic
moment in the δ-phase. For Nb, the energy difference between the δ-phase
and the separate pure Ni and Nb phases has been plotted.

considered here because they do not occur in the alloys under consideration,206

so the stability is only shown with respect to pure Nb and solution in the207

γ-phase. As expected, the δ-phase was unmagnetic.208

The calculated lattice constants of the δ-phase were 5.123 Å, 4.258 Å,209

and 4.562 Å. These values agree to within 1% with measured values from the210

literature [20] and with other DFT calculations [21].211

Fig. 5 shows the substitution energies of the considered elements (using212

the pure δ-phase, pure nickel and the pure element as a reference state),213

calculated from eqs. (2) and (3). For some elements a non-zero magnetic214

moment was found as lowest energy state in the 32-atom δ-supercell. For215

these elements, an additional non-spin-polarized calculation (including lattice216

relaxation) was performed. The energy of the magnetic state is shown in the217

Figure (grey symbols). The substitution of a nickel atom in the δ-phase218

becomes energetically more favourable with increasing number of d-electrons219

as should be expected. The energy rises again if the number of d-electrons220
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Table 2: Predicted substitution behaviour in the δ-phase of different elements
from [22] compared to the DFT calculations from figure 6. For iron, the
calculated lowest energy state depends on whether a ferromagnetic (replace
Nb) or a non-ferromagnetic state (replace Ni) in the δ-phase is considered.

Al Ti V Cr Mn Fe Co Cu
[22] Nb Nb Nb Nb Nb Ni/Nb Ni Nb
This work Nb Nb Nb Nb Nb Ni/Nb Ni Nb

Zr Mo Pd Hf Ta W Re Os Ir Pt Au
[22] Nb Nb Ni Nb Nb Nb Ni Ni Ni Ni Ni
This work Nb Nb Ni Nb Nb Nb Nb Nb Ni Ni Nb

is larger than that of nickel. Substituting Nb is favorable for elements with221

a low number of d-electrons.222

In [22], a thermodynamic model was used to determine the solution be-223

haviour of several elements in different Ni3M phases. The model was used224

to predict whether solution elements are situated on Ni or Nb sites in the225

δ-phase. Table 2 shows a comparison between the predictions of [22] and226

the current work for the site preference of the elements. For most of the ele-227

ments, predictions do agree, but there is a discrepancy for Re, Os, and Au.228

For Os and Au, the calculated energy differences are small, but the difference229

is large for Re.230

Fig. 6 shows the energy of transferring an alloying element from the γ231

to the δ-phase in a Ni or Nb position. (Data points in this figure can be232

obtained as difference between the results from Fig. 4 and Fig. 5.) Overall,233

substituting nickel in the δ-phase is not favoured for any of the elements in234

the Ti-period. In the higher periods, substituting nickel is favourable for235

Ru, Rh, Pd, Os, Ir, and Pt. From Fig. 5, it might seem that some of these236

elements (Ru, Pd, and Os) would not dissolve in the γ or the δ-phase, but at237

finite temperatures, these elements have a finite solubility in the γ matrix.238

During formation of the δ-phase, these elements may then be expected to239

dissolve in the more favourable phase.240

On the other hand, elements with a low number of d-electrons, especially241

those in higher periods, can replace a niobium atom. (Note that the energy242

gain of the δ-phase formation has been entered into the figure in the Nb243

position.) It has to be noted, however, that these elements may form other244

phases like Ni3Ti.245
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Al Ti V CrMnFeCo Ni CuZn Zr NbMoTcRuRhPdAgCdHf TaW ReOs Ir Pt AuHg
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Figure 6: Energy difference between an alloying element in the δ and in the γ-
phase, calculated from eqs. (4) and (5). For Nb, the energy difference between
the δ-phase and a dissolved Nb in the γ-phase is shown. Grey symbols denote
lowest-energy states with a magnetic moment in the δ-phase.
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For most of those elements where a non-zero magnetic moment was found246

as lowest energy state in the 32-atom δ-supercell, the substitution energy for247

a transfer from γ to δ remains positive so that this effect will not affect248

the solution behaviour. The only exception is Ru where the magnetic state249

lowers the energy by only 6.6meV.250

3.4 η-phase251

We calculated the stability of the η-phase in the same way as for the δ-phase;
again disregarding other phases like NiTi:

Esolution = E(Ni31Ti)− 28E(Ni) = −26.6836 eV

Eδ =
1

8
E(Ni24Ti8) = −27.2239 eV

Eseparated = E(Ti) + 3E(Ni) = −25.2850 eV .

Formation of the η-phase from the γ-phase is thus energetically favorable by252

540meV per titanium atom.253

The calculated lattice constants for the conventional 32-atom unit cell254

were a = 5.116 Å in the basal plane and c = 8.346 Å, close to the values of255

5.115 Å and 8.302 Å given in [23].256

Fig. 7 shows the substitution energies of the considered elements (using257

the pure δ-phase, pure nickel and the pure element as a reference state),258

calculated in the same way as for the δ-phase. A ferromagnetic state was259

found as ground state for several elements (marked by grey symbols in Fig. 7).260

The effect is especially strong for Cr, Mn, Fe, and Co in a Ti position of the261

η-phase, where the energy is lowered considerably.262

Fig. 8 shows the energy of transferring an alloying element from the γ to263

the η-phase in a Ni or Ti position. The overall shape of the curves is similar264

to those for the δ-phase. Substituting a nickel atom in the η-phase is most265

favourable for atoms with a similar number of d-electrons, but only Ru, Rh,266

Pd, Ir, and Pt can be expected to actually stabilize the η-phase in this way.267

Substituting Ti is favourable for Al, Zn, Zr, Nb, Cd, Hf, Ta and Hg. A slight268

stabilization effect might be expected for V, Mo, Ag, and W, but the energies269

are small compared to typical thermal energies at the forging temperature.270

Ferromagnetic effects in the η-phase are especially strong for Cr, Mn, Fe,271

and Co in a Ti position of the η-phase. For Cr and Mn, the energy to trans-272

fer an atom to the η-phase energy becomes slightly negative (of the order273
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Al Ti V CrMnFeCo Ni CuZn Zr NbMoTcRuRhPdAgCdHf TaW ReOs Ir Pt AuHg
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Figure 7: Substitution energies for an element in the η-phase, calculated from
eqs. (2) and (3). Grey symbols denote lowest-energy states with a magnetic
moment in the η-phase. For Ti, the energy difference between the η-phase
and the separate pure Ni and Ti phases has been plotted.
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Figure 8: Energy difference between an alloying element in the η and in the
γ-phase, calculated from eqs. (4) and (5); replacing Ti for Nb. For Ti, the
energy difference between the η-phase and a dissolved Ti in the γ-phase is
shown. Grey symbols denote lowest-energy states with a magnetic moment
in the η-phase.
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of 7meV). These magnetic effects might become even stronger if the con-274

centration of these alloying elements is increased further and these elements275

then might actually stabilize the η-phase. A similar effect may also occur for276

Fe and Co in higher concentrations in the η-phase. For the other elements277

where a magnetic state was found, the effect is small and probably does not278

affect the energies significantly.279

4 Discussion280

As explained in the introduction, the δ and η-phase are important in design-281

ing wrought alloys. For some alloys (like alloy 718), stabilizing the δ-phase282

at higher temperatures without simultaneously promoting the η-phase is an283

important goal, whereas other alloys like alloy 706 exploit the η-phase. It is284

therefore important to understand which elements may be used to selectively285

stabilize one of these phases.286

Fig. 9 shows a plot of the calculated energies from Fig. 6 and 8. The two287

shaded regions show which elements can be used to stabilize one phase more288

strongly than the other, with elements close to the boundary between the289

regions stabilizing both phases.290

Elements that strongly favor the δ-phase are Mo, Tc, Re, Os, and W.291

The elements V, Ta, Ru, Ag, and Au also stabilize the δ-phase more strongly292

than the η-phase, but the effect is of the order of the thermal energy at293

forging temperature (kBT ≈ 100meV). The η-phase is strongly stabilized294

by Al and Zn. For Cd, Rh, and Hg, the energy in the η-phase is close to295

that in the δ-phase so that both phases may be stabilized. This is also296

true for Zr and Hf which have a strong tendency to replace Nb and Ti,297

respectively. (At sufficiently high concentrations, Ni3Zr or Ni3Hf may form298

instead.) Note that among these elements, Hg, Cd, Ag, Au are known to299

strongly deteriorate mechanical properties of the alloys and are thus not300

suitable as alloying elements.301

Although the δ and η-phase are non-magnetic, alloying elements may302

change the magnetic state of these phases. This effect is largest for Cr, Mn,303

Fe, and Co. For the δ-phase, these elements have large energies in the δ-304

phase and do not dissolve in this phase according to our calculations, but for305

the η-phase, magnetic effects may actually allow these elements to dissolve.306

It can also be expected that increasing the concentration of these elements307

will increase this effect further.308
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Figure 9: Effect of alloying elements on the stability of the δ-phase and
η-phase. The plot shows the energy change in adding an element to both
phases. Elements in the upper left region tend to stabilize the δ-phase more
strongly than the η-phase; those in the lower right region stabilize the η-
phase more strongly. Datapoints in grey are for configurations with magnetic
moment in the δ or η-phase; datapoints for the non-magnetic state of Fe and
Mn in the η-phase are not shown because they are outside of the scale (larger
than 1 eV).
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In the calculations presented here, a Ni31X-supercell was used to represent309

the γ-phase. In realistic nickelbase superalloys, the γ-phase contains a large310

number of alloying elements. One of these elements is chromium which has311

the effect of making the alloy non-ferromagnetic. A full study of a 32-atom312

supercell with the appropriate amount of Cr-atoms (typical Cr contents are313

about 18%) would require the computation of a large number of different314

configurations and is beyond the scope of this paper. To estimate the size315

of the effect, we performed some preliminary calculations using a smaller316

Ni14Cr2 cell. We chose the lowest-energy state we found for this cell as317

a reference and then substituted one Ni atom by the alloying element in318

different positions. The solution energies of most elements tend to decrease319

on the order of about 200meV, so that dissolving elements in the chromium-320

containing matrix becomes more favourable. Thus it may be expected that321

the phase-strengthening effect of some elements may be weakened by this322

effect. A more detailed study of this effect will be done in the future.323

In conclusion, our results give theoretical insights into the stabilizing324

effects of relevant alloying elements on the δ and η-phase. All calculations325

were performed at 0 K. Additional studies are thus necessary to see how finite-326

temperature effects affect our results. In addition, EDX-measurements of the327

δ and η-phase will be performed to compare these results to experiments.328
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718-Type Ni-Co Superalloy Family for High Temperature Applications346

at 750 C. In 8th International Symposium on Superalloy 718 and Deriva-347

tives, pages 587–599. Wiley Online Library, 2014.348

[7] Xiaoxia Wu and Chongyu Wang. Density functional theory study of the349

thermodynamic and elastic properties of Ni-based superalloys. Journal350

of Physics: Condensed Matter, 27(29):295401, 2015.351

[8] G Kresse and J Hafner. Ab initio molecular-dynamics simulation of the352

liquid-metal–amorphous-semiconductor transition in germanium. Phys-353

ical Review B, 49(20):14251, 1994.354

[9] Georg Kresse and Jürgen Furthmüller. Efficient iterative schemes for355

ab initio total-energy calculations using a plane-wave basis set. Physical356

Review B, 54(16):11169, 1996.357

[10] Georg Kresse and Jürgen Furthmüller. Efficiency of ab-initio total en-358

ergy calculations for metals and semiconductors using a plane-wave basis359

set. Computational Materials Science, 6(1):15–50, 1996.360
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