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INFLUENCE OF TRANSVERSE SHEAR
ON AN AXIAL CRACK IN A CYLINDRICAL SHELL

‘ by

Steen Krenk
Research Establishment Risd, Roskilde, Denmark”

ABSTRACT

An axial crack in a cylindrical shell is investigated by use of
a 10th order shell theory,thich accounts for transverse shear defor-
mations as well as a special kind of orthotropy. The symmetric prob-
lem is formulated in terms of two coupled singular integral equations,
which are solved numerically. The asymptotic membrane and bending
stress fields ahead of the crack are found to be self similar., OStress
intensity factors are given as a function of the shé]1 parameter for
various values of the ratio crack length to shell thickness. Consider-
able differences from 8th order shell theory results are found for the
bending_strésses,_while the membrane stresses of the 8th order theory

seems to be a lower 1limit reached for very thin shells.

Part of the present work was carried out dur1ng a visit to Lehigh
University supported by NSF under the Grant ENG 73-045053 AO1 and
NASA-Langley underrthb Grant NGR 308-007-011.
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1. INTRODUCTION

Plate and shell theories based on Kirchhoff's assymption only en-
ables the satisfaction of two plate-type boundary conditions. Broadly
speaking the importance of this restriction depends on the variations
of the field quantities compared to the plate or shell thickness.

Thus serious shortcomings can be expected in problems where steep grad-
ients are encountered, e.g., crack problems. A number of investiga-
tions [1-4] concerned with a crack in an infinite plate in bending have
revealed considerable differences between the 4th order bending theory
solution and solutions obtained b&_use of 6th order Reissner-type
bending theory [5]. The differences concern both the magnitudes of

the stresses and their distribution around the crack. In the light

of these results it seems to be of considerable interest to supplement
existing results for cracks in shallow shells described by 8th order
shell theory with calculations, which explicitly incorporate the effect

of transverse shear.

In the present paper a brief derivation of shallow shell field
equaticus including transverse shear is given. The procedure follows
closely that of Naghdii[G], but a certain type of orthotropy is in-
cluded here. It is demonstrated, how these orthotropic equations can
be obtained from the isotropic equations merely by use of suitable
variable transformations. This also holds for the 8th order shell
thgory used in préﬁioﬁs investigations [7-10], and these solutions

can therefore be given a more general “interpretation.
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Although the shallow shell equations are fairly general, the rest
of the paper is confined to an axial crack in a cylindrical shell.
The method of solution is that of singular integral equations obtained
by the complex Fourier transform. An investigation of the asymptotic
stress field around the crack tips is included, and extensive numer-

ical results are given.
2,  FUNDAMENTAL EQUATIONS

In tﬁis section a brief derivation is given of the fundamental
equatijons for a shallow elastic shell. A special kind of orthotropy
is accounted for through the parameter §. In the isotropic case the
equations are those given by Naghdi [6]. The middle surface of the
shell is described in the cartesian coordinate system of Fig. 1 as
Z=Z(Xa), 0=1,2, The stress resultants are given 1h terms of their .
components in the {XG,Z} system. A different approach has been used

by Sih and Hagendorf [11] for an isotropic spherical shell.

When only a vertical load q(X)) is included, the equilibrium equa-

tions are
= : 2.
Nog,g = 0 | (2.1)
Voot (T Ngd g *a=0 “ (2.2)
Haﬁ.s -V, =0 | - (2.3)
NaB’ Mas and v, are the membrane forces the moments and the transverse

shear forces,



For a shallow shell the strains eas are defined by

.
eaB "7 (UasB ¥ UBIa * Z:aNnB ¥ Zr wla) (2.4)

where U, and W are the displacement components in the"{xa.Z} system,
The normals to the shell in its original configuration éﬁange direc-
tions by the angles By The slope of the middle surface changes by

W o’ and thus the effect of the transverse shear is expressed by

0, = ”,a * By : (2.5)
From (2.4) a compatibility equation is extracted in the form

€rr®85'Cag,ys T Lopf,ys) = 0 (2.6)

where e, is the permutation symbol.

y

When elastic shells are considered, Hooke's law yields

heaﬁ = amﬁyﬁNyﬁ (ij)

where h is the thickness of the shell., By use of the stress function

F(Xa) defined by
NaB =e e, F_. " | {2.8)

the equilibrium equation (2,1) is satisfied, while {2.2) takes the

form
__MaB,aB + zgagguyﬂgaf,qa tq=20 | (2.9)
The compatibility equation (2.6) becomes
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eaKeBAeYNEGvaaBYGF.KApv + hz.dﬁeuYeBﬁw.YG = () (2.10)
In general solutions of the system of differential equations (2.3),
(2.9) and {(2.10) will be quite COmg1icated. However, considerable simp-
lifications arise, if the differential operators can be factorized. Be-
low only orthotropic materials with {Xa} as principal axes are considered.

This implies the following form of (2.7),

] 1Y T
__E.” F-E-]- -ET 0 NTl
_1lY2 1
1

where voE, =viE,.  In this case the factorization property amounts to

F

LJ+1 U (2.12)

<

1 B - A

Now introduce the geometrical mean values

E = vEE, » v = {u]vz (2.13)

and the orthotropy parameter & defined by

i (2.14)

g4 = =

2 2

ﬁl_.d

In terms of these three parameters (2.11) takes the form
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-~ -, 94 rF A
- 1 2
e = FE |7V 8 0 Ny {2.15)
EE1§ hp 0 2(1+vL f]%

Following from an assumption of linear variation of the stress compon-

ents caB over the thickness the moments are then given by

- - -2 -1 — -1
M 8 v 0 By .1
M| = E oy s B (2.16)
220 T2 TV? 2,2 '
9 d=v
Mi2 LO 0 7 1B,2%B2,1
R ) . -

A linear relation between the angles ea and the shear forces Vu is
assumed. In order to make elimination of the moments from (2.9) possi-
ble this relation must be of the form

-l N
) 0 V1

(2.17)
0 § Vy

B is the effective transverse shear modulus, which in the isotropic case

may be taken as %—G [51.

The system of differential equations can now be simplified by elim-

inating the moments. When the notation

Va =§ —a-iz-'l'.ﬁ W (2.18)



is adopted, the result is

: 227 32, 9% S0 (2
VeF + hE (537 9y7 - 2 Wk 3x|3Xz "7(5" TT)" 0 (2.19)
and
BB ouy o (1ot E v":{ 227 32, 81 B2
12 T-v% *&" ~ V' TT2(T-V%Y B Yo VOX] 9 g~ ayok. 9 X;axa
327 8% .\o _ h E
+ W W)F = (1 “ TSUT=7T B«Vé)q (2.20)

with the extra conditions

W . W E oz . My 2 B -

B * ok = T B 8B 7 e ey T g (2.21)
R ey 3 OB 9B :

B + ok = T2y B [VEBe * 6 7~y (¥, ) (2.22)

3.  DIMENSIONLESS PARAMETERS

The following curvature measures are introduced

1 327 1 _ 822 1 Pz

1. .22 1.2 = . (2.23)

Ry T TR v Ry TERE Ry, T aKK

When dimensionless variables and pérameters are defined as shown in

Table 1, the differential equations (2.19)-(2.22) reduce to

1

fy n 32 2 B 2 )
o (03 B - 2%, oy * M A = 0 B (3.2)

2 2 2 )
Vow + A2(1-kV2) (A2 %z- 2 7+ M 2o =2 (17?) {4
(3.3)
-7-
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and

B

(1-ev2)p, + = o Y L (o - o) (3.4)
36 9B

(1-ev2)8y + 3= e 32 & (gt - ) (3.5)

The usual static and geometric boundary conditions can also be
~formulated without explicit use of the orthotropy parameter §. As a
consequence the following presentation refers to an isotropic she11..
The corresponding specially orthotropic solutions are easily found

by use of Table 1. It should be pointed out that the shell parameter
Az is 6% times the shell parzineter used by Yuceoglu and Erdogan [121.

4. THE CYLINDER - INTEGRAL REPRESENTATION

When considering the cylinder shown in Fig. 2, A4=2,,=0. The

homogeneous equations corresponding to (3.2) and (3.3) then take the

form
vo - (Bt 3M-0 (4.1)
A’ OxZ .
2 2
Vi + (M2) (1v2) 22 = 0 (4.2)

Elimination of either w or & from (4.1) and (4.2) leads to the same
8th order differential equation

[
P + A3 (1-kv2) SR = (4.3)

Although the introduction of a finite transverse shear stiffness
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represented by 1/x does not {increase the order of the differential
equations (4.1) and (4.2), the order of (3.4) and (3.5) is increased
thereby enabling the satisfaction of five boundary conditions as com-

pared to four, when k=0.

The procedure now is to give integral representations for &(x,y),
w(x,y), B,(x,y) and Sy(x.y). When a crack is present along part of
the x-axis as shown in Fig. 2, different expressions must be given for

the half-planes y>0 and y<0. Introduce the representations

ouy) = e [ Blewe B (e
wix,y) = 2‘;[: w(E,y)e 1 E¥de : (4.5)

where 5(a,y) and w(E,y) are given by

8(E,y) = Im;(x.y)eiaxdx : (4.6)
w(&:“.y) = [mw(x..v)ei X dx (4.7)

Due to (4;3) and the corresponding equation for #{x,y) both w(&,y)
and 3(£,y) can be expressed as linear combinations of exp(mjy). where

my= j(E) are the roots of the characteristic equation

(m2-£2)* + (A E)*[V - w(m®-g%)] = 0O . (4.8)
The notation _

p - mz _ﬁ”gz_ (4.9)

B

=



1s now introduced leading to the quartic equation
P + (A2£)*(1-xp) = 0 (4.10)

The solutions pJ(E). 3=1,..,4 to (4.10) are given in Appendix A. The
Solutions mH(E) to (4.8) are selected such that

Re[m3]<0 b Myyg = oMy i=1,..,4 (4.11)

When the displacement transform function w(g,y) is given in the

form

PR L o
3=1 (4.12)

e Lizs Rj(s)emjy . ¥<0

the transform function 2(£,y) is found by substitution of (4.12) into
=,(4'1)'

Ag. 2 b L E. 2 mjy
J- L G ryoe o

¥(Ey) = 4.13
- [ t’%)’jgs (%)ZRJ(E)emjy . y<0 e
Introduce the_functionw(x,y)lﬁs
¥(x.y) = %‘- - 2;} | (4.14)
The equations (3.4) and (3.5) give the equation
(e 2oy =0 TR

from which the transform function ¥(Z,y) 1s:found to be
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[A"(E)e » ¥o0

(4.16)
]nzte)e » ¥

&2
——
R |
-

where
2=tV ey (4.17)

Now ¥(x,y) is assumed to be independent of 8, and 8. The equa-
tions (3.4) and (3.5) are then solved, and the solution verified by
substitution into the original equations. When a function x(x,y) with

the trahsform

E (15;0 R (E)e _. y>0

%(E.y) =g ) Ea, & (4.18)
l ) (3 ) Ry (e d , y<
is introduced, the solution is found to be
g, =X+« 1 gﬁ (4.19)“
B, = 5% - ¢ A (4.20)

The solution to the field equations has now been represented in
terms of ten unknown functions Aj(E). j=1,2 and Rj(g), §=1,..8, which

must be determined from the boundary conditions of the prOblem.
5.  BOUNDARY CONDITIONS - SYMMETRIC LOADING

For the axial crack shown in Fig. 2 the following five static

quantities are prescribed at the crack surface,
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(5.1)

The last expression is used in differentiated form in order to secure

Mﬁlmensional:consjstency. By substitution of the integral representa-

tions of the ara:lous section the following expressions are found for

the half-plane y>0. The corresponding expressions for y<0 foliow trivi-

ally from changes of the indices.

-igx
ixon) = [ ): oy Rylee e e

_ 1 Az & -2 ITIJ}' -1Ex
Nyy(Xs¥) = 2—.,;1:{.153(-,7) jg}mjpj Ry(Ee 'l dg

4 m.y
H (Xsy = %.ZL r{sh(—i)“jgi[Pj"'(1'\’)§2]pj—4nj(5)e 3

r.y =-iEx

+ KU jern(g)e le e

M (x,y) = 2 “’Jﬂ{ifﬁi '4R(s)
xy %0y TEF';m l o1 J

.I 2 r]y -igx v,
f G [1+c(1-v)E ]A](g)e e dg,

-12-
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- ' 4 _ m.y
"a%i' Vy(31y) = '?.!TT ﬂ{-iEsnA'z'jz]ijj'aﬂj(E)e J
ry =18
+ K 153 E’A1(€)§ Y} dg | (6.6)

The problem of static boundary conditions on théacrack in Fig. 2
could in principle be formulated directly in terms of the unknowa func-
tions Aj(g) and Rj(g). This would lead to a system of cdupled dual
integral equations, which is not easily solved even by numerical meth-
ods. An alternative and numerically more suitable technique consists
1n:the following. The integral representations given in Section i are
_ used to express geometric quantities, which are in a sense complemen-
tary to the static quantities (5.1). The most direct choice is the

generalized displacements corresponding to the geﬁeraIized forces (5.1).

For the sake of brevity we shall 1imit our attention to the case

of symmétric self-equilibrating loading.
t‘y‘y(xly) = Nyy(xi'.‘/) ’ ny(xly) = 'ny(xt'y)
Myy(xay) = My (xamy) o My (xoy) = =My (xe-y) (5.7)

Vy(xay) = =V (x,-y)
In this case

T Rypa(E) = Ry(E) 4 AN(E) = AY(e) | : (5.8

13-



whereby the number of unknown functions reduces to five.

Due to (5.7) the boundary conditions for ny. ny and Vy ére homo-
geneous, We therefore only need to introduce generalized displacements
corresponding to N, and M By use of Hooke's law (2.15) and the

yy v
equilibrium equations (2.1) we find

§§T y+H EEI' © (5.9)

It is convenient to use the following two functifons as. unknowns,

9lx) = Mm = vixy) | (5.10)
f(x) = 1in 3 By xy) | (s.11)

Their integral representations are

-2 -1Xg -
g(x) = [ {15( ) Xm iP3 Ry ()Y e df (5.12)

-V .2 “ “‘135
f(x) = f{-igm Zm Py Rj(E) + el g2a(g)le Cde (5.13)

The five unknown functicas Al(E) and RJ(E), j=1,..4 are now elim-
inated by use of the three homogeneous boundary conditions and inver-
sion of (5.12) and (5.13). It is noted that g(x)=f(x)=0 for x¢[-1,1].
After a few reductions we find

1. ¥ __ __
A} = -2 [ ft)e dt | -- (5.14)
1 ) __ |

3

18-



and the four equations

. 1

R (E) = - it
PALHORE Lf(t)e ot (5.15)
4 ¥ 1 -
1§1pd“amjnj(s;) = -1 ({-‘;}.2[19(t)e“5dt (5.16)
& -

-? T
ijj EmyRy(£) = 0 (5.17)
. 1 |
& py~Em Ry (E) = 4 g%l]f(t)eitgdt | (5.18)

Due to the systematic nature of these equations the solution is
straightforward. When use is made of the characteristic equation (4.10).7

we get

: 1
] i ) ) 1 18
RI(E) Emj(p1-p2)(p]-p3)(?]qp4) { pi[p]+(1 V)Ezl I]f(t)e dt

1 . : ;
+ (0,) 26" (1-cpy) f g(t)e’ tEyt) (5.19)
J, | __

The esxpressions for Rz(s), RS(E) and R4(s) are found by interchanging
the indices.

It should be noted that A1(E)=0 does not follow from the limit .
process k+0, Special care must therefore be taken, when relating re-
sults of the present theory to resuits from 8th order shallow shell

theofy.
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6.  SINGULAR INTEGRAL EQUATTIONS

When A](E) and RJ(E) from (5.14) and {5.19) are substituted into
{5.2) and (5.4), integral expressions for Nyy(x,y) and Myy(x.y) Are
obtained in terms of the two unknown functions f(t) and g(t). For
y=0 the integrals are defined by the 1imit y+0+. Contributions to the
integrals, which ace non-integrable for y=0 are extracted by use of
the equations (5.14)-i§:i8).

The identity (5.17) is multiplied by £]&]|(r2/2)%exp(-|Ey]) and
added to the integrand in (5.2).

1 X 2 2
tyyt) = 3 [58) C lelmgE) Ry(o

| ST
[+ J"_‘-ZjL BN Sl e (6.1)

Asmymptotic expansion for large vé1ues of £ yields

]

i +l§le(m‘j+|€|)lyl~ 1-(1- Ez+%

m.

2
%1__'_ ““.)e(mj"'lgl)‘.Vl (6.2)
J

M—l

Substitution of (6.2) into (6.1) and use of the identity (5.16) Vead
to a non~-integrable term of the form
. ; - -ixg
5 ~ 1 [P Azy? i v |E|m eyl
Gyx0) = Yim e [B°C T ol rytene e
G e =|gy| 1E(t-x)
fm 3% Lg(t){ sgn(gle e dgdt

=

) o . 6.3)
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The last integral must be evaluated as the Cauchy principal value,

By a similar, but sliyhtly more complicated procedure, the follow-

ing non-integrable contribution to the moment ﬂ!y(x.o) is found

1
My (x:0) = F—%’—Q—-I LI (6.4)

After extraction of the non-integrable parts of the integrals the

boundary conditions take the form of two singular integral equations.

] 1
1 ; : =
[]['t_-'i + Kpp(t-x)Ja(t)de + LKlz(t-x)f(t)dt = 2m, . (x,0)

=1<x<] (6.5)
! Yo1-v? 1
[1K21(t-x)g(t)dt ' L[ 2 b Kyplt-0)TE()dt = 20 B (x,0)
=1<x<] - {6.6)

When the symmetry properties mj(£)=mj(-g) and pj(£)=PJ(-E) are
noted, the functions Kjk(t-x) are easily brought in the following form
2

R4
Kyp(e=x) = [m{z Lo CR AL N Ce ) Rl Si"E(t'”)dE (6.7)

p] + (1-v)E?
(py-Po) P1-P3i (Py-p4)

o0 L ’
Kyp(t=x) = Ky (t-x) = [0{2(%?4?2'%%

sinE{t-x)dE (6.8)

z £? [ + (1‘V)52]2
Kzz(t-x) = I {2( ) ; m P2 TD1-PZ)(P1'P3)(P1'P4

17-



2 L2 e 1 ) gneteen)de (5.9)

The summations imply interchange of the indices.

Dua to the presence of terms. of order a’uthe expression (6.9) is
not sujtable for numerical integration. The problem is solved by con~
structing the following identity from (5.15), (5.18) and (5.19).

A [P1 + (1-v)E?2]?

33"y + 2c U9°
i Pz(Pj‘Pz)(P]'P3)(Pj‘Pd)

e+alPeo
(6.10)

Kzz(t-x) can then be evaluated by the more suitable ekpression

[py + (1-v)£2]?
Kpalt-x) = r @) z st Torsp TR T T (E)

2c O peery) + Lo0@9) 5 Ginp(enae (6.11)

In order to get continuity of the displacements outside the crack

the solution must also satisfy the two conditions
] 1 “ “
[Cateyat = o .Lﬂﬂu=o | (6.12)
=1 - )

The integral equations given above only apply when x>0. In order
to obtain the corresponding equations for the 8th order theory, where
k=0, the function A,(g) must exp]icitlj be set éqdal to zero. Only
Myy's dependence on f(t) includes A{(E), and the changes are therefore
- restricted to the last integral in (6.6). The coefficient (1-v?}/)*

must be replaced by (1-y)(3+v)/1“. and the kernel Kzz(t-x) is now

-18-



0 (riu) o Ay, o ER [py + (1.v)E?]? )
Kapt-x) J:{"’(A) L b 0,7, T8 TRy (M)

+ 11§¥li } sin&(tjx)ds (6.13)

7. THE ASYMPTOTIC STRESS FIELD

The solution to the two singular integral equations (6.5) and (6.6)
is of the form [13]

a(t) = (1-t2)75(t)
(7.1)
f(t) = (1-t?) 7% (t)

In order to obtain the asymptotic stress field in a neighborhood of the
crack tip x=1 the following formula, which is derived in Appendix B, {s
used !

1
Lg.(t)emdt ~ /1 (6(1)expli(&-sgn(E) ]

+ 6(-1)expl-1(£-sgn(£) 7)1} (7.2)

Substitution of (7.2) and the similar formula for f(t) into (5.14)-
(5.18) makes possible an asymptotic analysis similar to the one which
lead to the extraction of the Cauchy integrals. Now, however, {6.2)
_must be expressed in the slightly different form

(m+el)yl ¢ pj o pid
e -3¢ vahF o 1l 0.2

-19-



cj. §=1,2,... are constants, which do not influence the result.

The asymptotic expressions are obtained by application of the
following formula [14;.3.944]

-1 sin s -
I:Eu s [cos]( 8€)dE = (8 iiz)u [cos] (u arctg g) (7.4)

It is seen that a factor (E,B)J under the integral sign does not change
the order of the result for 8,56+0. The order of the terms in (7.3) can
then be evaluated as if |Ey| were a constant. It turns out that only

the first term of (7.2) contributes to the singular stress field around

x=1.

Substitufion of (7.2) and (7.3) into (6.1) yields
_6 1 ~E|y| )X
Nyy(%:¥) ~ e o,rg”"'g"'!)e /Isin[E(1-x) - F]dE (7.5)

In the same way we find

obeon) = S [ L gty W im0 - e .00
ny(x.y)ﬂ" G(]) [m VE ye F|y|cos[§(1-x) zﬂda | (7.7)

The asymptotic expressions (7.5)-(7.7) are also valid for k=0, For

. k>0 the asymptotic expressions for the moments are

Mylxy) i Bk [ (eglye s lsinfe1-x) - Flag (7.8)

: 0.



M, (%) ~ 1ox joi-<1~.e;|y|)e"i‘ylsin[a(1-x)--}st (7.9)

EQ).
/2 1o VE
Myg(oy) ~ 5= £ L) Ve et ¥l cospe(1-x) - Jaae (7.10)

It follows from (7.5)-(7.i0) that the asymptotic membrane and
bending stress fields are self similar for k>0. This is 1n:agreement
with results reported in [_174] and [11]. For k=0 the asymptotic bend-
'1ng stress field is found to be different and depend on Poisson's

ratio v {7,10].
When the coordinates r and 8 are defined by
x-1=yrcos®@ , y=rsind (7.11)

application of (7.4) and use of trigonometric.formulae lead to the

result
:’x; N% cos(6/2) + %— cos(se/z)—
%y ~ _ﬁsz.};_.?.wl : %C_._OS(B/Z__) - %005(56/2) (7.12)
- " 1 s 1 ..
) = 6/2) + = sin(bB/2)
Oy -ZT sin(6/2) + 5 sin(56/ )_

For specially orﬁhotropi’c: materials r and 8 are not polar coordinates.

. With the usual definition of the stress intensity féctbr_‘

K] = hm J?(X -ai 022()( ’ : " (7.13).
- Kra S

we get
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K = - JE VA [61) + 2F(1)) | (7.14)

By inspection of the integral equations (6.5) and (6.6) it is seen that
the stress intensity factor at the surfaces Z=th/2 depends only on the
parameters v, A and k. Thus the thickness effect and the influence of
the effective transverse shear modulus are combined in the parameter
k=E/(BAY).

i

§.  NUMERICAL SOLUTION

The singular integral equations (6.5) and (6.6) are solved by use
of a quadrature formula of closed type developed in [15]. The integra)

equations are replaced by the algebraic equations

n

1=1 n i E-X,
=::ﬂ;‘ ) (8-])
o ]
A K (gomate) + [ T * Kl by IF(E)Y = 3 Myl 0)
(8.2)
where
t - i'] . (8 3)
4 = cos (ﬁ:T'“) » 1=1,2,...,0 .
x = cos (Bla) | k2, 0ne (8.4)
and
"n 1° wn no élﬁtli : !
' ' (8.5)

W ="'ﬁ:T ’ __1=2,3,...,n-'|
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The extra conditions (6 12) are replaced by

n .
): M, j6(ty) = 0 1§]Hn’iF(t1) =0 (8.6)

The convergence of the method is estimated by evaluation of the

coefficients bJ in the following expansion

_3 |
6(t) = 3L a(1) + 5t (1) + (1-82) :;0 byl (t) (8.7)

where UB(t)is the Chebyshev polynomial of the second kind of degree j.
The coefficients bj can be expressed explicitly in terms of the solu-

tion to the algebraic equations [15].
, Nzl 14t 1-t, R "
by =gt L, [6(t4) = 6(1) - G(-1)1Yy{t,) (8.8)
The necessary values of the bounded kernels K]I(ti'xk)' Klztti'“k)
and Kzz(ti'*u) were calculated by hse of Filon's integration formula.
9.  RESULTS

Numerical results are given in the form of stress intensity factors
for two loading situations, constant mambrane load and constant bending
moment. For each loading situation two stress intensity factors are
"'given. one for the average stress and one for the surface stress from
bending. Introduce the following normaifzation of the stress intensity

factors. For compressive membrane load o

km = Ky (0Hop, a7 - : (9.1)
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Ky = Ky {h/2) - K (0)1(a, /)™ (9.2)

For a constant bending moment with maximum surface stress %

kyp = [y (0/2) - K () (o, V&) (9.3)

w -1
knp = K1 (0)(oy V&) (0

?he results are given as functions of the shell parameter A, for
varigus values of a/h in Tables 2-5 and Figs. 3-6. The effective
transverse shear modulus f%-ng-has been used together with w=0.3,

The first column of the tables and the dashed curve in the figures
correspond to 8th order shell thecry (k=0). As expected from the dif-
ference in the asymptotic moment fields the bending stresses show some
differences. The membrane stresses from the 8th order theory, however,
are found to be representative for very thin shells h/a<10. It is im-
portant to note that in general Bth order shell theory gives non-

conservative estimates of the membrane stresses.

The extrapolated values of k,, for A,=0 are in good agreement

with the results obtained in [2-4] for aupIate.
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APPENDIX A
Solution of the equation p* + (2,&)*{1-kp) = 0

Following the method in [16] the solution of the quartic equation

p* + (A,E)*(1-kp) = 0 - (A1)
requires the real root of the cubic equation
X3 - 8(2,E) % = k2(X,E)* = O _ (A.2)

Now introduce the parameter

n= 3/73 (fffi)z o (R.3)

The real solution to (A.2) is determined as the sum of 8, and 8, given
by

6 5 = ()°0,8) s FETY (a8)

0

This relation is rewritten in the form
” s [exp (£ 1 Arccosn) . 0<n<)
3 2 L S “ |
51 ’2 = ('ﬁ) (2;E) < (A.5)
" | lexp {+ Arccoshn) , 1<n

The real root of (A.2) is then given by

~ |cos (%-ArccoSn) » 0<n<i
(2,8 < | (A.6)

X ¥ B1+82 = B
cosh (%-Avccoshn) , 1¢n

N
3

The roots p of (A.1) are found from %

w2]-



fp+gx+ ugr=o (A.7)

Teading to

p = AL /°°j§°73’ [+ W) AT /7eoestora))

0<n<l n = cosé (A.8)

For 1<n cos( ) is replaced by cosh ( ).



APPENDIX B

_ . 1 (t) et
. Asymptotic expansion of I(E) = I H18) GTetyy
| 1 N-t2

Rewrite the integral in the form

I(g) = 1: ‘%‘i%‘ e'5tqt

. | .

. L{[¢(t)+¢(-t)]cos(a’t)ﬂ[¢(t)-¢(-t)]sin(zt)} -in_"—:f,— (8.1)
Introduce the following series expansion of #(t)

${t) = jZOCjT‘j(t) (B.2)

and use the results [14; 7.355]

] |
ITZnﬂ(t)Si"(Et) = (5 0, (1EDsan()
0

(B.3)

1
dt N o
JTanttrcostet) =2« (a1 E 0, (1)
Td(t) is the Chebyshev polynomial of the first kind of degree j, and
Jn(g) Ts the Bessel function of the first kind of order n. The integral -

then is

I(g) = n jgo(-nj Cpi0py(1E1) +1 sgn(€)°23f1_qgj+1(|5|)] (8.4)

- From the asymptotic formula [14]"
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o(1ED) = /o costlel -5 - Prrsote™)] (8.5)

we get

I{g) ~ /TETZ“ jzo [czjcosu!-:l!-})ﬂ sgn(E)c,qyysin((El -] (B.6)

By use of Tzn(31)=1 and T2n+](t1)=tl the leading term of the asymptotic

expansion of I(g) is found to be
1(g) ~ /' 51er (¢ expli( - sgn(e) I

+ ¢(~1)exp[-1(5 - sgn(£) PN (B.7)
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Table 2. Stress intensity factors ﬁun

x| k=0 | a/h=t | a/h=2 | a/h=5 | ash=10

0.01 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.26 | 1.0l | 1.1 | 1.005 | 1.015 | 1.015
0.50 | 1.086 | 1.067 | 1.058 | 1.057 | 1.087
0.75 | 1.119 | 1.138 | 1.123 | 1020 | 1.19
1.00 | 1.198 | 1.233 | 1.208 | 1.200 | 1.199
1.5 | 1,301 | 1.485 | 1.420 | 1.308 | 1.39
2.0 | 1.613 | 1.788 | 1.668 | 1.625 | 1.618
3.0 | 2.095 | 2.478 | 2.220 | 2.122 | 2.105
2.0 | 2.588 | 3.254 | 2.808 | 2.634 | 2.603
5.0 | 3.075 | 4.100 | 3.414 | 3.146 | 3.096
6.0 | 3.552 | 4.944 | 4.069 | 3.656 | 3.580
7.0 | 4.021 - 4.723 | 4.154 | 4.054
8.0 | 4.484 ] - 4.649 | 4.515
10.0 | 5.376 - ; - 5.422
12.0 | 6.297 - - - -
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Table 3. Stress intensity factors kbm

A2 | x=0 | a/m=1 | a/h=2 | a/h=5 | a/h=10
0.01 | 0.0001) 0.0001| 0.0001] 0.0001) 0,0001
0.25 | 0.0328| 0.0235| 0.0221| 0,0212| 0.0208
0.50 | 0.0866 | 0.0602{ 0.0571| 0.0551| 0.0544
0.75 | 0.142 | 0.0951| 0.0912| 0.0890 | 0.0891
1.00 [ 0.194 | 0.1243{ 0.1206| 0.1193| 0.1200
1.5 | 0.279 | 0.1622] 0.1604| 0.1636| 0.1674
2.0 | 0.33 | 0.1757] 0.1748| 0.1851| 0.1942
3.0 | 0.370 | 0.1507| 0.1397| 0.1661| 0.1887
4.0 | 0.313 | 0.0801| 0.0395| 0.0762] 0.1156
5.0 | 0.176 | -0.0266 | -0.1089 { ~0.0698 { -0.0140
6.0 | -0.025 | -0.1510] -0.2965 ) -0.2605 | -0.1865
7.0 | -0.279 - | -0.4991 | -0.4826 | -0,3952
8.0 | -0.579 - - | -0.7369 | -0.6343

10.0 | -1.306 - - - ]-1.1829
-2.186 - - - -

12.0
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Table 4. Stress intensity factors kbb

Ay k=0 a/h=1 | a/h=2 | a/h=5 | a/h=10
0.01 | 1.000 0.747 | 0.699 | 0.662 | 0.644
0.25 | 0.998 0.745 | 0.698 | 0.660 | 0.643
0.50 | 0.992 0.738 | 0.692 | 0.655 | 0.639
0.75 | 0.983 0.728 | 0.684 | 0.649 | 0.637
1.00 | 0.973 0.716 | 0.674 | 0.641 | 0.628
1.5 | 0.950 0.693 | 0.653 | 0.623 | 0.612
2,0 | 90.927 0.671 | 0.632 | 0.605 | 0.597
3.0 | 0.881 0.633 | 0.594 | 0.572 | 0.564
5.0 | 0.838 0.603 | 0.561 | ©0.540 | 0.535
5.0 | 0.807 0.580 | 0.534 | 0.513 | 0.506
6.0 | o0.767 0.562 | 0.511 | 0.489 | 0.483
7.6 | 0.737 - 0.492 | 0.468 | 0.463
8.0 | 0.709 . - | 0.450 | 0.446
Te.o | o.661 . - - | 0.413
12.0. | 0.621 - - - -
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Table 5. Stress intensity factors kmb

A, k=0 a/h=1 a/h=2 | a/h=5 } a/h=10
0.0 0.0000 | 0.0000 | 0.0000 } 0.0000 | 0,0000
0.25 0.0043 | 0,0069 { 0,0060 ; 0.0051 | 0.0047
0.50 0.0115 | 0.0184 | 0.0158 | 0.0136 { 0.0126
0.75 0.0191 0.0302 { 0.026% ! 0.0227 | 0,0212
1.00 0.0267 0.0414 | 0.0363 0.0315 | 0.0294
1.5 0.0407 0.0607 | 0.0544 0.0478 | 0.0447
2.0 0.0530 0.0761 | 0.0698 0.0619 } 0.0582
3.0 0.073 0.0977 | 0.0933 0.0846 | 0.0799
4.0 0.0882 0.1121 | 0.7096 0.1032 | 0.0961
5.0 0.0998 0.1223 { 0.1209 0.1136 | 0.1081
6.0 0.1088 0.1282 | 0.1303 0.1231 | 0.1175
7.0 0.1161 - 0.1370 0.1303 | 0.1249
8.0 0.1221 ~ - 0.1359 | 0.1308

10.0- 0.1309 - - - 0.1399
12.0 0.1388 - - - -
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Fig. 1. Stress resultants.



Fig. 2. - Cylindrical shell with axial crack.
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Fig. 3. Stress intensity factor kmm
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Fig. 4. Stress intensity factor k..
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Fig. 5. Stress intensity factor ki



Fig. 6. Stress intengity factor kmb
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