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Influence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the tube and particle diameter and shape, as well as their ratio, on 

the radial heat transport in packed beds has been studied. Heat transport experiments 
were performed with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfour different packings in three wall-cooled tubes, which 
differed in inner diameter only. Experimental values for the effective radial heat 
conductivity and wall heat-transfer coefficient for  the pseudo-homogeneous two- 
dimensional model and the overall heat-transfer coefficient for  the one-dimensional 
model are presented. Values were obtained for glass spheres, alumina cylinders, and 
alumina Raschig rings. The effective radial heat conductivity and wall heat-transfer 
coefficient can both be correlated as a linear function of the gas flow rate. The 
Bodenstein number fo r  heat at fully deueloped turbulent flow is influenced strongly 
by the shape of the packing: 10.9 for  glass spheres, 7.6 for alumina cylinders, and 
4.2 for alumina Raschig rings. For the same packing, no significant influence is 
found of the tube diameter on the effective radial heat conductivity or on the wall 
heat-transfer coefficient. The overall heat-transfer coefficient can be described very 
well by the so-called “lump equation,” which gives the relations among the overall 
heat-transfer coefficient, effective radial heat conductivity, and wall heat-transfer 
coefficient. The “ lump factor,” as used in the lump equation, has a best-fit ex- 
perimental value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7.4. 

introduction 

A wall-cooled tubular reactor, with a low tube-to-particle 
diameter ratio, is often used to perform highly exothermic 
catalytic reactions in industry. A major problem with such a 
reactor is the possibility of a temperature runaway to high 
temperatures. To prevent this, it is important to study the 
behavior of the reactor a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori by computer simulation. For 
such a sirnulation, a good mathematical reactor model is 
needed, capable of accurately predicting the temperature and 
concentration profiles, given a certain reactor design (such as 
tube diameter and length, and particle diameter and shape) 
and operating conditions (such as gas flow rate, inlet temper- 
ature and concentrations, and coolant temperature). When 
deriving a reactor model, usually the reaction kinetics and heat- 
and mass-transport phenomena are separated and described 
by effective kinetic and heat- and mass-transport coefficients. 
These coefficients are preferably obtained from experiments, 
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which are performed on a much smaller scale than the actual 
industrial reactor. 

This article is concerned with obtaining effective heat-trans- 
port coefficients from experiments without a chemical reac- 
tion. Especially, the influence of the tube and the particle 
diameter and their ratio, as well as that of the particle shape, 
is studied. Modeling catalytic fixed-bed reactors are discussed 
by researchers including: Singh et al. (1974), Hofmann (1979), 
Westerterp et al. (1984), Eigenberger and Ruppel (1985), Fro- 
ment and Hofmann (1986), Khanna and Seinfeld (1987), Oden- 
daal et al. (1987), Windes et al. (1989a, b), Schwedock et al., 
(1989), Fey0 de Azevedo et al. (1990), Froment and Bischoff 
(1990), and Westerink et al. (1990). 

Types of models 
Heat transport in wall-cooled packed beds can be described 

by different types of models. First, there are deterministic- 
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and stochastic-type models. With the latter, the results are 
different every time the calculation is done for the same con- 
ditions, depending on some random nature of one or more of 
the coefficients used in the model. Most models presented in 
literature are deterministic, although several use stochastic 
modeling, especially for studying residence time distributions 
using Markov-chain modeling and Monte-Carlo simulation 
(Krambeck et al., 1967; Schmalzer and Hoelscher, 1971; Ber- 
ryman and Himmelblau, 1973; Kado and Himmelblau, 1973; 
Raghuraman and Mohan, 1975). Second, there are discrete 
models, which use difference equations, and continuum models, 
which use differential equations. Until the early 70s, discrete 
modeling was often used, especially for modeling three- 
phase systems, like trickle-flow columns (Deans and Lapidus, 
1960a, b; Olbrich et al., 1966; Jameson, 1966; Porter, 1968; 
Rhee et al., 1973). But, since the large-scale introduction of 
the computer, continuum modeling became more popular. Al- 
though several investigators recently have switched to discrete 
modeling (for example, Klingman and Lee, 1987; Schnitzlein 
and Hofmann, 1987). We will focus on deterministic contin- 
uum models. 

When using a continuum model, one can distinguish between 
a heterogeneous (or two-phase) and a pseudo-homogeneous 
(or one-phase) model. The latter is often used for modeling 
steady-state heat transfer in a wall-cooled or wall-heated packed 
bed, because temperature differences between the solid and 
the gas phase are expected to be small. Also, one-dimensional 
and two-dimensional models can be distinguished, depending 
on whether the radial temperature profile is taken into account 
or averaged to a so-called “mean-cup” temperature. Further- 
more, it is possible to take axial dispersion of heat into account 
or neglect it. 

For a more general discussion of the description of heat and 
mass transport in packed beds with deterministic continuum 
models and available correlations for the transport coeffi- 
cients, see, for example, Bauer (1977), Kulkarni and Dorais- 
wamy (1980), Wakao and Kaguei (1982), Ziolkowski and 
Legawiec (1987), Dixon (1988), and Schlunder and Tsotsas 
(1988). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Developments in literature 

In this article, pseudo-homogeneous one- and two-dimen- 
sional models are used to describe heat transport in packed 
beds with a low tube-to-particle diameter ratio. Major devel- 
opments for these type of models and for the parameters used 
are briefly discussed. 

Colburn (1931) was one of the early pioneers, who used a 
pseudo-homogeneous one-dimensional model to describe the 
heat transport in a wall-heated packed bed with a low tube- 
to-particle diameter ratio. His work was later extended by Leva 
(1947) and Leva and Grummer (1948). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA heterogeneous two- 
dimensional model with axial dispersion of heat was presented 
by Hall and Smith (1949). But, they evaluated their results 
using a pseudo-homogeneous model with an effective overall 
heat conductivity in radial and axial direction. They noticed 
a sharp decrease of this thermal conductivity near the tube 
wall, which was also observed by Bunnell et al. (1949). It was 
suggested (Morales et al., 1951) that this decrease in effective 
radial heat conductivity was the result of a nonuniform radial 
velocity profile. Coberly and Marshall (1951) also used a 

pseudo-homogeneous two-dimensional model to interpret their 
measurements, but they introduced a wall heat-transfer coef- 
ficient, accounting for the decrease in heat conductivity near 
the tube wall. 

Until about 1955, most correlations for the effective heat- 
transport coefficients were obtained empirically. Calderbank 
and Progorski (1957) and Yagi and Kunii (1957) were among 
the first to relate the effective radial heat conductivity, which 
is a lumped parameter, to the underlying heat-transport phe- 
nomena. The following mechanisms, independent of fluid flow, 
were recognized (see also Argo and Smith, 1953): 

1. 
2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. 

4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 .  

Thermal conduction through the stagnant fluid 
Thermal conduction through the solid 
Thermal conduction through the contact surfaces of two 

Radiant heat transfer between surfaces of particles 
Radiant heat transfer between neighboring voids. 

The following mechanisms, dependent of fluid flow, were also 
recognized: 

particles 

6. 

7. 
8. 

Thermal conduction through the fluid film near the 

Heat transfer by convection solid-fluid-solid 
Heat transfer by lateral mixing of fluid due to the di- 

viding and mixing of fluid filaments passing round particles 
of packing. 

It was assumed by Yagi and Kunii (1957) that mechanisms 3 
and 6 act in parallel and that these act is series with mechanism 
2. Mechanisms 1, 2, 4, 5, 7 and 8 were supposed to act in 
parallel. They assumed the contribution of mechanism 7 to be 
neglectable compared to the others and that the flow depend- 
ence of mechanism 6 is small. Their work was extended later 
by themselves and several others, like Kunii and Smith (1960), 
Wakao and Kato (1969), and Zehner and Schlunder (1970, 
1973). A similar approach was used by Yagi and Kunii (1960) 
to develop a theoretically based equation for the wall heat- 
transfer coefficient (see also Yagi and Wakao, 1959). 

For mechanism 8 it was found that at fully developed tur- 
bulent flow, the radial Bodenstein number should have a value 
of about 11, independent of the Reynolds number (Bernard 
and Wilhelm, 1950; Baron, 1952). Schlunder (1966) theoreti- 
cally derived a value of 8, by assuming that the radial dispersion 
distance equals the particle diameter. Near the wall, a value 
of 16 was obtained, by assuming total reflection of the gas, 
and an interpolation formula was presented. Later, Tsotsas 
and Schlunder (1988) showed that it is not the reflection at the 
wall that increases the Bodenstein number, but the lower su- 
perficial gas velocity in the center of the packed bed, due to 
the phenomenon of wall-channelling of the gas. This is similar 
to the results of Fahien and Smith (1955), who found an in- 
crease of the radial Bodenstein number with the radius. 

Crider and Foss (1965) theoretically derived the relation 
between the overall heat-transfer coefficient of the one-di- 
mensional model and the effective radial heat conductivity and 
wall heat-transfer coefficient of the two-dimensional model. 
This relation is referred to as the “lump equation,” containing 
the so-called “lump factor,” see Eq. 17. They argued that the 
value of 8 for this factor, as was found by Beek (1962), is valid 
only for low values of the wall Biot number and suggested a 
value of 6.13. Later, Froment (1967) again derived a value of 

contact surface of two particles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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8, which was also found by Finlayson (1971), for the case of 
no reaction. 

Analytical expressions for the heat-transport coefficients of 
the pseudo-homogeneous models were presented by Dixon and 
Cresswell (1979, 1986) and Dixon (1985a). These were derived 
from the heterogeneous two-dimensional model, for which 
they assumed that it “describes the essential underlying and 
independently measurable heat-transport processes.” These 
heat-transport processes were studied individually in a series 
of articles (Dixon et al., 1984; Melanson and Dixon, 1985; 
Dixon and Labua, 1985; Dixon, 1988). The approach used by 
them is similar to the one used by Vortmeyer and Schaefer 
(1974) and Vortmeyer (1989), who relate the axial dispersion 
coefficient, as used in the pseudo-homogeneous model for an 
adiabatic packed bed, to the parameters of the heterogeneous 
model. 

Besides, the investigations mentioned above, several other 
authors have measured and correlated the effective radial heat 
conductivity, the wall heat-transfer coefficient, and the overall 
heatAtransfer coefficient for wall-cooled or wall-heated packed 
beds (see, for example, Plautz and Johnstone, 1955; Kunii et 
al., 1968; Schertz and Bischoff, 1969; Agnew and Potter, 1970; 
De Wasch and Froment, 1972; Olbrich and Potter, 1972; Gunn 
and Khalid, 1975; Wellauer et al., 1982; Borman et al., 1992). 

Since 1975, few studies have been presented giving experi- 
mentally determined values for the effective heat-transport 
coefficients. Instead, several authors tried to explain the large 
spread found for these coefficients by a critical re-evaluation 
of the data presented in literature. This was done by incor- 
porating phenomena into the models, that were not considered 
in the original articles, like the inclusion of axial dispersion of 
heat, a radial velocity profile, a radially varying effective heat 
conductivity, and a nonflat radial inlet temperature profile 
(see, for example, Hennecke and Schlunder, 1973; Li and Fin- 
layson, 1977; Dixon, 1985b; Ziolkowski and Legawiec, 1987; 
Gunn et al., 1987). 

Lately, there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  a tendency in literature to use more elaborate 
models when modeling gas-solid packed bed reactors. There 
is a shift from the steady-state, pseudo-homogeneous, one- 
and two-dimensional models toward the dynamic, heteroge- 
neous two-dimensional model (see Khanna and Seinfeld, 1987; 
Odendaal et al., 1987; Gatica et al., 1989; Windes et al., 1989a, 
b) . 

As can be seen from the preceding, much research has been 
concerned with describing heat transport in packed tubes, es- 
pecially for low tube-to-particle diameter ratios. This is of 
particular interest, because at a small number of particles on 
a diameter the uncertainty is largest as to which parameter 
values should be used for the modeling of packed-bed reactors, 
due to the large spread found in literature values for the heat- 
transport coefficients. The influence of the tube-to-particle 
diameter ratio is usually studied by changing the particle size 
at the same tube diameter. It would be interesting though to 
study the influence of changing the tube diameter at the same 
particle size and of changing the tube diameter and the particle 
size simultaneously at a constant tube-to-particle diameter ra- 
tio, as was pointed out already by Dixon (1988). In this article, 
this is done by determining values for the effective radial heat 
conductivity X,,,, the wall heat-transfer coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,  and the 
overall heat-transfer coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,, in three different wall- 
cooled tubes and with four different packings. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Model Equations and Experimental Setup 

Model equations 
The system studied is a hot gas, cooled down in a wall- 

cooled packed bed with a small number of particles on a di- 
ameter. For modeling the heat transport in the experimental 
equipment used, we made the following assumptions: 

The system is in steady state and no reaction takes place. 
The system is considered to be pseudo-homogeneous. 
There is no axial dispersion of heat. 
There is no free convection of heat. 
There is no radiation. 
The superficial velocity is constant over the radius. 
The pressure is constant in the packed bed. 
The wall temperature is constant. 
The physical properties of the gas and the solid are in- 

dependent of temperature. 
The inlet temperature profile can be described by a pa- 

rabola. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A heat balance for an infinitesimally small ring yields the 
following pseudo-homogeneous two-dimensional model: 

subject to 

In these equations, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 is given by 6 = ( Tz,r- T,,,)/( To- Tc,), 
where To is the temperature measured in the center of the 
packed bed after a certain minimum bed length, taken as the 
place where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = 0. Values for the constant A are obtained by 
fitting Eq. 2a to the experimentally determined radial tem- 
perature profile at this position. The minimum bed length is 
chosen such that constant A does not significantly change with 
bed length any more. This proved to be the case for a minimum 
bed length of about 10-20 particle diameters. It can be shown 
that the values obtained for constant A are close to those 
theoretically obtained by substitution of Eq. 2a into Eq. 2c, 
yielding: A = Bi,/(2+ Bi,) (Borkink et al., 1992a). Equation 1 
together with Eqs. 2a-2c can be solved to yield: 

(3) 

in which Pi is found from 

Equation 3 describes Lhe axial and radial temperature profile 
with two model parameters Bo:, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABi,, containing the ef- 
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fective radial heat conductivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,,, and the wall heat-transfer 
coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaw. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A heat balance for an infinitesimally small disc, assuming 
constant radial temperature, yields the following pseudo-ho- 
mogeneous one-dimensional model: 

with the inlet condition: 

Solving Eq. 5 together with Eq. 6 yields: 

In these equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvc is the so-called "mean-cup tempera- 
ture," calculated according to: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J O  

It should be noted that Eq. 8 is valid only for a radially flat 
superficial velocity profile. Equation 5 describes the axial tem- 
perature profile with only one model parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASte, containing 
the overall heat-transfer coefficient Uou. 

Values for U,,, A,,r and aw for the two models were obtained 
by fitting Eqs. 3 and 7 to experimentally determined temper- 
ature profiles. The objective function minimized was a chi- 
square target function, calculated according to: 

In this equation, n is the number of measured temperatures, 
Oi is the experimentally obtained temperature, O(p,w, U,,,X,,r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a,) is the valbe predicted by the models, and ui is the standard 
deviation for the measured temperatures. The chi-square target 
function was minimized using a Nealder-Mead method in mul- 
tidimensions with different starting points (Press et al., 1989). 

Experimental Setup 

The setup to measure radial and axial temperature profiles 
contained three stainless steel wall-cooled tubes, with a length 
of 1.33 m and inner diameters of 49.9, 63.5 and 99.0 mm, 
respectively. The tubes were filled with a packing and cooled 
at the wall with water of about 283 K, flowing through a jacket. 
Hot air with a temperature of about 333 K flowed upward 
through the tubes and was cooled down at the wall. In the 
steady state, the radial temperature profile was measured in 
the packed bed near the top with 7 to 15 K-type thermocouples 
of 0.5 mm in diameter, fixed in a rectangular rod of 2 x 2 mm, 
which was placed radially through the center of the packed 

TO FLARE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 , I 1 

I =  

2 =  

3 -  

4 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 =  

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 2 

I 4  

,J-, PI = oressure indicator 

TR = temperature recorder v 
TT = temperature transmitter 

TIC = temperature indicating 
controller 

Figure 1. Experimental setup. 
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L 
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Figure 2. Wall cooled tubes. 

bed. The rod consisted of a low conducting material, so that 
the measured temperatures were not influenced by conduction 
through this rod. The temperature of the gas at the inlet of 
the packed bed, the coolant temperature at the inlet and outlet, 
the pressure before and after the bed, and the gas flow rate 
were also measured. The pressure drop over the packed bed 
was always lower than 0.1 bar and therefore neglected. Figure 
1 shows the setup, and Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 the tubes. 

,+, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.50, I 

L = 239 rnrn 

G = 0.90 k~*rr-~*,' 

0 = FIRST MEASUREMENT 

0 = THIRD MEASUREMENT 

q = FOLRTH MEASUREMENT 

0.10 1 o = FIFTH MEASUREMENT 

S = AVERAGE 

0.00 ' I 

0.00 0.20 0.40 0.60 0.80 1 .oo 
d 

P 
A 

The bed height in the tubes could be increased by lowering 
the piston in the bottom of the tubes and adding extra packing 
material, keeping the top of the packing at the same place in 
the tube. By changing the bed height in this way it was possible 
to obtain radial temperature profiles at different axial positions 
or bed lengths. The tubes were also designed in such a way 
that the bed could easily be repacked by fluidizing the packing 
for a short time. Care was taken to keep the bed height, and 
thus the average bed porosity, always the same for one ex- 
perimental series. In Figure 3, two examples of measured radial 
temperature profiles are given. Individual dimensionless radial 
temperature profiles, as obtained from the measurements, were 
averaged to one mean profile for a certain bed length. By doing 
so, also values for the standard deviation for every radial point 
were obtained. Combination of the average radial temperature 
profiles, obtained for different bed heights at the same ex- 
perimental conditions, gave a temperature field for the whole 
tube. 

All experiments reported here have been performed with air 
at atmospheric pressure, for which the following physical prop- 
erties at 1 bar and 313 K were used: p,=1.13 kg.m-'; 
Cpg= 1,014 J.kg- ' .K- ' ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAig= 1 9 . 0 4 ~  Paas; and 
X8=27.2x W.m-'.K-l. For the experiments, the follow- 
ing packings were used: gIass spheres with d;=3.7 mm and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
di = 7.2 mm; porous alumina full cylinders with d; = 5.9 mm 
(dx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh = 6.4 x 5.2 mm); and porous alumina Raschig rings, as 
used for the oxidation of ethylene, with d i=6 .2  mm 
(d, x d,x h = 8.5 x 3.1 x 8.6 mm). Measured average bed po- 
rosities are given in Table l for different tubes and packings 
used. Temperatures, measured very close to the tube wall, were 
probably influenced by the coolant temperature. Therefore, 
these temperatures were never used for obtaining values for 
the heat-transport coefficients. For a more detailed description 
of the experimental setup, the packings used and the measuring 
procedure, see Borkink (1991). 

Experimental Results 

Two-dimensional model 
For the pseudo-homogeneous two-dimensional model, two 

effective heat-transport coefficients were obtained: the effec- 

Q 7 loo I L = 357 rnm 

0 60 

0.40 

0 20 

0.00 
0 

1 !,; 
S = AVERAGE 

.oo 0.20 0.40 0.60 0.50 1 .oo 

P 
B 

Figure 3. Experimentally determined radial temperatures and fitted parabolic profile for alumina cylinders with d; 
= 5.9 mm: A. tube I with D, = 49.9 mm; B. tube 111 with D, = 99.0 mm. 
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Table 1. Measured Average Bed Porosities of Tubes and Packings for the Experiments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Tube I Tube I1 Tube zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 63.5 mm D, = 99.0rnrn D, = 49.9 mm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Packing A Glass Spheres 

Packing B Glass Spheres zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dz = 7 .2  mm 0.39 0.38 0.37 
Packing C Cylinders 
d i  = 5.9 rnm 0.39 0.36 0.35 
Packing D Raschig Rings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d i  = 6.2 rnrn 0.51 X 0.47 

di = 3.7 rnrn 0.36 X X 

tive radial heat conductivity A,,r and the wall heat-transfer 
coefficient cxw. Values for these coefficients were obtained for 
different gas flow rates, tube diameters, and packings, using 
Eqs. 3, 4 and 9. 

are given as a func- 
tion of the gas flow rate for three different packings. Although 
the type of gas was not changed, a molecular Peclet number 
Pep is used for making the gas flow rate dimensionless, in 
accordance with the results of Agnew and Potter (1970) and 
Olbrich and Potter (1972), for example. In these figures, the 
parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: is correlated by: 

In Figures 4a-4c, best-fit values for 

in which A,* = AeJAg. The best-fit values for the parameters a* 
and BoC are given in the figures for different tubes and pack- 
ings used. Note, that all the effective conductivities in this 
article are based on the total surface area in radial direction 
and that the Bodenstein numbers are based on the superficial 
velocity. The effective radial heat conductivity can be corre- 
lated as a linear function of the gas flow rate for all the ex- 
periments performed. This supports the theory that the effective 
radial heat conductivity consists of a flow-dependent and a 
flow-independent term. In literature, the flow-dependent term 
is often assumed to be a function of the number of particles 
on a diameter N. This dependence is thought to be the results 
of the existence of a radial velocity profile (Fahien and Smith, 
1955; Tsotsas and Schlunder, 1988) or of the reflection of the 
gas at the tube wall (Schlunder, 1966). Fahien and Smith (1955) 
correlated the dependence of the number of particles on a 
diameter for their mass-transport experiments as: 

Bog,,= c( 1 +!g) 
in which C lies between 8-12. Schlunder (1966) derived the 
following equation for the Bodenstein-mass number at fully 
developed turbulent flow: 

Bo,",= 8 [2 - (1 - i) '1 
Although these results were obtained for mass transport, it 

is generally believed that these values can also be used for 
radial heat transport. Both Eqs. 11 and 12 predict a decrease 
of the BoEr number with an increasing number of particles on 

a diameter. Figure 4a shows that this is indeed so for the tube 
with D,=49.9 mm, filled with glass spheres of dE=7.2 mm 
(N=6.9) and dE=3.7 mm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( n =  13.5), respectively. But, if the 
tube-to-particle diameter ratio is changed by changing the tube 
diameter and keeping the particle diameter the same, a de- 
creasing value of Boh", with increasing N is not found, as can 
be seen from Figures 4a-4c. These figures also show that the 
values for X,, being the intercept for Pei = 0, scatter much for 
different tube diameters. However, literature relations for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, 
(for example, Zehner and Schlunder, 1970) do not predict a 
strong dependence of this coefficient on the tube diameter. To 
eliminate the effect of the scatter of the intercept on the values 
for the Bob", number, X, was fixed at the value, if a straight 
line is fitted to all the data simultaneously, for one packing 
and different tube diameters. With these values for X,, also 
given in Eqs. 13a-l3d, values for the Bo;, number for different 
tubes were calculated again. These values are given in Figure 
5 .  The Bodenstein number at turbulent flow is more or less 
independent of the tube diameter for the same packing and 
differs only for different packing shapes. Thus, it must be 
possible to correlate all values for a certain packing in- 
dependent of the tube diameter, as was also found experi- 
mentally by Seidel (1965). By doing so, the following 
correlations are obtained with our data. For glass spheres with 
dE = 3.7 mm, we find Bo&= 8.8: 

PeS, 
8.8 

h:=4.7+-forN=13.5 and 60<Pe;<300 (13a) 

For glass spheres with dz=7.2 mm, we find Borr= 10.9: 

PeS, 
10.9 

A:=6.2+-for7<N<14and 100 <Pe;<800 (13b) 

For alumina cylinders with d; = 5.9 mm, we find Boer = 7.6: 

PeS, 
7.6 

&*=4.0+- for 8<N<17 and 50 <PeS,<450 (13c) 

And for alumina Raschig rings with d;=6.2 mm, we find 
BO?, = 4.2: 

Pei 
4.2 

h:=4.5+-for 8 s N s 1 6  and 100 <Pei<450 (13d) 

Note that we have correlated A,,, as a function of the molecular 
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Best-fit values for A,, as a function of the gas 
flow rate for different packings: A. glass 
spheres with d; = 3.7 or 7.2 mm; B. alumina 
cylinders with d; = 5.9 mm; C. alumina Ras- 
chig rings with d; = 6.2 mm. 

Pecfet number based on the superficial velocity PeS, instead of 
the interstitial velocity Pe;, as used in Figures 4a-4c. The values 
for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABor, number are close to those by Gunn (1987), being 

11 for spheres, 8 for full cylinders, and 5.7 for hollow cylinders, 
and those by Dixon (1988) being 12, 7, and 6, respectively. 

Best-fit values for the wall heat-transfer coefficient are given 
in Figures 6a-6c. In these figures the parameter a: is correlated 
by: 

in which a: = aJ~/Xg. In literature, the wall heat-transfer coef- 
ficient a,  for a packed bed and the gas flow rate is correlated 
often as a power function, in analogy to the heat-transfer 
coefficient for an empty tube (Gunn and Khalid, 1975; Li and 
Finlayson, 1977; Gunn et al., 1987). But, with our data a 
straight line can be used equally well to describe individual 
results per packing and per tube, as was also found by Yagi 
and Kunii (1960), De Wasch and Froment (1972), and Ziol- 
kowski and Legawiec (1987). Best-fit values for parameters A.  
and a are given in the figures for different tubes and packings 
used. Figures 6a-6c show that the wall heat-transfer coefficient 
is not influenced significantly by the tube diameter. If a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis 
correlated per packing, the following correlations are obtained. 
For glass spheres with ds= 3.7 and 7.2 mm: 

a:= 16.30+21.7x Pe6 for 7 
<N< 14 and lOO<Pe~<2,000 (15a) 

For full cylinders with d; = 5.9 mm: 

a: = 10.05 + 21.3 x Peb for 8 
<N< 17 and 200<PeL< 1,250 (15b) 

And for Raschig rings with di=6.2 mm: 

CY: = 17.94 + 18.4 x Peb for 8 
< N <  16 and 200<Pe6<900 (15c) 
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Best fit values for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaW as a function of the gas 
flow rate for the different packings: A. glass 
spheres with d; = 3.7 or 7.2 mm; B. alumina 
cylinders with df: = 5.9 mm; C. alumina Ras- 
chig rings with df: = 6.2 mm. 

One-dimensional model 
For the pseudo-homogeneous one-dimensional model, only 

the overall heat-transfer coefficient U,, is obtained from the 
experiments for different gas flow rates, tube diameters, and 
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Figure 7. Best-fit values for U,, as a function of the gas 

flow rate for different packings: A. glass 
spheres with d; = 3.7 or 7.2 mm; B. alumina 
cylinders with df: = 5.9 mm; C. alumina Ras- 
chig rings with d; = 6.2 mm. 

packings, using Eqs. 7 and 9. In Figures 7a-7c, best-fit values 
are given as a function of the gas flow rate for t$e three 
different packings. In these figures, the parameter U,, is cor- 
related by: 
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* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U,, = A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Peb 1 a (16) 

in which U:” = Uoudi/kg. Best-fit values for parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a are given in the figures, for different tubes and packings 
used. 

The relation between the overall heat-transfer coefficient, 
and the effective radial heat conductivity, and the wall heat- 
transfer coefficient has been studied by many authors. Beek 
(1962) introduced the well known “lump equation,” which 
can be written in dimensionless form as: 

1 1 N  
* --?+--r _- 

u o u  a w  P h  
(17) 

in which /3 is the so-called “lump-factor.’’ Is is possible to 
obtain a best-fit value for this factor by fitting Eq. 17 to 
experimentally obtained values for Uou, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,. This was 
done with our data using a square target function and mini- 
mized with a golden section search in one dimension (Press et 
al., 1989). The best-fit value for the lump factor for all our 
data was: /3 = 7.39. With this value, a parity plot showed all 
the data to fall well within a 10% range. 

It is difficult to derive a simple relation between the overall 
heat-transfer coefficient and the gas flow rate, particle di- 
ameter and shape, and tube diameter from Figures 7a-7c. 
However, U,, can be correlated using Eq. l? together with 
Eqs. 13 and 15. By doing so, the values of U,, calculated are 
well within a 10% range from the values obtained directly from 
the experiments. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Discussion and Conclusions 

Figures 4a-4c and 6a-6c show that there is no significant 
influence of the tube diameter on the values for the heat- 
transport coefficients for the pseudo-homogeneous two-di- 
mensional model. Although inconclusive, there seems to be an 
influence of the particle diameter, especially on the effective 
radial heat conductivity, Figures 4a and 5. Fahien and Smith 
(1955) experimentally found an increase of the Bodenstein 
number with the radius. They assumed this to be the result of 
the existence of a radial porosity and therefore velocity profile, 
and correlated their Bodenstein numbers for the whole tube 
with the number of particles on a diameter only, see Eq. 11. 
If the effective radial heat conductivity is indeed influenced 
only by the particle diameter, not by the tube diameter, the 
influence of the number of particles on a diameter on the 
effective transport coefficients, as found in literature, might 
not so much be due to the existence of a radial velocity profile 
and/or reflection of the gas on the tube wall. These influences 
are expected to depend on the tube-to-particle diameter ratio, 
not on the particle diameter only. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA possible explanation might 
be that mixing phenomena on a pellet scale play a more im- 
portant role in the process of radial heat transport than usually 
is assumed. 

The particle-to-gas heat-transfer coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,,, which is a 
function of the particle diameter, should perhaps not be taken 
infinitely high when describing heat transport in packed beds, 
as is usually done in literature (Dixon, 1985a; Dixon and 
Cresswell, 1986). This might also explain the observations by 
Zehner and Schlunder (1973) and Dixon (1988) that the con- 
ductivity of the solid phase plays an important role even at 

high gas flow rates. Unfortunately, from our results, no explicit 
conclusions can be drawn about the influence of the particle 
diameter itself, and more experimental data would be needed 
to this end. 

Eqs. 13a-l3d, it can be concluded 
that this coefficient is influenced strongly by the shape of the 
packing matzrial used, as is reflected in the values for Bo;,. 
Values for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, , representing the stagnant term of the effective 
radial heat conductivity, are almost constant for the packing 
materials as used by us. In literature, several extensive cor- 
relations have been reported for this parameter (Wakao and 
Kato, 1969; Zehner and Schlunder, 1970). Usually these cor- 
relations are very bulky, whereas the values calculated for 

are more or less equal under practical conditions. For an 
industrial reactor, normally high gas flow rates are applied, 
say Pe’,>500. In this case, the contribution of the stagnant 
term to the effective radial heat conductivity is small. So it is 
more important to have good estim2tes of the BoT, number. 
For high gas velocities, values for X, can safely be estimated 
from a simple relation, which was proposed by Krupiczka 
(1967) (see also Wakao and Kaguei, 1982). 

From the results for aw, Eqs. 15a-l5c, it can be concluded 
that this coefficient is influenced less by the particle shape. 
The values found for glass spheres and alumina Raschig rings 
are more or less the same. This might be explained by the fact 
that the Raschig ring used here is an industrially used catalyst 
without sharp edges. Probably, therefore, the heat transport 
very close to the wall of the tube is similar to that for glass 
spheres at low gas velocities. For the alumina cylinders it is 
found that the resistance to heat transport close to the wall is 
higher than for glass spheres and Raschig rings, especially at 
low gas velocities. For this, no conclusive reason was found. 
The alumina cylinders used here were almost perfect cylinders 
with sharp edges, and an ordering of this packing at the wall 
was observed visually. This ordering might lead to higher values 
of aw because of the increased contact area of the packing with 
the wall and the decreased porosity near the wall. On the other 
hand, the decreased porosity may decrease the “wall chan- 
neling” of the gas, thereby decreasing the gas velocity at the 
wall and therefore the rate of heat transport. 

If our results are compared to correlations in literature, 
relatively good agreement is found for the effective radial heat 
conductivity, Figure 8, but less so for the wall heat-transfer 
coefficient, Figure 9. Especially for aw, a large spread is found 
in the values presented by different authors. For this, several 
explanations have been put forward. 

There were errors in the temperature measurements and 
in the evaluation of the experimental results. Several ways to 
obtain values for the heat-transport coefficients have been 
discussed by Li and Finlayson (1 977). Especially the graphical 
methods, which had been often used before 1960, can introduce 
large errors. 

A radial porosity and velocity profile was present. The 
influence of a radial superficial velocity profile is lumped into 
the values for the heat-transport coefficients if their presence 
is not taken into account (Eigenberger and Ruppel, 1985; Bor- 
kink, 1991). 

There were the so-called “length effect.” Several au- 
thors found that the values for the heat-transport coefficients 
decrease with increasing bed length (Kulkarni and Dorais- 
wamy, 1980). Thus, the values obtained are a function of the 

From the results for 

1. 

2. 

3. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. A,, A. glass spheres with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdp = 7.2 mm and N = 10,l. Eq. 13b, 2. Plautz and Johnstone (1955), 3. Calderbank 
and Pogorski (1957), 4. Yagi and Wakao (1959), 5. Agnew and Potter (1970), 6. Zehner and Schlunder (1973), 
7. Cresswell (1986), 8. Ziolkowski and Legawiec (1987); B. alumina cylinders with dp = 5.9 mm and N = 
10,l. Eq. 13c, 2. Coberly and Marshall (1951), 3. Agnew and Potter (1970), 4. De Wasch and Froment (1972), 
5. Gunn et al. (1987). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

bed length and the way the experimental results are evaluated 
(Li and Finlayson, 1977). The reasons for this length effect 
are: the radial velocity and temperature profiles have to develop 
over a certain bed length (De Wasch and Froment, 1972; 
Cresswell, 1986); the presence of a radial velocity profile (Hen- 
necke and Schlunder, 1973); the radial temperature profiles 
are flattened by conduction through the device holding the 
thermocouples (Dixon, 1985b); preheating of the gas due to 
conduction of heat through the wall to the calming section of 
the bed (Dixon, 1985b); and the neglect of axial dispersion of 
heat (Ziolkowski and Legawiec, 1987). 

We believe that much of the confusing results presented in 
literature can be explained by the following two phenomena. 

First, the inlet temperature profile is very often assumed to 
be flat, whereas in reality it probably was not. Borkink et al. 
(1992a) showed that this introduces a length effect into the 

0 ‘  1 
0 300 600 900 1200 1500 

heat-transport coefficients as obtained from cold-flow exper- 
iments. This length effect can be “compensated for” by in- 
troducing axial dispersion of heat. But, if the correct inlet 
temperature profile is used to evaluate the experimental results, 
axial dispersion can usually be neglected (Borkink and Wes- 
terterp, 1992b; Borman et al., 1992). 

Secondly, the heterogeneous and discrete character of a 
packed bed is probably more important than usually is as- 
sumed. Especially for a low tube-to-particle diameter ratio, 
the assumption of the packed bed being a continuum becomes 
less realistic, and averaging of measured properties, like su- 
perficial velocities, porosities and temperatures, becomes more 
important. Only by taking the actual bed structure into account 
and looking at the local heat and mass-transport phenomena 
in packed beds, it will be possible to tell how the effective 
transport coefficients should be correlated as a function of the 
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R ez 
A B 

R e: 

Figure 9. ( Y ~  A. glass spheres, 1. Eq. 15a, 2. Plautz and Johnstone (1955), 3. Calderbank and Pogorski (1957), 4. Yagi 
and Wakao (1959), 5. Li and Finlayson (1977), 6. Cresswell (1986), 7. Ziolkowski and Legawiec (1987); B. 
Relations for alumina cylinders, 1. Eq. 15b, 2. Coberly and Marshall (1951), 3. De Wasch and Froment 
(1972), 4. Li and Finlayson (1977). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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gas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow, tube and particle diameter, and so o n  (Mihail and 
Singer, 1988). Unfortunately, such models are scarcely avail- 
able today, and therefore correlations for  the effective heat- 
transport coefficients still have t o  be used. If relations are 
taken from literature, we recommend to  use those that are 
obtained for the correct inlet conditions and t o  use relations 
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,  determined by the same author, because these 
coefficients are often cross-correlated (Wakao and Kaguei, 
1982; Borkink et al., 1992a). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Notation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
Bi, = 

Bo,,, = 

BoTr = 
B o : ~  = 

Born,, = 

CP, = 
4 ,  = 

Boz,, = 

D, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d‘ = 

G =  
Jm JI = 

L =  
N =  

Pe; = 

Pei = 

Pr = 
r =  

Rc$ = 
R, = 
St = 

st* = 

UO” = 

T =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u =  

e” = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v, = 

v =  

z =  

external surface area of a particle, m2 
(IX,,.R,)A~,~, tube Biot number 
(p,Cp,udi.)/A,,,, Bodenstein number for radial dispersion of 
heat 
Bodenstein number for heat at fully developed turbulent flow 
(p,Cp,uR:)/(X,&) = (Boh,,N)/4r, modified radial Boden- 
stein number for heat 
ud;/D,,,, Bodenstein number for radial dispersion of mass 
Bodenstein number for mass at fully developed turbulent 
flow 
specific heat of the gas at constant pressure, J .  kg- ’ .K-‘ 
effective radial mass dispersion coefficient, m2.s-’  
tube diameter, m 
(6V,)/A,, equivalent diameter of a sphere, m 
p,u, superficial gas mass flow rate, kg.m-’.s-’ 
zeroth- and first-order Bessel functions of the first kind 
(Abramowitz and Stegun, 1972) 
bed length, m 
D,/d;, number of particles on a diameter 
(p,Cp,ud;)/X, = R e p r ,  molecular Peclet number based on 
the interstitial velocity 
(pgCpgudi)/AE, molecular Peclet number based on the su- 
perficial velocity 
( ~ , C p , ) A , ,  Prandtl number for the gas 
radial coordinate, m 
(p,ud;)/?,, Reynolds number based on the interstitial velocity 
tube radius, m 
Uo,/(p,Cp,u), Stanton number for the overall heat-transfer 
coefficient 
(UoJ)/(p,Cp,uD,) = Str ,  modified Stanton number 
temperature, K 
u/eb, interstitial gas velocity, m.s-’  
overall heat-transfer coefficient, W.m-‘.K-’ 
( Uo&)/A,, dimensionless overall heat-transfer coefficient 
superficial gas velocity, m.s-’ 
volume of particle, m3 
axial coordinate, m 

Greek letters 
a, = wall heat-transfer coefficient, W .m-’.K-’ 
a: = (afl,)/A,, dimensionless wall heat-transfer coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 = lump factor, Eq. 17 
pi = root of Eq. 4 
x2 = chi-square target function, Eq. 9 
eb = average porosity of the bed 
vg  = dynamic viscosity of the gas, Pa.s 
r = L/D,, tube slenderness 

A, = heat conductivity of the gas, W.m-’.K-’ 

X, = effective heat conductivity of the packed bed with a stagnant 

A: = A& dimensionless effective radial heat conductivity 
a‘ = &/A,, dimensionless effective heat conductivity of the packed 

Ae,, = effective radial heat conductivity, W.m-’.K-’ 

fluid, W.m-‘.K-’  

bed with a stagnant fluid 
w = z / L ,  dimensionless axial coordinate 
p = r/R,, dimensionless radial coordinate 

pp = density of the gas, kg.m-3 
u = standard deviation 

8 = ( T -  T d ) / (  To - Tcl),  dimensionless temperature 
0‘“‘ = dimensionless mean-cup temperature, Eq. 8 

Subscripts 
cl = coolant 
e = effective 
g = gas 
p = particle 
r = radial 
t = tube 
w = wall 

Superscripts 
e = equivalent 
i = interstitial 
s = superficial 
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