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Diffuse large B-cell lymphomas (DLBCLs) are heterogeneous diseases growing either in
nodal or extranodal locations including the central nervous system. One key issue is to deci-
pher the prognostic value of immune cells infiltrating these tumors as DLBCLs developing
in sanctuaries are more aggressive than nodal DLCBLs. Here, we summarize available
data from the literature regarding the prognostic values of the different immune cell types
found in these two types of human primary tumors (i.e., nodal vs brain). In nodal DLBCLs,
memory T-cells and dendritic cells (DCs) densities are of good prognostic value whereas
the influence of regulatory T-cells (Tregs) is less clear, in accordance with other types of
cancers. Data for primary central nervous system lymphomas are very sparse for these cell
types. By contrast, CD8+ cytotoxic T-cells seem to be of poor prognosis in either location.
Their presence is linked to a loss of MHC expression providing a possible immune escape
mechanism for these tumors. Clearly, tumor-associated macrophages are not associated
to a significant prognostic value even in the brain where they highly infiltrate the tumor.
Animal models indicate some specific features of lymphoma developing in sanctuaries by
comparison to splenic location, with a higher infiltration of Tregs and less DCs, most likely
reflecting the immunosuppressive context of these organs. All these informations illustrate
the high impact of the immune system on patient outcome, encourage the pursuit of the
immune environment’s analysis and of immunotherapeutic approaches.
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INTRODUCTION
Around one third of all adult lymphomas are diffuse large B-cell
lymphomas (DLBCL), the most common form of non-Hodgkin
lymphoma (NHL) in Western countries. The primary location of
this cancer is intranodal for 2/3 of patients and extranodal for
the remaining 1/3 (Groves et al., 2000). Nonetheless, although
the overall incidence of DLBCL (8/105 individuals in 2006) has
been increasing slightly, at a rate of about 1% per year (Flow-
ers et al., 2010), the incidence of extranodal B-cell lymphoma is
rising faster, at about 3–6.9% per year (Chiu and Weisenburger,
2003). In particular, the incidence of primary central nervous
system lymphoma (PCNSL) has climbed by 224% in 20 years
and this cannot be solely attributed to HIV progression (Chan,

Abbreviations: APC, antigen-presenting cell; CNS, central nervous system; CTL,
cytotoxic T-lymphocyte; DLBCL, diffuse large B-cell lymphoma; MHC, major histo-
compatibility complex; NHL, Non-Hodgkin lymphomas; OS, overall survival; PCL,
primary cerebral lymphoma; PCNSL, primary central nervous system lymphoma;
PIOL, primary intraocular lymphoma; TIL, tumor-infiltrating lymphocytes.

2003). The aggressiveness of DLBCL differs strongly according
to tumor location. Overall survival (OS) rates in patients with
DLCBL in immune sanctuaries, such as the CNS and testis (5-
year OS: 30 and 48%, respectively; Shibamoto et al., 2008; Zucca,
2008), are substantially lower than those in other types of extra-
nodal DLCBL (5-year OS: 63–91%) and in all DLBCL sites (5-
year OS: 54%; Schaffel et al., 2007). DLBCL is currently treated
by chemotherapy (cyclophosphamide, doxorubicin, vincristine,
and prednisone, CHOP) now combined with immunotherapy
(Rituximab). PCNSL is usually treated with chemotherapy and
methotrexate (Shibamoto et al., 2008).

The aggressiveness of DLBCL also depends on the tumor’s mol-
ecular signature. Three DLCBL subtypes have been described by
gene expression profiling: germinal center B-cell like (GCB), acti-
vated B-cell like (ABC or post-GCB) and PBML (primary B-cell
mediastinal lymphoma; Alizadeh et al., 2000; Rosenwald et al.,
2003). Survival of patients with the GCB subtype (5-year OS:
76%) is significantly higher than that of those with the ABC sub-
type (5-year OS: 16%) among patients treated with chemotherapy
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(Rosenwald et al., 2003) or R-CHOP (Jais et al., 2008; Lenz et al.,
2008). PCNSLs belong mostly to the ABC subtype (Gurbuxani
et al., 2009). One study reports that the molecular signature of
extranodal DLCBL is characterized by a lower rate of genetic alter-
ations targeting 18q (92% for nodal vs 53% for extranodal DLBCL;
Lopez-Guillermo et al., 2005). Moreover, PCNSL and testis lym-
phomas are also characterized by numerous alterations in MHC
gene expression that can impair the cellular immune response
(Jordanova et al., 2003).

The density of immune cells in the microenvironment of
primary non-lymphoid tumors, especially T and dendritic cells
(DCs), has been associated with good prognosis in many solid
cancers. Galon et al. (2006) demonstrated that a high density of
CD3+ cells is positively correlated with better survival of patients
with colorectal cancer. More recently they showed the involve-
ment of memory CD8+ and CD4+ cells in this phenomenon
(Pages et al., 2009). Studies of antigen-presenting cells (APCs)
have also demonstrated a strong association between a high den-
sity of mature DCs and survival in patients with non-small-cell
lung cancer (Dieu-Nosjean et al., 2008). Cellular organization is
also very important as has been shown notably with the impor-
tance of tertiary lymphoid structures in non-lymphoid organs
(Halle et al., 2009; Fridman et al., 2012). As a consequence, it
could be conceivable that anti-tumor immune response is more
efficient in nodal tumors, but it does not seem to be as simple at
least in the DLBCL context (Kim et al., 2011). Regarding PCNSL, it
often develops in immune compromised patients, suggesting a role
of the immune system but the implications in terms of immune
infiltrate are currently unknown.

There is ample evidence that immune cells infiltrate DLBCLs,
either in nodal or extranodal locations. One key issue is to decipher
the prognostic value of immune cells infiltrating nodal DLBCLs.
The strikingly lower survival rates of patients with DLBCL devel-
oping in sanctuaries compared with those patients with nodal
DLCBL, suggests that an immunosuppressive environment might
harness tumor aggressiveness. We will first review the data avail-
able from the literature about the prognostic values of the different
types of immune cells found in these two types of primary tumors
in humans. Thereafter,we will discuss how available animal models
have helped to address some of these questions.

IMMUNE INFILTRATE
T-CELLS
Lippman et al. (1990) showed that tumor-infiltrating T-cells are
associated with a good prognosis for patients with DLCBL, and
more specifically that the number of tumor-infiltrating lym-
phocytes (TILs) was associated with relapse-free survival (see
Table 1). That study however, did not distinguish between the
major subtypes of T-cells. Since then, numerous studies have
attempted to determine the relation between each type of immune
subpopulation and patient’ survival.

CD4+ T-cells are essentially linked to a favorable prognosis
Infiltrating CD4+ T-cells accounting for more than 20% of cells
in a biopsy specimen have been positively correlated with better
OS for 98 patients with DLBCL (Ansell et al., 2001). The number
of CD4+ T-cells related to the total number of activated T-cells

(CD3+ HLA-DR+ cells) suggests that most of infiltrating T-cells
were activated. The role of CD4+ T-cells is crucial in the anti-
tumor immune response. They indeed recognize the antigenic
peptide presented by APCs and then shape the immune response
by differentiating into Th1, Th2, Th17, or Treg cells. They are nec-
essary for full activation of CD8+ effector T-cells and therefore
crucial for tumor elimination.

Several authors have described Foxp3+ regulatory T-cells
(Tregs) in the microenvironment of nodal B-cell lymphomas
(Riemersma et al., 2005; Yang et al., 2006; Lee et al., 2008). The
prognostic value of these intratumoral Tregs vary according to
the author, the sample preparation and the DLBCL classification
(Table 1). Hasselblom et al. (2007) reported that Foxp3 expression
had no influence on the OS of 195 patients while in a study of 96
patients, Lee et al. (2008) found that the prognostic value of high
percentages of Foxp3-positive Tregs for OS was good. A third study
highlighted the difference in prognosis between the GCB subtype
and non-GCB DLBCLs (Tzankov et al., 2008). A higher density
of Tregs was associated with a good outcome in GCB DLBCL
(32/55 patients) and with a poor outcome in non-GCB DLBCL
(28/70 patients). The ability of these cells to kill lymphoma B-cells
depending on the specific genetic characteristics of the tumor cells,
might explain this poor prognosis (Zhao et al., 2006).

Among the CD4+ effector T-cells, Th17 lymphocytes have also
been characterized in the DLBCL microenvironment. Th17 cells
are present in very small numbers in this cancer compared with
other non-Hodgkin B-cell lymphomas (B-NHLs), such as small
lymphocytic lymphoma (Yang et al., 2009). The B-NHL microen-
vironment has even fewer Th17 cells than the peripheral blood.
B-NHLs can indeed induce the suppression of effector T-cell
polarization, i.e. Th17, by promoting Treg polarization.

CD4+ T-cells infiltrate tumor-bearing brains in PCNSL (Bashir
et al., 1996) as they do in DLBCL of the testis (Riemersma et al.,
2005). Very little information is available about CD4+ cells in these
rare tumors.

CD8+ T-cells are associated with a poor outcome
CD8+ TILs are present in the DLBCL microenvironment. Their
presence is positively linked to the loss of major histocompati-
bility complex (MHC) class I and II molecules from the tumor
cell surface (List et al., 1993). The loss of MHC, described as a
mechanism of immune escape, has been shown to be a feature
of DLBCL aggressiveness (Riemersma et al., 2005). This loss of
MHC class I molecules could be explained by the phenomenon of
tumor editing, where CD8+ T-cells eliminate all MHC class I bear-
ing tumor cells thereby favoring the emergence of new clones of
tumor cells. Hasselblom et al. (2007) showed that a high number
of activated TIA-1+ cytotoxic T-cells was correlated with poorer
survival among patients (143 patients in a cohort of 195 patients).
The percentage of CD3-positive lymphocytes with granzyme B
expression was found to be an indicator of unfavorable prognosis
in 70 patients with primary nodal DLBCL (Muris et al., 2004;
Table 1). These data demonstrate that CD8+ cytotoxic T-cells
infiltrate is a marker of poor prognosis. The relationship between
the down regulation of MHC class I molecules and percentage of
cytotoxic T-cells suggest possible immune–escape mechanisms in
nodal DLBCL.
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In the brain, an initial study of six patients reported the almost
total absence of CD8+ cells in PCNSL biopsies (Bashir et al., 1996).
In a more recent work, CNS lymphomas contained high densities
of cytotoxic T-cells expressing granzyme B, more than in nodal
DLCBLs (Riemersma et al., 2005). The authors noted that the loss
of MHC class I is more common in CNS than in nodal lymphomas,
and is correlated to the number of cytotoxic T-cells. It is therefore
conceivable that the loss of MHC class I is the consequence of a
strong selective pressure from the T-cells in PCNSL.

ANTIGEN-PRESENTING CELLS
Dendritic cells favor the host anti-tumor response
Data about the density of DCs and patients survival in DLBCL are
sparse (reviewed in Table 1). Monti et al. (2005), molecularly pro-
filed DLBCLs and described three subgroups, including one called
the “host-response” subgroup, which was characterized by abun-
dant immune infiltrate. The infiltrating cells included DCs that
expressed both GILT (gamma interferon induced lysosomal thiol
reductase) and S100 molecules and did not express either CD1a
or CD123. This phenotype is characteristic of interdigitating DCs,
present in secondary lymphoid organs, but not of migrating DCs,
which could be recruited at the tumor site. It is indeed noteworthy
that DCs are already present in lymphoid organs and are therefore
ideally located to induce an anti-tumor response contrary to the
extranodal tumors. The number of interdigitating DCs was highly
correlated with that of infiltrating T-cells, but this study did not
determine their prognostic values.

Chang et al. (2007) analyzed DCs and T-cells in DLBCL tissues
by immunohistochemistry in 48 cases of DLBCL, including nodal
and extranodal types. DCs were not always detected and were
sparse in most cases. In 20% of the tumors however, S100+ DCs
adopted a characteristic peritumoral localization that was associ-
ated with significantly better OS. The authors also found that the
density of peritumoral CD45RO+ T-cells, which colocalized with
S100+ DCs was correlated with a favorable prognostic value.

The central nervous system (CNS) is naturally devoid of DCs.
Some of these cells can be found in meninges, the choroid plexus,
or circumventricular organs, but very few if any of these cells can
be detected in healthy brain parenchyma. DCs are known to infil-
trate CNS tumors such as gliomas (Morimura et al., 1990; Parney
et al., 2009) or even such ocular tumors as uveal melanomas (Polak
et al., 2007). Almost no study has assessed the presence of DCs in
PCNSL. Interestingly however, the integrin alpha X (or CD11c)
gene is reported to be expressed at significantly lower levels in
PCNSL compared with nodal DLBCL (Rubenstein et al., 2006).

All these studies strongly suggest that DCs have significant
value as favorable prognostic factors in DLBCLs. However, the
great heterogeneity of this cell type makes it difficult to draw a
clear conclusion. Further research on the specific subpopulations
present and involved in the anti-tumor response would be both
interesting and useful.

Macrophages play ambiguous roles and lack discriminative
markers
Tumor-associated macrophages have been highlighted as key play-
ers in the tumor microenvironment in mouse models (Mantovani
et al., 2011; Allavena and Mantovani, 2012). They may contribute

to tumor growth via different mechanisms such as angiogenesis
promotion. But macrophages can also be considered as poten-
tial APCs as they can upregulate costimulatory molecules and
restimulate locally infiltrating T-cells. These cells therefore play
ambiguous role.

Several studies have detected CD68+ cells, characteristic of
macrophages in DLBCL. For example, DLBCLs contain substan-
tially greater CD68+ CD14+ cell populations than other B lym-
phomas. Interestingly, the in vitro conversion of these cells into
a DC-type population suggests CD14+ cells might be DC pre-
cursors (Marmey et al., 2006). Hasselblom et al. (2008) showed
that the density of CD68+ cells had no prognostic value in 176
patients with DLBCL. Another study assessed the absolute num-
ber of peripheral blood monocytes at diagnosis and reported that
an elevated monocyte count was associated with a significantly
poorer OS and that this finding combined with a low absolute lym-
phocyte count, identified a group of patients at high risk (Wilcox
et al., 2011). The poor prognosis associated with high monocyte
numbers may be explained by the observation that these cells are
able to favor lymphoma cells survival and proliferation at least
in vitro (Mueller et al., 2007).

Macrophages have been the subject of several investigations in
PCNSLs. It is clear that these cells strongly invade all kinds of brain
tumors, including B-cell lymphomas at least in part because the
tumor cells secrete MCP-1, a macrophage chemoattractant (Kitai
et al., 2007). Recent studies have demonstrated that some tumor-
associated macrophages, have the alternative (or M2) phenotype,
one that suggests a mainly pro-tumorigenic function (Kadoch
et al., 2009). These results were confirmed by Komohara et al.
(2011) who showed that most PCNSLs contained CD68+ CD204+
and/or CD163+ M2 macrophages and that these macrophages
were correlated with high activation of the Stat3 transcription fac-
tor known to be involved in tumor escape. Interestingly none of
these markers had any prognostic significance in a series of 43
patients (Table 1).

FOLLICULAR DENDRITIC CELLS
Follicular dendritic cells (FDC) meshworks are another finding
of interest. Usually, these cells reflect the global architecture of
the lymph node and are associated with follicular lymphomas.
However, two studies noted their presence in about 25% of the
DLBCL cases analyzed, including both GCB and non-GCB sub-
types and nodal and extranodal localizations. In the first study,
which included 66 patients, the presence of CD21+ FDC was asso-
ciated with a better treatment response rate but not with a better
survival (van Imhoff et al., 2006). A larger cohort of 414 cases of
DLBCLs confirmed the positive effect of FDCs, showing that the
presence of CD23+ FDCs was an independent prognostic factor
associated with better outcome (Bernd et al., 2009). It is not yet
clear either if these meshworks represent remnants of the organ
architecture or if lymphoma cells interact closely with FDCs.

As Table 1 shows, these results, taken together, highlight the
strong relation between patient outcome and the composition of
the immune infiltrate in DLBCLs. Thus, as for solid tumors, the
prognostic value of the density of overall T-cells, of CD45RO+
memory T-cells and of DCs is good. The prognostic value of Tregs,
on the other hand, depends on the genetic characterization of the
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tumor. In contrast with most types of solid tumors, however, the
density of CD8+ T-cells is associated with a poor prognosis. In
nodal DLBCL and PCNSL, high densities of CD8+ T-cells are
correlated with the loss of MHC class I and II molecules and
tumor aggressiveness. Indeed, the frequent loss or down regu-
lation of MHC class I molecules occurs in many solid cancers
(Campoli and Ferrone, 2008). Hence this inverse effect of CD8+
T-cells on patient outcome might reflect the peculiar situation of
B-cell lymphomas, which are able to present antigen to MHC class
II-restricted cells and activate CD4+ T-cells, therefore allowing T-
cell’s help and the CD8+ cytotoxic immune response. This might
lead to a high selective pressure on tumor cells and favor escape
of MHC negative tumor variants. The following concomitant loss
of MHC class I and II molecules may then have a strong neg-
ative impact on the anti-tumor immune response. Interestingly,
CD68+ macrophages have no prognostic value in DLBCLs, either
nodal or extranodal. Studies investigating markers specific to other
macrophage subtypes are needed to draw definitive conclusions.
All these results are summarized in Figure 1.

MOUSE MODELS
Murine models are particularly well-suited to study the tumor
microenvironment of DLBCL. Implantation of the A20 cell line
in syngeneic mice produces one of the models used most often
(Donnou et al., 2012). The analysis of immune infiltrate in the
brain is justified by the fact that immune deficient animals die
prematurely from brain B-cell lymphomas compared to their wild-
type counterparts (Donnou et al., 2011), showing the existence of
a spontaneous anti-tumor response. Moreover, an efficient anti-
tumor response can be induced in PCNSL but this has been very
poorly investigated until now. It has nevertheless been shown in
a murine model of nude mice that celecoxib was able to induce

a prolonged survival time (Wang et al., 2006), or in a syngeneic
murine model that rituximab was able to induce tumor rejection
in some animals (Mineo et al., 2008). But no study assessed the
anti-tumor immune response associated with tumor rejection.

T-CELLS
Using a model of subcutaneous large B-cell lymphoma, Grille et al.
(2010) showed that CD4+-cells represented most of the T-cell
infiltrate (10% Th1, 5% Th2, and 15% Tregs). We developed three
models more relevant to human locations, specifically to tumor-
bearing spleen, brain, and eye. Our analysis of T-cell infiltrate
showed that it was composed mainly of CD4+ T-cells (Touitou
et al., 2007; Donnou et al., 2011), consistent with the findings of
Grille and colleagues. We also showed that Treg account for a very
high proportion of the CD4+ T-cells (25%) in intrasplenic lym-
phoma. This proportion is significantly higher in sanctuaries: 40%
in the lymphoma-bearing brain (Donnou et al., 2011) and 47%
in lymphoma-bearing eyes (unpublished data). All three localiza-
tions had a Th1 and Th17 signature, but we failed to detect a Th2
profile in the PIOL microenvironment (Touitou et al., 2007). These
data confirm that the privileged status of the eye is higher than that
of the brain. We also demonstrated the anti-tumor activity of Th17
cells in PIOL. Th17 lymphocytes in this microenvironment pro-
duce IL-17 and IL-21. IL-21 can directly inhibit the proliferation
of tumor cells (A20IIA-GFP) although IL-17 cannot (Galand et al.,
2011).

The role of CTLs in lymphoma control has been highlighted
by the study of Juszczynski et al. (2008). Perforin is produced by
NK cells and CTLs and mice knock out for perforin develop spon-
taneous lymphomas more often than WT mice (incidence rate
increases). These results show that NK and/or CTLs might play
a role in preventing or abating lymphoma development (Smyth

FIGURE 1 | Comparison of the presence and prognostic value of

different immune cells in human biopsies and mouse models of B-cell

lymphomas. Colors refer to prognosis when human data are concerned

and to pro- versus anti-tumor functions for murine data. APCs,
antigen-presenting cells; CTLs, cytotoxic T lymphocytes; hu, human; mu,
murine.
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et al., 2000). Murine models are indeed particularly useful to
dissect the anti-tumor immune response. As underlined here, defi-
cient animals allow determining subpopulation functions. And it
is conceivable to study T-cell repertoire at different times during
the immune response as well as MHC expression on tumor cells
to determine if tumor editing is taking place.

APCs HIGHLY INFILTRATE B LYMPHOMA MODELS
We used these models to compare the immune response devel-
oping in the eye, brain and spleen after injection of tumor
cells in these sites (Touitou et al., 2007; Donnou et al., 2011).
CD11b+ macrophagic/microglial cells were detected in high num-
bers in all three locations, consistent with human studies and
confirmed as well after subcutaneous (Palmieri et al., 2010)
and intravenous (Serafini et al., 2008) injections of tumor cells.
The antigen-presenting capacity of these CD11b+ cells was not
assessed in either study. Many CD11b+ macrophagic cells, have
been shown to be immunosuppressive in the form of either M2-
type macrophages in a PCNSL model (Kadoch et al., 2009) or
myeloid suppressor cells in an intravenous model (Serafini et al.,
2008). The murine model allowed the authors to show that these
myeloid suppressor cells act by inducing tumor antigen specific
regulatory T-cells (Tregs).

CD11c+ DCs have also been detected in the brain and the
spleen of PCNSL and intrasplenic lymphoma-bearing mice (Don-
nou et al., 2011). They were located mainly in the tumor mass, and
their number increased with tumor growth. This study showed
that there were at least two subpopulations of DCs, those that
do and do not express CD11b. It is not yet known whether
these cells have pro- or anti-tumor functions. Our inability to

detect any DCs in the PIOL model suggests that this site could
be even more immune-privileged than the brain (Touitou et al.,
2007). Palmieri et al. (2010) also worked with the A20 model
implanted subcutaneously. Their analysis of the tumor microen-
vironment was clearly consistent with the studies cited above,
showing large numbers of tumor-infiltrating CD11c+ cells. None
of these studies, however, looked at DC subpopulations. These
models might therefore be very useful to study the DCs associated
with the anti-tumor response and to determine what impairs DC
recruitment/differentiation in PIOLs.

In conclusion, these models have made it possible to demon-
strate the strong impact that DLBCL location has on the quality
and quantity of T-cell infiltrate. The proportions of Tregs in this
infiltrate are higher in the ocular and CNS locations and DCs are
undetectable in the ocular location. These differences most likely
reflect the immunosuppressive context of the immune sanctuaries.
As underlined in Figure 1, data regarding the presence of immune
subpopulations in human and mouse are alike, but their functions
mostly remain unknown justifying more research to now deci-
pher their function and potential applications in new therapeutic
strategies.
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