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Abstract 17 

Vegetation structure and function are key design choices in terrestrial models that affect the 18 

relationship between carbon uptake and environmental drivers. Here, we investigate how 19 

representing canopy vertical structure in a terrestrial biosphere model - i.e. micrometeorological, 20 

leaf area and leaf water profiles - influences carbon uptake at five U.S. temperate deciduous 21 

forest sites in July.  Specifically, we test whether the inter-annual variability (IAV) of gross 22 

primary productivity (GPP) responds differently to four abiotic environmental drivers – air 23 

temperature, relative humidity, incoming shortwave radiation and soil moisture – using either a 24 

multi-layer canopy model (CLM-ml) or a big-leaf model (CLM4.5/CLM5). We conclude that 25 

vertical leaf area and microclimatic profiles (temperature, humidity and wind) do not impact 26 

GPP IAV compared to a single-layer model when plant hydraulics are excluded. However, with 27 

a mechanistic representation of plant hydraulics there is vertically varying water stress in CLM-28 

ml, and the sensitivity of carbon uptake to particular climate variables changes with height, 29 

resulting in dampened canopy-scale GPP IAV relative to CLM4.5. Dampening is due to both a 30 

reduced dependence on soil moisture and opposing climatic forcing on different leaf layers. Such 31 

dampening is not evident in the single-layer representation of plant hydraulic water stress 32 

implemented in the recently released CLM5. Overall, both model representations of the canopy 33 

fail to accurately simulate observed GPP IAV and this may be related by their inability to capture 34 

the upper range of observed hourly GPP and diffuse light-GPP relationships that cannot be 35 

resolved by canopy structure alone. 36 

 37 

1 Introduction 38 

Inter-annual variability (IAV) in the growth rate of atmospheric CO2 concentrations is 39 

largely dependent on the variability of the land sink (Keeling et al. 1995; Schimel et al. 2001; 40 

Nevison et al. 2008; Le Quere et al. 2017), and the land sink is closely coupled to climate 41 

variability (Beer et al. 2010; Poulter et al. 2014; Ahlstrom et al. 2015; Sitch et al. 2015; Fu et al. 42 

2017; Rodenbeck et al. 2018). A quantitative understanding of the relationship between climate 43 

variations and the land sink response is therefore crucial for accurate prediction of carbon-44 

climate feedbacks.  Because photosynthesis represents the pathway by which carbon enters 45 

terrestrial ecosystems, understanding the sensitivity of this process to environmental drivers is 46 

necessary to constrain the terrestrial carbon sink (Anav et al. 2015). The environmental drivers of 47 
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photosynthesis – temperature, moisture, and radiation – often covary. For example, drought 48 

conditions usually reflect both low precipitation and high temperature, while above-average 49 

precipitation likely co-occurs with high cloud cover, which reduces radiation. These covariances 50 

make it difficult to unambiguously attribute variations in gross primary productivity (GPP) to the 51 

underlying driver. 52 

Terrestrial biosphere models are one way the disambiguation of carbon cycle processes 53 

can be achieved. Earth system models (ESMs) equipped with terrestrial biosphere models can 54 

simulate the evolution of the terrestrial carbon sink under climate change and the sink’s coupling 55 

with climate (Anav et al. 2013; Arora et al. 2013). However, modeling estimates of the inter-56 

annual variability of the terrestrial carbon sink diverge due to the uncertainty in terrestrial model 57 

processes (Keenan et al. 2012; Bonan and Doney 2018). Some of this uncertainty results from 58 

simplifications in representing ecological processes within land models.  For example, most 59 

ESM land components simulate the vegetation canopy as a simplified single bulk leaf layer, or 60 

“big-leaf,” that exchanges mass and energy with the atmosphere (Sinclair, Murphy & Knoerr 61 

1976).  In reality, vertical structure in the tall canopies of forests may influence the response of 62 

carbon uptake to variability in these drivers, including on the inter-annual scale.  63 

Forest canopies, including temperate deciduous canopies, exhibit considerable structural 64 

heterogeneity from the top to the bottom that impacts the within-canopy physical environment, 65 

particularly light extinction, microclimate, and leaf water stress. Leaf area density, leaf angle and 66 

other canopy architectural traits (for example, clumping) also vary with height in forest canopies 67 

(Parker, O’Neill & Higman 1989; Niinemets 1998; Walcroft et al. 2005; Zhao et al. 2011). Such 68 

vertical architectural heterogeneity can affect radiation extinction from successive canopy 69 

shading, and potentially lead to diurnal, seasonal or spatial differences in carbon uptake 70 

depending on canopy structure (Koike et al. 2001; Funk and Lerdau 2004; Parker et al. 2005; 71 

Niinemets & Valladares 2004). The interactions between canopy architecture, the varied light 72 

environment and within-canopy turbulence produce a vertically varied microclimate (Elias et al. 73 

1989; Flerchinger et al. 2015) capable of moderating weather and climatic extremes (Carlson & 74 

Groot 1997; Chen et al. 1999; Rambo & North 2009; Von Arx, Dobbertin & Rebetez 2012; Du 75 

Frenne et al. 2013). Because photosynthesis is tightly coupled with meteorological conditions, 76 

carbon uptake in canopies is sensitive to vertical light and meteorological gradients and the 77 

interactions between such gradients, particularly during meteorological extremes (Niinemets & 78 
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Valladares 2004). 79 

Vertically resolved multilayer canopy models have been applied to vegetation-80 

atmosphere carbon fluxes in forests and other plant canopies to resolve the impacts of vertical 81 

heterogeneity in canopy architecture and environmental conditions (Baldocchi, Wilson and Gu 82 

2002; Wu et al. 2003; Walcroft et al. 2005; Drewry et al. 2010; Bonan et al. 2014; Bonan et al. 83 

2018; Chang et al. 2018). For example, a recent study using the Advanced Canopy-Atmosphere-84 

Soil Algorithm (ACASA) model concluded that resolved scalar profiles (temperature, humidity 85 

and carbon dioxide) reduced canopy carbon uptake by an average of 10%, and that the multilayer 86 

model improved simulated daily fluxes compared to a single layer model at sites where seasonal 87 

variability in canopy structure (leaf area index) was great (Chang et al. 2018). Drewry et al. 88 

(2010) and Wu et al. (2003) both analyzed the sensitivity of canopy CO2 fluxes to meteorological 89 

conditions, and found that modeled CO2 flux was sensitive to vertical temperature gradient. 90 

Walcroft et al. (2005) found that vertically-varied clumping (i.e. overlap of leaves) increased 91 

simulated canopy photosynthesis by 12% relative to randomly distributed leaves. Finally, Bonan 92 

et al. (2014) found that including vertically-resolved plant hydraulics and water stress improved 93 

the simulated diurnal cycle of GPP in forests that were water stressed, and postulated that 94 

vertical canopy profiles may be important for accurately simulating vegetation-atmosphere 95 

fluxes. These studies show that vertical representation in canopy models could be important to 96 

photosynthetic carbon uptake and its response to the environment. 97 

Adding further complexity to a forest canopy is the hydraulic architecture of plants by 98 

which soil water is transferred to leaves to maintain moisture during photosynthesis (Tyree and 99 

Ewers 1991). Plant hydraulic stress occurs when xylem water potential drops below a threshold 100 

that causes a loss in hydraulic conductivity within the plant. Observational studies show that 101 

plant hydraulic adaptation to water stress may be important for photosynthetic performance in 102 

relationship to water availability (Taylor & Eamus 2008; Zhang & Cao 2009; Aranda et al. 103 

2014). Therefore, vegetation models may benefit from more realistic plant hydraulic trait-based 104 

carbon-water coupling, such as accounting for stomatal responses to reduced xylem pressure 105 

(e.g. Bonan et al. 2014). Plant hydraulic stress is not distributed evenly throughout the canopy, 106 

though, as water potential varies with the vertical canopy light gradient because of covarying leaf 107 

temperature and vapor pressure deficit (Hellkvist, Richards and Jarvis 1974; Niinemets & 108 

Valladares 2004). Models that parameterize this behavior have shown that including plant 109 
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hydraulics creates vertical variation in stomatal conductance according to a balance between 110 

radiative intensity and leaf water status (e.g. Williams et al. 1996). In the multi-layer canopy 111 

study by Drewry et al. (2010), the sensitivity of photosynthesis to water stress was dampened in 112 

soybean and maize canopies when leaf stomatal conductance was linked to root zone water stress 113 

via plant hydraulics, instead of linking stomatal conductance directly to soil moisture. Their 114 

results also show the non-uniform soybean canopy was more greatly impacted by water stress in 115 

the upper canopy where leaf area density peaked. While models (e.g. CLM5, CLM-ml; Bonan et 116 

al. 2014; Kennedy et al. 2019) have begun to depart from arbitrary soil moisture stress 117 

parameterizations in favor of parameterizations that modulate photosynthesis and 118 

evapotranspiration via plant hydraulic traits, the impacts of such an advancement on canopy 119 

carbon uptake should be carefully examined against observations at multiple timescales, as well 120 

as the differential impacts of plant hydraulic stress in big-leaf versus multi-layer canopy models. 121 

To date, the difference between multilayer and big-leaf representations of a forest canopy 122 

regarding their simulation of the response of photosynthesis to inter-annual climate variations, 123 

particularly when canopy architecture, microclimate, and hydraulic status vary along a vertical 124 

gradient, has not been demonstrated. Here, we evaluate modeled IAV in peak summer GPP in 125 

big-leaf and multilayer models, and investigate the extent to which vertical heterogeneity 126 

resolved in a multilayer model affects the simulated GPP response to climate IAV. We further 127 

investigate whether representing vertically varying water stress within the multi-layer canopy 128 

affects the direct response of photosynthesis to inter-annual soil moisture stress. For this 129 

analysis, we compare two versions of a multilayer model (one keeping soil moisture stress 130 

constant at each canopy layer, one that varies soil moisture stress) with similar big-leaf models at 131 

five temperate deciduous broadleaved forest (DBF) FLUXNET sites in the Northeastern US. We 132 

focus on these forests because temperate forests are a growing carbon sink and their sensitivity to 133 

climate fluctuations may affect the future of the Northern Hemisphere land sink (Pan et al. 2011; 134 

Shiga et al. 2018). Photosynthesis is a multivariate response; thus, we use four environmental 135 

variables (temperature, humidity, radiation and soil moisture) to represent climate IAV. The 136 

model results are interpreted with an observationally based GPP product from eddy-covariance 137 

flux tower measurements, and the sensitivity of these results to diffuse light representation in the 138 

multilayer model is also examined by using diffuse light measurements from one of the flux 139 

towers. The implications for carbon-climate coupling in terrestrial forest ecosystems are 140 
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discussed. 141 

  142 

2 Data and methods 143 

2.1 FLUXNET eddy covariance data 144 

 FLUXNET is a global network of eddy covariance towers that measure the flux of 145 

energy, water and CO2 between the ecosystem and atmosphere (Williams et al. 2009; Pastorello 146 

et al. 2017). We analyze data from five temperate deciduous broadleaved forest (DBF) 147 

FLUXNET sites in the eastern United States with about a decade or more of data. Harvard Forest 148 

(US-Ha1; 42.54 N, 72.17 W; 1991-2012; DOI: 10.18140/FLX/1440071) is majority red oak and 149 

red maple, mixed with hemlock and white pine. The tower and canopy heights are 30 m and 23 150 

m, respectively. Morgan-Monroe State Forest (US-MMS; 39.32 N, 86.41 W; 1999-2014; DOI: 151 

10.18140/FLX/1440083) is a secondary successional forest located across a maple-beech to oak-152 

hickory transition zone. Its tower and canopy heights are 48 m and 27 m, respectively. The Oak 153 

Openings tower is located within an oak woodland dominated by red, white and black oak, as 154 

well as red maple (US-Oho; 41.55 N, 83.84 W; 2004-2013; DOI: 10.18140/FLX/1440088), with 155 

tower and canopy heights of 32 m and 24 m. University of Michigan Biological Station (US-156 

UMB; 45.56 N, 84.71 W; 2000-2014; 10.18140/FLX/1440093) is predominantly aspen, but the 157 

footprint also contains red oak, red maple, and beech, as well as some hemlock and white pine. 158 

Its tower and canopy heights are 46 m and 21 m, respectively. Finally, Willow Creek is 159 

dominated by sugar maple and basswood (US-WCr; 45.81 N, 90.08 W; 1999-2014; DOI: 160 

10.18140/FLX/1440095) with tower and canopy heights of 48 m and 24 m. 161 

 Direct meteorological measurements with gap filling are available from each tower and 162 

include air temperature and pressure, wind speed, vapor pressure deficit (VPD), net shortwave 163 

(SW) and longwave radiative fluxes, and precipitation flux. These measurements are used both 164 

as atmospheric forcing for the CLM simulations described below (e.g., Pastorello et al. 2017) 165 

and for the regression analysis described in Section 2.3. Gap-filled daytime-partitioned GPP 166 

estimates used here are from the FLUXNET2015 dataset, and are hereafter referred to as 167 

“observed” GPP (Lasslop et al. 2012). Nighttime-partitioned GPP estimates are also available 168 

from the FLUXNET2015 dataset, and for some site-years (e.g. 1997 at US-Ha1; 2003-2004 at 169 

US-MMS) the nighttime estimate differs substantially (Figure S1). However, most of the data 170 

from the nighttime-partitioned GPP are within error of the daytime-partitioned estimates based 171 
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on random error in carbon flux measurements reported for FLUXNET eddy covariance towers, 172 

which is about 20% (Richardson et al. 2006; shading in Figure S1). Each site has a history of 173 

disturbances that have occurred throughout the measurement period, some of which may have 174 

affected GPP at the inter-annual timescale. At US-Ha1, there was an ice storm in the winter of 175 

2008-2009 that caused some canopy damage, including a loss of 1.5 MgC ha-2 of woody debris 176 

and a reduction of LAI by 1.4 m2 m-2. At US-MMS, there was a flood in June 2012 succeeded by 177 

drought in July of 2012 directly affecting July GPP, while some insect damage occurred in 2004 178 

and following the 2012 drought (with minimal impact). At US-WCr, there was a tent caterpillar 179 

outbreak in June 2001 causing full defoliation, with leaf recovery in July 2001, and a 30% forest 180 

overstory thinning in 2013-2014. The potential impact of these disturbances on the results is 181 

discussed in Section 3.2. 182 

Because the model simulations (described in Section 2.2) require atmospheric relative 183 

humidity (RH) input and only VPD data are available without gaps, VPD is converted to relative 184 

humidity using an empirical estimate of saturation vapor pressure via Murray (1967). This 185 

calculation sometimes results in negative RH values, which are replaced by linearly interpolating 186 

between the nearest positive neighbors. Root-zone soil water content (SWC) measurements are 187 

available at all FLUXNET sites except US-Ha1. In addition to the FLUXNET2015 data 188 

described above, we also use diffuse and total photosynthetic active radiation (PAR) 189 

measurements at US-UMB to explore the role of diffuse light on carbon uptake (see Section 2.4 190 

for methodology). Diffuse and total PAR are measured by a BF2 (2004-2012) or BF5 (2013-191 

2014) Sunshine Sensor at the US-UMB FLUXNET tower for a total period of 2004-2014, which 192 

coincides with the FLUXNET2015 dataset. 193 

 194 

2.2 Land model simulations 195 

We used a suite of Community Land Model (CLM) versions (Table 1) to simulate July 196 

GPP IAV at the sites described above. In this analysis, we focus on how the differences in 197 

vertical canopy structure and water stress parameterization between big-leaf and multilayer CLM 198 

variants affect GPP. When similar parameterizations are used, the model variants use the same 199 

parameters for biogeophysical processes, and it is through these similarities that we seek to 200 

minimize intermodel parametric and structural differences arising from other factors. For 201 

example, the multilayer version of CLM (CLM-ml) was developed as an experimental branch of 202 
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the CLM to test hypotheses related to a multilayer canopy representation. While some of its 203 

physics are by necessity formulated differently from the standard CLM, much of the model 204 

structure is adopted from the previous community release of  CLM (version 4.5, see Section 205 

2.2.1) and a comparison of these two model versions isolates the impact of only a few new 206 

physical parameterizations. The newest community release of CLM (CLM5) exhibits several 207 

differences compared with CLM4.5, thus we mainly compare two configurations of CLM5 208 

against one another (see Section 2.2.3). We note that this study does not address parametric 209 

uncertainty at the individual sites or for individual species for any of the models; however, the 210 

impact of parametric uncertainty on the results is discussed in Section 4. The models and 211 

simulations are described in detail below. 212 

 213 

Simulation Canopy 

type 

Soil moisture Stomatal 

conductance 

Water stress type Reference for 

model 

CLM4.5 Big-leaf Simulated and 

coupled with 

canopy 

Ball-Berry 

(Collatz et al. 

1991)  

Soil moisture stress 

factor, βt 

Oleson et al. 2013 

CLM-ml-BB Multilayer Prescribed 

from CLM4.5 

run 

Ball-Berry 

(Collatz et al. 

1991)  

Soil moisture stress 

factor, βt 

Bonan et al. 2014; 

Bonan et al. 2018 

CLM-ml-SPA Multilayer Prescribed 

from CLM4.5 

run 

Water use 

efficiency 

(Williams et al. 

1996; Bonan et 

al. 2014)  

Plant hydraulic stress 

via minimum leaf 

water potential 

threshold, ψl,min 

(Williams et al. 1996; 

Bonan et al. 2014) 

Bonan et al. 2014; 

Bonan et al. 2018 

CLM5-PHS Big-leaf Simulated and 

coupled with 

canopy 

Medlyn 

(Medlyn et al. 

2011) 

Plant hydraulic stress 

via water potential 

threshold for 50% 

xylem conductivity, 

P50, embedded in water 

stress factor, fw 

Lawrence et al. 

2019 
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(Kennedy et al. 2019) 

CLM5-noPHS Big-leaf Simulated and 

coupled with 

canopy 

Ball-Berry 

(Collatz et al. 

1991)  

Soil moisture stress 

factor, βt 

Lawrence et al. 

2019 

Table 1. Model configuration descriptions for each simulation. 214 

 215 

2.2.1 Big-leaf model: CLM4.5 216 

 Community Land Model version 4.5 (CLM4.5) is the land surface model within the 217 

Community Earth System Model version 1.2 (CESM1.2) (Oleson et al. 2013).  CLM simulates 218 

biogeophysical and biogeochemical processes that control exchanges of energy, water, and 219 

momentum between the soil, plant canopy and atmosphere. Vegetation is represented by plant 220 

functional types (PFTs), and the canopy in CLM4.5 is modeled as a single, bulk leaf layer, i.e. a 221 

“big-leaf” canopy. The big leaf is apportioned into a sunlit fraction that absorbs direct and 222 

diffuse light and a shaded fraction that absorbs diffuse light only. The sunlit and shaded fractions 223 

are characterized by their own photosynthesis and stomatal conductance, but canopy temperature 224 

and energy fluxes are calculated using an aggregate canopy conductance. Surface layer dynamics 225 

controlling momentum, sensible heat and latent heat fluxes are given by Monin-Obukhov 226 

Similarity Theory (MOST) (Zeng & Dickinson 1998). Photosynthesis (for C3 plants) is modeled 227 

using the Farquhar (1980) model, and stomatal conductance is simulated by the Ball-Berry 228 

model described in Collatz et al. (1991). Water stress is simulated with a soil moisture stress 229 

parameter, βt, which varies from 0 to 1 according to soil water matric potential and scales the 230 

minimum stomatal conductance parameter and also photosynthetic rates. Surface hydrology is 231 

represented by a variety of parameterizations simulating several fluxes (e.g. canopy interception 232 

and throughfall, evaporation, infiltration, etc.) that contribute to the surface water balance, given 233 

by the following equation, 234 

(1)        ∆𝑊𝑐𝑎𝑛𝑜𝑝𝑦 + ∆𝑊𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + ∆𝑊𝑠𝑛𝑜𝑤 + ∆𝑊𝑎𝑞𝑢𝑖𝑓𝑒𝑟 + ∑ (∆𝑤𝑙𝑖𝑞 + ∆𝑤𝑖𝑐𝑒) =𝑠𝑜𝑖𝑙 𝑙𝑒𝑣𝑒𝑙𝑠235  ∆𝑡[𝑞𝑟𝑎𝑖𝑛 + 𝑞𝑠𝑛𝑜𝑤 − 𝑞𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 − 𝑞𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 − 𝑞𝑟𝑢𝑛𝑜𝑓𝑓 − 𝐸𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑔𝑟𝑜𝑢𝑛𝑑], 236 

where each ∆𝑊 is the change in water storage in the canopy, at the surface, in the snowpack, in 237 

an unconfined aquifer underneath the soil layers, respectively; while each ∆𝑤 is the change in 238 

soil liquid and solid water content at each soil layer, summed over soil layers. The change in 239 

total water storage during each timestep, ∆𝑡, depends on the strength of liquid water and 240 
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evaporative fluxes represented by q and E, respectively. A detailed description of the individual 241 

parameterizations for each hydrological process is provided in Oleson et al. (2013). 242 

CLM4.5 simulations are run in offline, “single point” mode to simulate the fluxes at an 243 

eddy covariance flux tower, and use meteorological observations from the tower as atmospheric 244 

boundary conditions. Simulations are run for the years of data available at each site.  A 245 

representative PFT is used for each site (in this case DBF at all sites), and only the canopy and 246 

soil biogeophysical processes are simulated in response to the atmospheric forcing. Phenology, 247 

or the seasonal evolution in leaf area index (LAI), is derived from satellite data and is prescribed 248 

as a climatological monthly mean without IAV (Lawrence and Chase 2007). The default 249 

biogeophysical parameters for DBF are used (Oleson et al. 2013), and ambient CO2 is held 250 

constant at 360 ppm. All CLM4.5 simulations are initialized from the same “arbitrary initial 251 

conditions,” which are preselected in the CLM code (Oleson et al. 2013, pp. 27). For the land 252 

surface, this means that moisture is initialized at 0.15 m3 m-3 and soil temperature at 274 K 253 

throughout the soil column, while vegetation temperature is initialized at 283 K. These 254 

simulations provide a standard big-leaf baseline for simulation of the response of GPP to climate, 255 

and also simulated soil moisture for prescription in CLM-ml (see Section 2.2.2). 256 

 257 

2.2.2. Multilayer model: CLM-ml 258 

 We use a multilayer version of CLM (CLM-ml) to test the impacts of resolving the 259 

vertically-structured canopy microenvironment on the IAV of carbon uptake in forests (Bonan et 260 

al. 2014, 2018). CLM-ml models the canopy as a stack of thin (0.5 m) big-leaf layers, each 261 

divided into sunlit and shaded fractions with unique leaf-level characteristics (e.g. leaf 262 

temperature, stomatal conductance). Leaf area index varies with height according to a beta 263 

distribution function (dLAI in Figure 1e) for a typical DBF canopy, which we refer to as a non-264 

uniform distribution throughout the paper. Each bulk leaf layer is associated with and exchanges 265 

fluxes with an individual atmospheric layer, which in turn communicates with each neighboring 266 

atmospheric layer. Scalar profiles (wind speed, temperature and vapor pressure) are computed 267 

using a set of coupled flux-profile equations that account for canopy-induced turbulence above 268 

and within the canopy (Bonan et al. 2018).  269 

 270 
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 271 

Figure 1. Mean daytime vertical profiles in CLM-ml (US-UMB) (averaged over 10am-4pm over 272 

2001-2014) for a) air temperature (T), b) relative humidity (RH), c) absorbed photosynthetic 273 

active radiation (APAR), d) leaf water potential (LWP, here ψl), and e) gross carbon assimilation 274 

rate (Ag) and leaf area density (dLAI) distribution (top axis). z/h is relative height within canopy 275 

of height h. 276 

 277 

 CLM-ml has two representations for photosynthesis-stomatal conductance coupling and 278 

water stress: (1) a conventional, empirical model (Ball-Berry, βt; same as CLM4.5 but with βt 279 

applied equally at all leaf layers) and the (2) the soil-plant-atmosphere model (SPA; Williams et 280 

al., 1996; Williams et al. 2001). When the water potential in vegetation leaves, and by 281 

consequence in the stem, drops due to water stress, cavitation (i.e. dissolution of air and bubble 282 

formation) occurs and can lead to embolism (i.e. complete blockage to flow). Trees prevent this 283 

by closing their stomates before the negative pressure grows intense enough to cause cavitation 284 

and loss of hydraulic conductance (Tyree and Ewers 1991). This process is referred to here as 285 

plant hydraulic stress. Plant hydraulics in SPA are represented by two PFT-specific parameters, 286 

stem hydraulic conductance and stem hydraulic capacitance, which moderate leaf water potential 287 

(LWP) in each layer depending on soil water potential, leaf layer transpiration rate and hydraulic 288 

head (i.e. gravitational potential). Stem hydraulic conductance determines the rate of xylem flow, 289 

which transports water from soil to leaf through the bole and branches of the tree, while stem 290 

hydraulic capacitance determines the amount of water retention in the xylem. Stomatal 291 

conductance is calculated to optimize water use efficiency (a PFT-specific constant), subject to 292 

the constraint that LWP exceeds a defined minimum, also a PFT-specific constant (Bonan et al. 293 
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2014). Doing so alters the coupling between stomatal conductance and soil moisture by adding a 294 

plant hydraulic mechanism between soil water and water stress in the leaf layer, which is linked 295 

to LWP instead of directly to soil moisture.  296 

 Two configurations of the multilayer model are used in this study to parse the effects of 297 

the alternative stomatal conductance and plant hydraulics representations. The first version, 298 

CLM-ml-BB, is comparable to CLM4.5 as it uses Ball-Berry stomatal conductance and the soil 299 

moisture stress (βt) is applied equally to all leaf layers, though it uses the different turbulence and 300 

energy closure methods mentioned above. The second version, CLM-ml-SPA, uses the SPA 301 

model wherein soil moisture stress varies vertically because plant hydraulics modulate between 302 

soil water potential and leaf water potential at each leaf layer. While both configurations of the 303 

model include the multilayer resolution of canopy physics, the effects of vertically varying water 304 

stress are unique to CLM-ml-SPA. The plant hydraulics in CLM-ml-SPA may change the 305 

susceptibility of photosynthesis to canopy microclimate by linking water stress to within-canopy 306 

microclimate, i.e. by applying plant hydraulic stress (i.e. closure of stomata) to leaves that have 307 

lost moisture by radiation-transpiration coupling. 308 

Because CLM-ml is currently an offline model formulation, it is not fully coupled to all 309 

CLM processes. In the simulations presented here, CLM-ml soil water content is decoupled from 310 

precipitation and evapotranspiration, requiring prescribed soil moisture input and limiting 311 

simulations to shorter (~monthly) timescales. CLM-ml simulations are therefore run with 312 

volumetric soil water content (SWC) and βt prescribed from the CLM4.5 simulations described 313 

in Section 2.2.1 and are run for the month of July (peak growing season), only. These 314 

simulations are run in offline, single point mode for the same years as the CLM4.5 simulations, 315 

and are driven by the same FLUXNET atmospheric forcing, also with constant CO2 (360 ppm). 316 

The results of these simulations, along with the CLM4.5 simulations, are discussed in Sections 317 

3.1-3.3. 318 

 319 

2.2.3 CLM5 and big-leaf plant hydraulics 320 

 The most recent implementation of CLM is version 5 (CLM5), which includes new 321 

hydrology, plant hydraulic stress (PHS), and the Medlyn stomatal conductance scheme (Medlyn 322 

et al. 2011; Kennedy et al. 2019). The model, similar to SPA, links stomatal conductance to plant 323 

water stress by mediating soil water content and transpiration via a plant hydraulics scheme that 324 
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maintains continuity of water mass throughout the soil-plant-atmosphere system, except the 325 

canopy is modeled by a big-leaf representation that is divided into sun and shaded portions, 326 

similar to CLM4.5. There are several distinctions to note between CLM5 PHS and the CLM-ml-327 

SPA model that do not allow direct comparisons of their implementation of plant hydraulic stress 328 

(in addition to the differing canopy physics). For one, plant hydraulic status (i.e. leaf water 329 

potential in the models) is linked directly to stomatal closure in SPA, while in CLM5 PHS a 330 

plant water stress parameter (fw) is calculated as a sigmoidal function parameterized by threshold 331 

leaf water potential corresponding to 50% hydraulic conductance and applied in the Medlyn 332 

equation for stomatal conductance (similar to ßt in CLM4.5). Secondly, SPA includes hydraulic 333 

capacitance, which represents water storage in the plant hydraulic system, while CLM5 PHS 334 

does not. Thirdly, the iterative process by which stomatal conductance is calculated differs 335 

between SPA and CLM5. 336 

 Despite these differences, we can infer whether plant hydraulics affect GPP in a big-leaf 337 

representation by comparing two configurations of CLM5 with different settings: i) PHS turned 338 

on (CLM5-PHS) and ii) PHS turned off (CLM5-noPHS). When CLM5 is run with PHS turned 339 

off, the stomatal conductance parameterization is Ball-Berry and water stress is implemented as 340 

in CLM4.5 with a soil moisture stress factor, ßt, which comes directly from the soil water content 341 

as opposed to the plant water stress parameter fw used with PHS turned on. We note that even 342 

though these simulations also differ in stomatal conductance parameterization (Medlyn versus 343 

Ball-Berry), additional simulations (not shown) showed that the choice of stomatal conductance 344 

parameterization had a small impact on simulated July GPP compared to turning plant hydraulics 345 

on and off. Simulations of CLM5 using each of the two configurations are run at each 346 

FLUXNET site similar to the CLM4.5 and CLM-ml runs described above, and the resulting IAV 347 

in GPP simulated by these model runs is analyzed with respect to the observations and other 348 

models. The CLM5 results are discussed in Section 3.5. 349 

 350 

2.3 Analysis of inter-annual variability 351 

 We analyze IAV in the month of July, which represents peak growing season and 352 

identifies GPP responses to the direct effects of local climate variability. Although the 353 

FLUXNET observations of July GPP IAV might reflect lagged responses to climate IAV earlier 354 

in the growing season because of phenological responses to climate (Desai 2010), the model as 355 
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described above has a fixed phenological cycle and will only reflect lagged responses of GPP via 356 

lagged responses of soil moisture to prior months’ climate. Otherwise, the model is representing 357 

GPP responses to July climate variability only. IAV is defined here as the annual anomaly of 358 

July GPP from the mean of July GPP over all simulated years. We define the magnitude of July 359 

IAV as the standard deviation of the July anomalies from the long-term trend (SIAV), 360 

 361 

𝑆𝐼𝐴𝑉 = √∑ (𝑦𝑖−𝑦𝑖,𝑓𝑖𝑡)2𝑁𝑖=1 𝑁−1 .       (1) 362 

 363 

Here, yi is the annual July value (mean or sum) for year i, and yi,fit is simple linear best fit of 364 

annual July values over a timeseries of N years. Annual July values for GPP and leaf layer gross 365 

carbon assimilation rate (ag) are the sum of hourly carbon uptake over the month of July. For all 366 

observed climatic driving variables (air temperature; relative humidity, and incoming SW 367 

radiation, as well as SWC (i.e. soil moisture)) simulated by CLM4.5, yi is the July mean only 368 

including timestamps when GPP > 0. In addition to soil moisture, which for CLM4.5 and CLM-369 

ml is simulated by CLM4.5, and also simulated in CLM5, IAV in observed precipitation 370 

accumulated from March-July (which correlates well with simulated SWC, Table 2) is calculated 371 

for additional insight. 372 

 The year-to-year pattern of variability is quantified as the sample z-score of the detrended 373 

anomalies, 374 

 375 𝑦𝐼𝐴𝑉 =  𝑦𝑖−𝑦𝑖,𝑓𝑖𝑡𝑆𝐼𝐴𝑉 × 100       (2) 376 

 377 

where yIAV is the annual July anomaly relative to SIAV in units of percent. A z-score of 100% 378 

indicates a positive anomaly equal to one standard deviation from the mean. Using a z-score 379 

allows the patterns of IAV in carbon flux and driving climate variables to be represented as 380 

anomalies relative to the magnitude of variability (i.e. SIAV), and thus for variables to be 381 

compared directly, independent of their units or magnitude. Note that, because the data for one or 382 

another variable may not be normally distributed, the z-score as utilized here is not 383 

representative of how close a data point is to the most likely values. To determine the response of 384 

GPP to climate IAV, a simple linear regression analysis is performed by regressing yIAV of 385 
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whole-canopy GPP (CLM4.5, CLM-ml & observations) with yIAV of climatic drivers as 386 

independent variables. Regressions are also performed between ag at individual leaf layers 387 

(CLM-ml, only) and climatic drivers to determine if there is a vertically-varied response of 388 

carbon uptake to inter-annual climate variability.  Finally, all of the climatic variables are 389 

regressed with one another to determine the linear covariance between drivers. Stepwise multiple 390 

linear regressions were also calculated for GPP and ag IAV using the four drivers as possible 391 

independent variables (not shown); however, the results for the multiple linear 392 

regression analysis (i.e. the significant drivers it identified) were similar to the simple linear 393 

regression, so we show the simple linear regression only for clarity. 394 

In CLM-ml, the top of the canopy is represented by a height, h. Therefore, all multilayer 395 

results displayed as a function of height are presented using relative height within the canopy, or 396 

z/h, where height varies from 0 (ground) to 1 (canopy top, h). 397 

 398 

2.4 Simulating diffuse light effects on GPP in CLM-ml 399 

We additionally evaluate the partitioning of diffuse versus direct light in CLM to 400 

determine whether canopy complexity influences the sensitivity of carbon uptake to radiation. 401 

The radiation scheme in offline CLM equally partitions SW radiation into visible and near-402 

infrared energy. The visible and near-infrared bands are further partitioned into direct and diffuse 403 

light using an empirical polynomial fit to the climatological diurnal cycle of surface-level 404 

radiation simulated by the Community Atmosphere Model version 3 (Oleson et al. 2013). In this 405 

parameterization, diffuse fraction always decreases as total visible light intensity increases, while 406 

diffuse light intensity is nonlinearly related to visible intensity (Figure S2). We perform 407 

additional linear regressions of gross carbon assimilation in each leaf layer (CLM-ml, only) with 408 

direct and diffuse visible intensity. 409 

Because the direct-diffuse partitioning parameterization is based on climatology, we test 410 

the sensitivity of the multilayer model regressions to this parameterization by running 411 

simulations with diffuse fraction prescribed from the available hourly PAR measurements at US-412 

UMB from 2004 to 2014. Observed diffuse fraction behaves differently as a function of total 413 

radiation compared to the climatological CLM parameterization. Instead of early decline of 414 

diffuse fraction at low SW irradiance like in the parameterization, observed diffuse fraction 415 

remains high at lower irradiance and begins to steeply fall off at higher SW intensities (Figure 416 
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S3). Moreover, observed diffuse fraction depends on zenith angle (i.e. time of day), and also 417 

exhibits substantial variability aside from its relationship to solar intensity and zenith angle, 418 

likely due to changes in clouds and aerosols. The observed diffuse fraction tends to be higher 419 

than that of the parameterization and is partly decoupled from total visible intensity. To verify 420 

whether the diffuse fraction parameterization affected the simulated carbon uptake, we analyze 421 

an additional simulation using the prescribed diffuse fraction. Because diffuse fraction data is 422 

only available from 2004-2014, we repeat the regressions of the simulations with parameterized 423 

diffuse fraction for model output from 2004-2014 only for consistency. 424 

 425 

3 Results 426 

3.1 Canopy vertical structure in CLM-ml 427 

Vertical structure in CLM-ml manifests in vertically varying environmental conditions, 428 

of which radiation primarily controls the average daytime profile of carbon assimilation rate, 429 

together with leaf area density (Figure 1). At US-UMB, temperature and RH non-monotonically 430 

vary throughout the canopy, where temperature has a maximum and RH, a minimum in the 431 

middle of the canopy (Figures 1a,b). The exact position of these maxima varies in shorter or 432 

taller canopies, but these profiles are similar for all sites based on the same leaf area distribution. 433 

CLM-ml-BB is warmer and drier than CLM-ml-SPA throughout the canopy, although vertical 434 

variations in temperature and RH are small at all sites (T within 0.5K and RH within 0.85%). 435 

Light is extinguished exponentially from the topmost layers to the bottom (Figure 1c) in both 436 

model versions. LWP, only modeled in CLM-ml-SPA, is depleted in the upper canopy where the 437 

rate of photosynthesis is highest and therefore stomata are most open, coinciding with high vapor 438 

pressure deficit driven by high direct insolation. Water stress is mostly limited to z/h>0.6, since 439 

below this level, leaves are more shaded, and LWP is maintained at roughly -0.5 MPa (Figure 440 

1d). The profile of gross carbon assimilation rate per leaf area (Figure 1e, solid line) is primarily 441 

controlled by APAR, and it follows the same exponential decline from top to bottom of canopy. 442 

However, when the leaf area density distribution is taken into account (Figure 1e, dashed line), 443 

gross carbon assimilation rate increases to a maximum near z/h=0.8 and then decreases 444 

exponentially to the canopy bottom.  Integrated canopy GPP relies on this gross carbon 445 

assimilation rate adjusted for leaf area density, and indicates that the maximum contribution in 446 

the canopy to GPP is from the upper mid-canopy. 447 
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 448 

3.2 Canopy-scale IAV of GPP and its response to climate variability 449 

 450 

Figure 2. Timeseries of mean July GPP for the FLUXNET daytime-partitioned estimate and various 451 

configurations of CLM models (see Table 1) for sites a) US-Ha1, b) US-MMS, c) US-Oho, d) US-UMB, 452 

and e) US-WCr. The US-WCr site is missing data from years 2007-2010. 453 

 454 

Site Variable T RH SW Pr SWCa 
GPP, 

obs 

US-Ha1 

RH -0.17           

Incoming SW 0.20 -0.76***         

MAMJJ Accum. Precip. -0.39* 0.03 0.05       

SWC -0.41* 0.14 -0.04 0.84***     

GPP, obs 0.44** -0.34 0.51** 0.15 N/A   

GPP, CLM4.5 0.32 -0.36* 0.46** -0.39* -0.49** 0.27 

GPP, CLM-ml-BB 0.40* -0.28 0.41* -0.39* -0.50** 0.33 

GPP, CLM-ml-SPA 0.11 -0.47** 0.57*** -0.23 -0.37* 0.26 

GPP, CLM5-PHS 0.15 -0.36 0.48** -0.40* -0.49** 0.18 
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GPP, CLM5-noPHS 0.16 -0.35 0.49** -0.42* -0.55*** 0.20 

US-MMS 

RH -0.44*           

Incoming SW 0.37 -0.59*         

MAMJJ Accum. Precip. -0.15 0.20 0.06       

SWC -0.68** 0.56* -0.36 0.62     

GPP, obs -0.52** 0.39 0.13 0.37 0.67***   

GPP, CLM4.5 -0.59** 0.72** -0.12 0.44* 0.77*** 0.87*** 

GPP, CLM-ml-BB -0.59** 0.72** -0.12 0.45* 0.77*** 0.87*** 

GPP, CLM-ml-SPA -0.57** 0.58** 0.06 0.26 0.54** 0.81*** 

GPP, CLM5-PHS -0.70*** 0.70*** -0.09 0.47* 0.80*** 0.79*** 

GPP, CLM5- noPHS -0.63** 0.69*** -0.05 0.47* 0.83*** 0.82*** 

US-Oho 

RH -0.21      

Incoming SW 0.32 -0.91***     

MAMJJ Accum. Precip. -0.27 0.47 -0.41    

SWC -0.30 0.73** -0.65* 0.58   

GPP, obs -0.59* -0.39 0.09 0.03 -0.10  

GPP, CLM4.5 -0.49 0.74** -0.67** 0.72** 0.94*** -0.01 

GPP, CLM-ml-BB -0.47 0.75** -0.68** 0.74** 0.94*** -0.02 

GPP, CLM-ml-SPA -0.89*** 0.25 -0.26 0.36 0.52 0.46 

GPP, CLM5-PHS -0.86** -0.04 -0.06 0.37 0.34 0.36 

GPP, CLM5- noPHS -0.75* 0.06 -0.03 0.21 0.49 0.15 

US-UMB 

RH -0.48*           

Incoming SW 0.68*** -0.74***         

MAMJJ Accum. Precip. 0.26 0.46* -0.07       

SWC -0.07 0.46 -0.16 0.82***     

GPP, obs -0.02 0.23 0.12 0.22 0.33   

GPP, CLM4.5 -0.11 0.52* -0.21 0.86*** 0.82** 0.25 

GPP, CLM-ml-BB -0.10 0.52* -0.20 0.87*** 0.82** 0.26 

GPP, CLM-ml-SPA 0.18 0.34 0.09 0.70*** 0.43 0.25 

GPP, CLM5-PHS 0.32 0.49 -0.10 0.89*** 0.80*** 0.05 

GPP, CLM5- noPHS -0.39 0.63** -0.43 0.75*** 0.73*** 0.11 

US-WCr 

 

RH 0.26      

Incoming SW 0.65** 0.43     

MAMJJ Accum. Precip. 0.25 -0.04 0.56**    

SWC 0.21 0.36 0.67*** 0.74***   

GPP, obs -0.64** 0.40 -0.17 -0.04 -0.03  
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GPP, CLM4.5 0.33 0.25 0.68*** 0.74*** 0.86*** 0.61** 

GPP, CLM-ml-BB 0.30 0.28 0.69*** 0.75*** 0.89*** 0.64** 

GPP, CLM-ml-SPA 0.46* 0.31 0.44 0.47 0.56** 0.54** 

 GPP, CLM5-PHS 0.17 -0.05 0.20 0.45 0.47* 0.50 

 GPP, CLM5- noPHS -0.26 -0.13 0.17 0.46 0.54 0.35 

 455 

Table 2. Coefficient of correlation for canopy-scale linear regressions of zIAV. Green shaded cells 456 

are covariances of drivers, while blue shaded cells are correlations of GPP with drivers. White 457 

numerical cells in the rightmost column are correlations of modeled GPP with observed GPP.  458 

***p < 0.01, **p < 0.05, *p < 0.10. 459 

a Observed GPP was regressed with observed SWC. CLM4.5 and CLM-ml GPP were regressed 460 

with CLM4.5-simulated SWC. CLM5-PHS and CLM5-noPHS were simulated with their own 461 

respective simulated SWC. 462 

 463 

The response of observed July GPP to climate variability at each site generally depends 464 

on the climatic driver(s) with the most pronounced IAV (Tables 2, S1). US-Ha1 is the most 465 

humid and cool of all the sites, and receives the least insolation on average. Despite low average 466 

values, incoming SW radiation is characterized by larger IAV than other driver variables at the 467 

site, and GPP IAV at US-Ha1 is most highly correlated with SW radiation (r = 0.51; Table 2). 468 

These regressions at US-Ha1 are robust even when the years of notable disturbance (see Section 469 

2.1) are removed (Table S2). US-MMS is the warmest site, receives the most precipitation, and 470 

also has the highest temperature and precipitation IAV. US-MMS has the highest IAV of 471 

observed July GPP (SIAV = 55.54 gC m-2 mo-1; Table S1), and this is most highly correlated with 472 

IAV in soil moisture (r = 0.65; Table 2), which is mediated by evaporative demand and 473 

precipitation. GPP IAV at US-MMS is anti-correlated with temperature (r = -0.52; Table 2), and 474 

we note that temperature is anti-correlated with soil moisture. We note that 2012 was a drought 475 

year at US-MMS characterized by very low RH and soil moisture, which is a strong driver of the 476 

correlations at US-MMS. The linear correlation of GPP with soil moisture is substantially 477 

weakened (r=0.29; p>0.10) when the year 2012 is removed from the analysis, as is the 478 

correlation of GPP with temperature (r=-0.21; p>0.10) while the only significant correlation 479 

(p<0.01) becomes that of observed GPP and RH (Table S2). This suggests that outside of a 480 

drought at a relatively well-watered site like US-MMS, GPP may be far more responsive to 481 
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atmospheric conditions than soil conditions. GPP at US-Oho is the highest in magnitude, which 482 

may be due to this site having the highest SW radiation, but lowest in IAV. Like US-MMS, GPP 483 

at US-Oho is anti-correlated with temperature. US-UMB exhibits the lowest climate variability 484 

of all of the sites, which may account for the lack of strong (| r | > 0.5) or significant (p < 0.05) 485 

correlations between GPP IAV and any of the observed climate drivers given by the linear 486 

regressions (Table 2). Finally, at US-WCr, GPP is anti-correlated with temperature, while 487 

temperature at US-WCr has the second highest IAV among the sites. RH becomes a significant 488 

driver at US-WCr, as well, when accounting for disturbance history (Table S2); otherwise, the 489 

regressions remain qualitatively similar. 490 

The models consistently underestimate observed July GPP at all sites by 11-46% (Figure 491 

2; Table S1), which may be due to either parameter or model structural uncertainty (see Section 492 

4). The simulations do, however, capture some of the observed patterns of GPP (Table 2). For 493 

example, the models capture the positive correlations of GPP with incoming SW radiation and 494 

temperature and negative correlation with RH at US-Ha1. They also capture the anti-correlation 495 

of GPP with temperature at US-Oho. However, some of that agreement diminishes when 496 

disturbance years are removed from the analysis, like at US-Ha1 (Table S2). Model-observation 497 

agreement on-the-whole is fairly weak, disturbances or not, as correlations of observed GPP with 498 

SWC are weak whilethe models still simulate a strong sensitivity of simulated GPP to SWC. 499 

Therefore, the modeled GPP IAV does not correlate well with observed GPP IAV at any of these 500 

sites. These results suggest that either the models overemphasize the role of soil moisture 501 

variability in GPP IAV, or that there are errors between CLM4.5 simulated SWC and real-world 502 

soil moisture. 503 

Differences between GPP IAV simulated by CLM-ml-BB and CLM4.5 and their 504 

regressions with climatic drivers are negligible for all sites (Table 2; Table S1; Figure S4), 505 

implying that vertically varying microclimate and leaf area profile did not substantially impact 506 

the response of GPP to climate IAV. However, the results are notably different when using SPA, 507 

indicating that simulating plant hydraulics and LWP in a multi-layer model may influence the 508 

IAV of GPP. CLM-ml-SPA simulations dampen July GPP IAV relative to CLM-ml-BB and 509 

CLM4.5 at all sites except US-Ha1 (Table S1; Figure S4a-d). At US-Ha1, simulated July GPP 510 

IAV at was slightly greater in CLM-ml-SPA than it was for CLM4.5 and CLM-ml-BB (Table 511 

S1). Moreover, at all sites except US-Ha1, SPA alters the pattern of GPP IAV relative to the 512 
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Ball-Berry simulations, causing yIAV for some years to differ by over 100% between simulations 513 

(Figure 3b-e). At US-Ha1, the pattern of CLM-ml-SPA simulated July GPP IAV changes little 514 

relative to that of CLM-ml-BB and CLM4.5 (Figure 3a). To explain why the multilayer model 515 

only made a difference when using SPA, we analyze the individual leaf layers simulated in 516 

CLM-ml in Section 3.3. 517 
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 518 

Figure 3. yIAV for a-e) GPP at the canopy scale, f-j) carbon assimilation rate at each leaf layer in CLM-ml-BB, and k-o) carbon 519 

assimilation rate at each leaf layer in CLM-ml-SPA. Note the different years for each site. z/h is relative height within canopy of 520 

height h. 521 

 522 
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3.3 IAV of gross carbon uptake and response to climate variability in individual leaf layers 523 

 In the multilayer model simulations, IAV of gross carbon assimilation rate (ag) differs 524 

among individual leaf layers (Figure 3f-o), indicating that each layer can respond 525 

independently to climate IAV. This is most apparent in the CLM-ml-SPA simulations, where 526 

vertical gradients in ag IAV are very strong. Moreover, at some layers the sign may be 527 

opposite to that of other layers and even the canopy integrated GPP (Figure 3a-e), indicating 528 

that the climate-driven anomalies at some layers oppose the anomalies at other layers in the 529 

same year. In fact, these vertical gradients are explained by a vertically varying response to 530 

climate variability (i.e. different dominant drivers at each layer), as measured by the 531 

correlations between yIAV of gross carbon assimilation rate (ag) at individual canopy layers 532 

with the yIAV of four climate drivers (Fig. 4). To elucidate how either multilayer 533 

parameterization, CLM-ml-BB or CLM-ml-SPA, affects these results, we analyze Figures 3 534 

and 4 in the context of each simulation across all five sites. 535 

In the CLM-ml-BB simulations, vertical gradients in ag IAV are most apparent at US-536 

Ha1 within the upper part of the canopy (Figure 3f), with vertical gradients present at all sites 537 

we simulated (Figure 3g-j). For CLM-ml-BB simulations, the sign of the ag anomaly at each 538 

layer is fairly uniform throughout the canopy, with some exceptions where there are sign 539 

changes in the mid and lower canopy (e.g. 2003 and 2008 at US-UMB, Figure 3i; 2000 at 540 

US-WCr, Figure 3j). For most years, the sign of the anomaly in each canopy layer 541 

corresponds to the sign of the integrated GPP IAV time series for CLM-ml-BB in Figure 3a-542 

e. At all sites except US-Ha1, soil moisture was the main limiting climate variable 543 

throughout the canopy, shown by the significant (p < 0.05), positive correlation coefficients 544 

in the linear regressions at most layers (Figure 4b-e). This relatively consistent soil moisture 545 

response throughout the canopy explains why GPP IAV is so similar between CLM-ml-BB 546 

and CLM4.5. The sign of the correlations changes within the canopy in the CLM-ml-BB 547 

simulations at some sites (excluding US-Ha1) because of the increasing dependence of ag on 548 

radiation, in tandem with incoming shortwave radiation anomalies that have the opposite 549 

impact on ag of soil moisture. For example, in years 2003 and 2008 at US-UMB (Figure 3i), 550 

negative radiation anomalies (Figure S4d) drove negative ag anomalies at z/h < 0.4, while 551 

positive SWC anomalies drove positive ag anomalies at z/h > 0.4, resulting in positive 552 

anomalies in canopy-integrated GPP. Of the five deciduous sites evaluated, US-Ha1 exhibits 553 

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to JGR Biogeosciences 

 

different behavior with CLM-ml-BB and is mainly limited by radiation (Figure 4a). The 554 

transition from temperature-limited carbon uptake to radiation-limited carbon uptake at 555 

around z/h ~ 0.84 caused strong vertical variation in leaf layer ag IAV near that height 556 

(Figure 3f). However, radiation was still the main driver throughout the canopy, which 557 

accounts for the similarities between CLM-ml-BB and CLM4.5 simulations at this site. 558 

 559 
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 581 

 582 

 583 

Figure 4. Correlation coefficients between yIAV of carbon assimilation rate at each leaf layer and yIAV of the climate drivers in CLM-584 

ml-BB (a-e) and CLM-ml-SPA (f-j). Stippled (+) points represent p < 0.05. z/h is relative height within canopy of height h.585 
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 586 

Other climatic drivers that have significant correlations in the CLM-ml-BB simulations 587 

can be explained via their covariation with the main driving climate variable (SWC or radiation) 588 

at any site. The negative trends of carbon uptake with SWC and RH at US-Ha1 (Figure 4a) likely 589 

stem from their opposing relationship with radiation (Figure 2a).  Temperature is significantly 590 

negatively correlated with carbon uptake at US-MMS in z/h > 0.45 (Figure 4b), but this may 591 

arise from an anti-correlation between temperature and SWC at US-MMS (Table 2). Likewise, at 592 

US-Oho radiation is strongly anti-correlated, and temperature weakly anti-correlated, with SWC 593 

and RH.  594 

 In contrast, the CLM-ml-SPA simulations show stronger vertical gradients and there are 595 

frequently sign changes within the canopy, especially at US-UMB. The vertically varying water 596 

stress in CLM-ml-SPA is predominantly why it produces qualitatively and quantitatively 597 

different regression coefficients at each layer compared to those from CLM-ml-BB, mainly at 598 

soil moisture-limited sites (Figure 4g-j). In CLM-ml-SPA, soil moisture dependence is limited to 599 

the uppermost leaf layers, which results in other climatic variables driving IAV in photosynthesis 600 

lower in the canopy. At US-MMS, US-UMB and US-Oho, there are 3 different regimes of 601 

photosynthetic response to climate variability: the upper canopy is mainly limited by soil 602 

moisture, the middle, by temperature, and the lower, by radiation (Figure 4g,h,i). At US-WCr, 603 

there are only two vertical regimes – one driven by a combination of SWC, RH and temperature 604 

at the top, and one dominated by radiation at the bottom (Figure 4j). Different drivers at different 605 

layers result in the transitions between positive and negative IAV among the leaf layers (Figure 606 

3l-o). This occurs because since some years have anomalies in one climatic driver that oppositely 607 

affect carbon uptake compared to the effect of another climatic driver. A clear example is at US-608 

UMB in year 2011, when high radiation and relatively higher SWC caused positive anomalies at 609 

the top and bottom of canopy, while high temperature caused a negative anomaly in the middle 610 

of the canopy (Figure 3n; Figure 2d). Many of the site-years characterized by sign changes 611 

within the canopy were associated with damped GPP IAV in CLM-ml-SPA relative to CLM-ml-612 

BB, as is evident for example at US-Oho in 2006 and 2007 (Figure 3c,m), or at US-UMB in 613 

2004 and 2006 (Figure 3d,n). In fact, damped response to soil moisture can also explain why 614 

CLM-ml-SPA would predict in one year a canopy-integrated GPP anomaly of opposite sign to 615 

that predicted by CLM-ml-BB. For example, at US-UMB in 2003, a year with positive soil 616 
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moisture anomaly and negative radiation and humidity anomalies (Figure S4d), CLM-ml-BB 617 

predicted a positive anomaly in GPP due mainly to positive ag anomalies in the upper two-thirds 618 

of the canopy while CLM-ml-SPA predicted a negative GPP anomaly mainly due to the lower 619 

three-quarters of the canopy (Figure 3d). In this example, CLM-ml-BB was responding to the 620 

positive soil moisture anomaly, while CLM-ml-SPA with a damped soil moisture dependence 621 

was responding more to the negative radiation and humidity anomalies. In contrast to soil-622 

moisture-limited sites, at US-Ha1 where radiation was the dominant driver, the layer-by-layer 623 

correlations are similar to those of the CLM-ml-BB simulation (Figure 4f), and the patterns of 624 

IAV in the multilayer canopy are also similar (Figure 3f,k), further suggesting that SPA has a 625 

stronger impact on GPP at soil moisture limited sites. 626 

 627 

3.4 Diffuse light effect on GPP  628 

 The results presented in Section 3.3 suggest that multilayer canopy structure may affect 629 

the response of GPP IAV to climate variability when plant hydraulic stress is vertically resolved, 630 

exposing radiation limitation in the lower part of the canopy that was overshadowed by soil 631 

moisture limitation in traditional schemes (Figure 4f-j). We therefore test whether the GPP IAV 632 

is sensitive to the diffuse parameterization used in the model because these lower canopy layers 633 

receive mostly diffuse light.  Previous studies have shown that increased diffuse light fraction 634 

increases GPP (Gu et al. 2003; Niyogi et al. 2004), although other studies suggest this effect is 635 

weak in forests (Cheng et al., 2015).   Simulations using prescribed diffuse fraction from 636 

measured PAR at US-UMB reveal that variations in radiation were an important driver of GPP 637 

IAV at z/h = 0.6-0.8 (Figure 5c), whereas the radiation trends at these leaf layers were not 638 

significant when diffuse fraction was parameterized (Figure 5a).  Diffuse evaluations at other 639 

sites were not possible due to the lack of historical diffuse radiation measurements. 640 

Regressions with the direct and diffuse components of the visible spectrum show that the 641 

increased dependence of ag on diffuse radiation in the middle layers of the canopy is cause for 642 

the increased dependence on total SW radiation. Diffuse light positively drives ag in the mid-643 

canopy in simulations with prescribed diffuse fraction, and conversely direct visible light has a 644 

negative impact on ag, likely because it increases temperature and VPD which have a negative 645 

impact on photosynthesis.  646 

 647 
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 648 

Figure 5. Correlation coefficients (as in Figure 4) for CLM-ml-SPA simulations at US-UMB, 649 

2004-2014 using a,b) Parameterized diffuse visible light fraction. c,d) Prescribed diffuse visible 650 

light fraction.  651 

 652 

July GPP magnitude increased for all years with prescribed diffuse fraction relative to 653 

simulations with parameterized diffuse fraction (Figure 6a).  The prescribed diffuse shows some 654 

cases where it influences IAV, e.g. the large decrease in IAV from 2004-2006 (Figure 6a) but 655 

overall the impact on GPP IAV does not improve agreement with observations (Figure 6b). On 656 

hourly timescales of the light response curves, the sensitivity of GPP to diffuse fraction is 657 

different for the prescribed diffuse simulation compared to the parameterized diffuse simulation, 658 

and closer to the observed response of GPP to diffuse fraction (Figure 7). However, the positive 659 

response of GPP to diffuse fraction in CLM-ml shows a stronger gradient than observed (e.g., 660 

higher GPP with higher diffuse fractions), indicating that the model may be overestimating the 661 

impact of diffuse light on the DBF canopy (compare Figure 7b with Figure 7c). Thus, the 662 
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resulting increased dependence of mid-canopy ag should be considered with the knowledge that 663 

the model does not capture the observed diffuse light response. 664 

 665 

 666 

 667 

 668 

Figure 6. a) Mean July GPP and b) July GPP yIAV for US-UMB comparing CLM-ml-SPA 669 

simulations using either parameterized (solid orange) or prescribed (dashed orange) diffuse 670 

fraction and observations. 671 

 672 

 673 

 674 

Figure 7. For the US-UMB site (2004-2014) and the CLM-ml-SPA, the total visible light 675 

intensity (W m-2) at the top of the canopy versus the hourly simulated GPP, colored by diffuse 676 
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light fraction (colorbar) a) parameterized diffuse fraction and b) prescribed diffuse fraction.  677 

Panel (c) shows the observed relationship based on FLUXNET data.   678 

 679 

  680 

3.5 Big-leaf plant hydraulic stress 681 

 As described in Section 3.3., the use of the plant hydraulic stress parameterization in 682 

CLM-ml-SPA shows that within-canopy gradients can influence the GPP response.  To see 683 

whether this result also applies to a big-leaf model, we compare two CLM5 simulations: one that 684 

uses soil moisture stress (e.g., Ball-Berry; CLM5- noPHS) and one that uses plant hydraulic 685 

stress (e.g., SPA; CLM5-PHS). The CLM5 analyses yield values of GPP SIAV that are at some 686 

sites more similar to CLM4.5 and CLM-ml-BB (US-Ha1, US MMS, and US-UMB), and other 687 

sites more similar CLM-ml-SPA (US-Oho and US-WCr) (Figure 2; Table S1). Both CLM5-PHS 688 

(PHS on) and CLM5-noPHS (PHS off) underestimate GPP magnitude more than the other 689 

simulations (Figure 2; Table S1). CLM5-noPHSJuly mean GPP is somewhat lower than CLM5-690 

PHS, but a previous study has shown these differences to be due to the default parameters in 691 

CLM for DBF and therefore not to the implementation of PHS (Franks et al. 2017).  Overall, our 692 

results suggest that the CLM5 simulations do not improve the simulation of GPP magnitude and 693 

IAV with respect to FLUXNET observations relative to the other CLM simulations. 694 

There is no clear impact of PHS in CLM5-PHS compared to CLM5-noPHSon the 695 

standard deviation of July GPP (SIAV).  At US-MMS and US-WCr, PHS decreased SIAV (from 696 

35.32 to 25.85 gC m2 mo-1 and from 20.69 to 16.28 gC m2 mo-1, respectively), while at US-Oho 697 

and US-UMB it increased SIAV (from 7.36 to 9.2 gC m2 mo-1 and from 25.55 to 38.35 gC m2 mo-698 

1, respectively). At US-Ha1, there was negligible difference (<1 gC m2 mo-1). It should be noted 699 

that at US-MMS, US-Oho and US-WCr, both CLM5 simulations (CLM5-PHS and CLM5-700 

noPHS) showed decreased GPP IAV relative to that of CLM4.5, suggesting that a process other 701 

than PHS dampens GPP in the CLM5 model. The two CLM5 configurations are very similar 702 

when evaluating the regression coefficients between GPP and climate variables (Table 2). Thus, 703 

unlike the impacts of using SPA in CLM-ml instead of Ball-Berry and soil moisture stress, the 704 

use of PHS in CLM5 simulations did not have a large impact on GPP variability. 705 

 706 

4 Discussion 707 

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to JGR Biogeosciences 

 

Single point runs at five DBF FLUXNET sites indicate that the default CLM4.5 708 

underestimated both mean GPP and its IAV.  Our comparison with CLM variants with more 709 

complex representations of canopy structure and/or mechanistically sound representations of the 710 

influence of soil moisture stress on the vegetation canopy suggests that these more sophisticated 711 

model structures did not improve GPP IAV relative to observations, as will be discussed below. 712 

When comparing CLM-ml-BB simulations with CLM4.5 simulations, the multilayer 713 

canopy representation (including micrometeorological profiles, a leaf area profile and explicit 714 

leaf layers) does not substantially impact GPP IAV or its response to inter-annual climate 715 

variability relative to a big-leaf scheme. Although simulations using CLM-ml-BB show vertical 716 

variation in carbon uptake, the difference in canopy-integrated GPP is negligible relative to 717 

CLM4.5. The lack of substantial vertical gradients in productivity could be due in part to the 718 

weak vertical microclimatic gradients in air temperature and RH in these simulations (Figure 719 

1a,b). A comparison of simulated and observed air temperature and RH gradients indicates that 720 

CLM-ml captures the qualities of the observed vertical variability in mean daytime temperature 721 

and RH profiles at US-UMB, although it tends to underestimate its within-canopy variability of 722 

air temperature by a half degree (~0.5 ºC in the model versus 1 ºC in the observations) (Figure 723 

S5). Other studies have reported larger vertical micrometeorological variations of about 1-2 ºC 724 

(up to about 3 ºC in the case of the fir) throughout aspen, fir and oak-hornbeam canopies (Elias et 725 

al. 1989; Flerchinger et al. 2015), so the effects of larger micrometeorological gradients may be 726 

stronger in other forest types. Another factor that could play a role in the weak vertical 727 

microclimatic variations is the leaf area distribution, as the CLM-ml prescribes a beta leaf area 728 

density (Figure 1e) and this may influence the microclimatic gradient. However, in a sensitivity 729 

test running CLM-ml-BB with a uniform leaf area among all layers, neither GPP IAV nor its 730 

regressions with climate IAV were different from simulations using the non-uniform distribution 731 

(not shown). Taken together, these results suggest that the multilayer representation in CLM-ml-732 

BB does not influence the magnitude and IAV of GPP in deciduous forests compared to a big-733 

leaf model. 734 

While the role of temperature and atmospheric water vapor within a canopy did not have 735 

a strong impact, the role of leaf water and plant hydraulic stress did yield a stronger response in 736 

GPP in the multi-layer model.  When we replaced the Ball-Berry stomatal conductance with 737 

SPA, GPP IAV was dampened compared to CLM4.5 and CLM-ml-BB, and altered the 738 
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relationships between carbon uptake and climate IAV. The dampened IAV is traceable to the 739 

impact of plant hydraulic stress, which limits the impact of soil moisture stress to the uppermost 740 

canopy layers where radiation drives high transpiration and depletes leaf water (Figure 1c,d). 741 

The high transpiration rates in the upper leaf layers (z/h > 0.6) can only be maintained if 742 

adequate soil water is available to replenish their LWP, which often results in LWP falling below 743 

the threshold for stomata to remain open (-2 MPa). Meanwhile, there is less transpiration and 744 

water loss at lower leaf layers (z/h < 0.6), allowing these layers to maintain LWP above -1 MPa 745 

and to continue photosynthesizing even at low values of soil water (Figure S6). The result is that 746 

the mid-canopy and lower canopy are not sensitive to soil moisture, and thus yield a negative 747 

correlation with temperature and a positive correlation with radiation.  As the lower canopy 748 

layers decouple from soil water limitation, their sensitivity to other drivers becomes more 749 

important and can result in sharp transitions in the sign of IAV within the canopy. Since these 750 

transitions usually occur in the upper half of the canopy where most of the leaf area is distributed 751 

(Figure 1e) and the impact on GPP is greatest, these sign transitions can result in canopy-752 

integrated IAV near zero. The representation of alternatively water limited and temperature (or 753 

radiation) limited leaf layers and the cancelation between the ag anomalies in these layers would 754 

not be captured by a single leaf layer. Thus, when SPA is used, the multilayer representation of 755 

the canopy significantly modifies IAV in GPP compared to the default model. 756 

FLUXNET carbon fluxes (including partitioned fluxes like GPP) are subject to a ~20% 757 

random error (Richardson et al. 2006), and observational GPP IAV (up to ~10-15% of the mean, 758 

on average) is encompassed within that error range. Thus, the models’ performance with respect 759 

to observed GPP IAV should be interpreted with caution. However, with respect to mean July 760 

GPP, all of the CLM variants have a negative bias relative to the observations well outside of the 761 

20% error range. An analysis of hourly GPP at all sites shows that not a single model variant can 762 

simulate the highest values of GPP in the hourly observations (Figure 8). A previous analysis of 763 

FLUXNET data showed that hours with the highest GPP explained most of the IAV in annual 764 

GPP (Zscheischler et al. 2016), and the inability of the model to capture the upper range of 765 

variability may be one of the reasons why monthly-scale GPP, and possibly its IAV, were not 766 

simulated accurately in this study. Our analyses in Section 3.2 also showed that disturbances at some 767 

sites may have greatly impacted the regressions of GPP with climate drivers, implying that disturbances 768 

are an important source of error both in the flux observations as well as in the models (given that the 769 
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models as configured here do not simulate disturbance events).770 
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  771 

 772 

Figure 8. Histograms of daytime hourly GPP (GPP>0) for FLUXNET observations and model simulations at all five study sites.773 

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to JGR Biogeosciences 

 

The representation of the interannual variability of hydrologic factors like soil moisture 774 

and evapotranspiration in CLM also show biases relative to observations (Figures S7 and S8). 775 

Soil moisture at all but one site (US-MMS) is either over- or underestimated, and does not 776 

exhibit the same inter-annual pattern as in the observations (Figure S7). Like GPP, latent heat 777 

flux is predominantly underestimated by all model versions (Figure S8). Including plant 778 

hydraulics in CLM-ml and CLM5 increase mean latent heat exchange, improving some biases; 779 

however, where there was little bias in latent heat exchange simulated by CLM5-noPHS (US-780 

WCr), CLM-PHS overestimated latent heat exchange. Given that evapotranspiration is inherently 781 

linked to photosynthesis via stomatal opening in the model parameterizations, it is not surprising 782 

that these biases persist in the water budget. According to our regressions between GPP and soil 783 

moisture for the simulations and FLUXNET observations, CLM appears to overestimate the 784 

influence of soil moisture on GPP IAV when using traditional soil moisture stress, which might 785 

affect the timing of the positive and negative anomalies. However, it is unclear how simulated 786 

soil moisture may have affected the distribution of simulated hourly GPP. Two central pieces in 787 

model development leading from CLM4.5 to CLM5 were soil hydrology and plant hydraulics 788 

(Kennedy et al. 2019), which, like SPA, modulates photosynthesis via plant water status rather 789 

than soil water status. Using the eddy covariance observations as a constraint, our analysis 790 

suggests that plant hydraulics in CLM5, as well as SPA in CLM-ml, do not improve GPP 791 

variability relative to the observed range of GPP, nor do they improve simulated GPP IAV. 792 

While improved vegetation and soil hydrological state and its coupling to carbon remains an 793 

important model development area, future modifications to stomatal conductance and 794 

photosynthesis in CLM should also address factors, or interactions among multiple factors, that 795 

contribute to periods of high GPP.  796 

The influence of parametric uncertainty on modeled GPP IAV and magnitude could be an 797 

important component in disentangling model biases. Studies show that model parameters at 798 

single sites differ from default parameters utilized in global-scale simulation of PFTs (e.g. Post et 799 

al. 2018). Our study did not address the parametric uncertainty in these models at the selected 800 

study sites, but instead focused on model structural differences. Additional model sensitivity 801 

studies would be required to fully explore the parameter space within the CLM model versions.  802 

By example, Figure S9 demonstrates the effects of varying parameter choices related to stomatal 803 

conductance and plant hydraulics on simulated July GPP at US-UMB, and highlights the 804 
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challenges at using parameteric changes to improve the simulation of GPP IAV. Selecting 805 

optimal parameters may not be straightforward or even productive, as Bonan et al. (2014) 806 

showed that optimizing these parameters alone for a single site may not lead to improved model 807 

representativeness given large uncertainty in optimal parameter values (see Figure 17 in Bonan 808 

et al. 2014). 809 

In addition to the model structural and parametric uncertainties in vegetation and soil 810 

hydrology discussed above, the model-data discrepancy could be due to other canopy structural 811 

factors, as well as biophysical or biochemical processes not represented in this study. For 812 

example, leaf clumping (i.e. the tendency of leaves to overlap in “clumps”) and leaf angle are 813 

both found to vary with height and enhance canopy response to the light environment. Several 814 

modeling studies show that clumping increases canopy carbon uptake, primarily by increasing 815 

intercepted radiation in shaded leaves (Baldocchi & Harley 1995; Chen et al. 2003; Walcroft et 816 

al. 2005). The carbon gains from leaf clumping (versus randomly distributed leaves) is even 817 

greater when the vertical heterogeneity of leaf clumping is included (Walcroft et al. 2005). 818 

Another notable, vertically distributed canopy architectural trait is leaf angle, which may 819 

optimize tradeoffs between radiation-induced leaf stresses and intercepted photosynthetic 820 

radiation, and serve to increase carbon uptake in shaded leaves (Niinemets 1998). Perhaps these 821 

architectural traits would serve to improve the models’ negative biases. Vegetation phenology 822 

and pre-growing season climatological impacts, oversimplified by these models, could have 823 

affected simulated GPP IAV, as observational evidence shows that the seasonal maximum GPP 824 

(i.e., July GPP) in temperate forests exhibits lagged relationships to variability in spring climate 825 

and bud burst phenology (Ouimette et al. 2018; Baldocchi et al. 2018). Another study shows that 826 

forest stands that are older and/or exhibit higher species diversity tend to dampen IAV of net 827 

carbon uptake in forests, a feature that is not simulated in CLM (Musavi et al. 2017). Finally, 828 

coupled carbon-nitrogen biogeochemistry may greatly affect modeled responses of land carbon 829 

exchange to climate variability (Thornton et al. 2007), which could be especially important in the 830 

multilayer model setting since some deciduous forests have significant vertical variation in leaf 831 

nitrogen (Ellsworth and Reich 1993). 832 

 833 

5 Conclusions 834 

 The results of the multilayer canopy model simulations show that the influence of the 835 
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multilayer canopy representation on simulated GPP IAV and its response to climate variability  836 

depended on the model stomatal conductance and water stress that was used. This result was 837 

consistent at five DBF sites with differing climates in the Northern US. Among four soil 838 

moisture-limited sites (US-MMS, US-Oho, US-UMB, US-WCr), CLM-ml simulations using 839 

Ball-Berry stomatal conductance showed that soil moisture was the dominant driver at all canopy 840 

layers, while radiation was the main driver at US-Ha1. Simulating vertically resolved LWP 841 

profiles and plant hydraulic stress at individual leaf layers (CLM-ml-SPA) dampens total GPP 842 

IAV due to a combination of the reduced impact of soil moisture and opposing leaf layer 843 

anomalies at different regimes in the canopy.  844 

The simulated soil moisture response at the four soil-moisture-limited sites was limited to 845 

the upper canopy layers, diminishing the overall impact of soil moisture on the canopy. Other 846 

drivers - temperature and radiation – take precedence in the middle and lower canopy leaf layers, 847 

altering the pattern of GPP IAV and ultimately dampening it.  Because radiation IAV dominated 848 

the climatic influence on GPP IAV at US-Ha1, the particular moisture stress treatment (e.g., 849 

Ball-Berry or SPA) does not have an impact at this site. However, relative to FLUXNET 850 

observations, CLM-ml-SPA has a larger bias with observations than models without vertically 851 

resolved leaf water stress with respect to GPP IAV magnitude and yIAV. Despite the realism 852 

when simulating plant hydraulic stress, a multilayer canopy representation does not make gains 853 

in terms of representativeness of the observations. The same GPP IAV dampening was not 854 

observed between single-layer canopy simulations of CLM5 with and without plant hydraulic 855 

stress, indicating that the dampening was unique to the multilayer implementation. However, it 856 

cannot be certain whether the dampening in the multi-layer model was because stomatal 857 

conductance in SPA is designed to optimize water use efficiency, which differs from the 858 

empirical stomatal conductance in Ball-Berry, or because water stress varied by leaf layer.  859 

Additionally, it was also shown that on diffuse light effects on canopy carbon uptake did 860 

not improve the simulation of GPP IAV, although it did cause the mid-canopy to become more 861 

sensitive to shortwave radiation. Forcing model simulations with observed diffuse fraction 862 

slightly increased the magnitude of simulated carbon uptake, which is more consistent with 863 

observations. However, the overall impact of diffuse light in the model was not consistent with 864 

observations and model-predicted diffuse effect when prescribing observed diffuse fraction was 865 

considerably overestimated relative to the observed diffuse effect. Future work is needed to 866 
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ensure that diffuse light impacts on canopy carbon uptake are accurately modeled with respect to 867 

observations.  868 

Understanding the evolution of the terrestrial carbon sink is critical to the carbon balance 869 

in the atmosphere and the mitigation of anthropogenic climate change, and this study attempts to 870 

use a model to delineate the response of individual terrestrial carbon processes to climate 871 

variability. Our analysis shows that CLM4.5, CLM5 and CLM-ml all grossly underestimate GPP 872 

at mid-latitude deciduous broadleaved forest FLUXNET sites and underestimate the GPP 873 

response to climate variability. We show that increasing the complexity of the canopy structure 874 

to better capture vegetation-atmosphere coupling does not ameliorate model deficiencies, nor 875 

does increasing the complexity of the moisture stress function within the model.  In fact, adding 876 

these two changes together damps overall GPP variability as described above. Together, these 877 

results suggest that adding complexity in the canopy structure is alone not sufficient to resolve 878 

the fundamental biases that are present when models simulate the variability of carbon uptake, 879 

especially with outstanding parametric uncertainty, and that attention to the environmental 880 

drivers that influence variability is still required. 881 
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