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Abstract 

The structure of a polyatomic molecule derived from observed 

spectroscopic .moments of inertia differs appreciably from both the 

equilibrium structure and the zero-point average structure. A 

perturbati9n expansion of the moments of inertia is derived here 

in a form which allov-rs the vibrational displacements to be referred 

to any fixed configuration of the atoms as origin. A,method for 

evaluating the expansion coefficients is given i~?hich proceeds 

"atom-by-atom. " Linear l!JXYZ, branched l'JXYZ, and symmetric i:JXY3 
molecules are treated in detail. 

Empirical data show that the anharmonicity of the vibrations 

·gives rise to the most important of the corrections required to 

obtain the equilibrium structure. Except for a few molecules, the 

anhar111onicity is not accurately lmovvn. It is shown, however, that 

.the anharmonic contributions are completely abso:rbed (to a 

practical approximation), in displacing the average configuration 

from the equilibrium one.· Therefore the moments of inertia for 

the zero-point average configuration of a molecule can be derived 

from the observed effective moments by applying corrections which 

depend only upon the harmonic part of the vibrational potential. 

";(-
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The .traditional model of' point masses connected by weightless . 

' 

rigid·rods gives a remarkably good fit to the rotational spectra ot:;.' 

most molecules-. Hmvever 3 molecular vibrations make the 11eff'ective 1L 

moments of inertia obtained from a rigid rotor analysis differ 

appreciably from the moments for the equilibrium structure of the 

molecule. Even in the ground state, the contribution of zero-point 

vibrations. to the effective moments is usually of' the order of 1%. 

· This is far larger than experimental uncertainties in high 

resolution spectroicopy, part:tcularly microwave spectroscopy., which 

commonly yields moma1:ts accurate to 0.002% or better. 

Ex.cept fo1,... diatomic molecules and the simplest polyatomic 

molecules,··;;experimental determination of the vib:r•ational contr.i~ 

butions has not been feasible. T'neoretical calculations have been 

forestalled by their complexity as well as lack o:r sufficient 

information about vibrational potential functions. Some of the 

conceptual difficulties are evident in the discussions, 1 enlivened 

by seyeral y.rt>ong conclusions$ .. 1.!1Jhich led to Eckar'c 's formulation
2 

of 

the conditions necessary to. define an internal axis system that 
'Z 

would insure the maY..imum uncoupling of vibration and rotation. 
0 

L!, 
\'lilson and HoNard- carried out a perturbation tre~trn.en·c of the · 

vibration-rotation coupling and showed that the ro·cational 13pe.ctrum 

of most molecules (after allo\IJance for centrifugal disto:r>'tion) 

should be that of a fictitious rigid rotor~ Wilson and HovJard 

emphasized that the effective moments of inertia q.re not simply 

l"elated either to the average of the instantaneous momemts or to 

the average of their :reciprocals.? because or Coriolis forces,a'fld 

; .. 
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other intex•actions, but this point has since often been overlooked~ 

Nielseri., Dennison; .and oJchers extended the treatment and deriv~;<F ::: .. , · .· 

explicit expressione relating the effective moments·to'the equilibi 

rium moments of inertia. 5 Unfortunately; the terms that are nearly 

alway_s the most. important in these relat:tons·· invo:t.V.e tl1e ariharmonic 
· .. ··; .. 

part of the Vibr-ational potential, vihiCh is accu:rat·ely knol'V.Cl for 

only a few polyatomic molecules. .;.· .. 

The problem of deriv:Lng equilibrium structures for.pol~atomic 

molecules has therefore remained intractapl~J and.the geneJ:>al 
·. . ,. '. 

practice has been to mak~ direct 'use. of the effective moments. Tne 

structures obtaine<l are 'Usually J:ef'erred to.as "t>
0 

structure~." The 

inconsistencies in r 
0 

parameters caused by zeJ..;,o-point vibrations 

' 
1 

,. J,..,l 

-.-: 

' 

are particularly noticeable in microwave data for isotopic molecules,
6 

and attempts.have been made to estimate their ef.fect in a number 

of ~pecific cases.7- 11 Also~ £ostain12 ~a~ p~oposed a general pro

cedure of' analysis, in tr.ihich Kraitchman' s equations13 are used to 

detel"'mine structures by fitting the differences of the effective 

rr~oments of isotopic species rather than .. the absolute values of the 

moments. Costain has designated the parameters obtained by this 

"substitutionn method as the "r
8 

struc'cure. fi He has shown cases 

where remarkably consist;ent r s parameters are obtained even when 

there is considerable variation in the r
0 

p~ra.mete,rs obtained by 

fitting different combinations of the absolute v~lues of the momentso 

.Pierce14 has discussed the use of second differences in cases where 

multiple isotopic substitutions are made. Although these semi-
r 

empirical methods have given promising results,: it has not been 

clear whether they make the optimum use of the data, and several· 

.. 

·' 

\ 
<'· 
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vex1.na; probleras l~eruain, inoludiilg the difficulty .of locating atoms, 
' . .. . ·. 

ncax> princd.p~l axes; ··the· rneat'...S< .ot" · allm-Jing !'ox~ "inet•tial defects, ti · '. 

and tho queet;ion. o:d' the r,>t~ope1~ p:rocedu:r~ 1"01.~ fZmalyzil'lg data :Vlhen 
... , 

all a.toms have not been isotop.:i.oally substituted.-
. . . . . - . . . 

Another .t:ruestion t-ihich is not yet resolved is the relation of' 

t. he em!):lX'icnll ..,,. deter.m:tn.ed l'" vl" r et:tluctures to some well defined 
~· 4 ' 0 s . 

physical concept· such as the ec;rJ..ilibl ... iura structu:t:e or the avera.ge 

structur.e~ . Hith the continued. l:•efinement cit• e1ect:t:>on diffraction 

'and oth~l"' methode ot strUC 1CUre det~r-minn.tion.'l' j,t is 'becoming more 

ir.'lpor·tant to 'find a 'conmton basis f'c;~ comparison o.f str-uctural 

. par•a'netm.:•s obtained by dlff'e:t.~ent techniques~ Recent accurate studies 

. of· hydx'oc::b:."'oons by elect:t>on dif'traction15 and by miorovulve spectros-

CH bond lengths; it seems likely that par~t of' the discrepancy 
. ' 

ariaes rt~om t;he ivJ1erent difference in the r~ture of t.he ez.peri ... 

mentally determined cy.;u::mt:Lties. 

In the present study the aim has been to exmnine these practical 

theory of v:tin--ation-t"'otation interactions<~ ~hch of· the physical 

content and the th~oretical ntet11.ods applied her'e ar•e implicit in 

work already e::.1sting .. 5 However-' the available discussions have 

than. any specific. unde:r"standing of problems of' stt~cture determin-

ation., a1td tJe have !'ov.nd it advantageous to tal'l:e an appl"'oach vJh:tch 

he~e so that th•a perturbation expansions are not restl"icted to the 
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chosen configuration of the atoms. From this it is found that the 
) 

·moments of' ~nertia i'o:r- the average configuration of a mole6~le may 

be derived from the observed effective moments by applying cqrrec-
/. ,.,, 

tions which depend only upon the harmonic part of the vibrational 

potentiaL. 11 Also.., the calcula'Gions are simplified by a i'ormulat1;pn ) 

VIhich takes· advantage of Wilson's methods for vibrational analysi~ . 18 

This pape1;j.; outlines the. derivations together. vdth some qualitative· 

considerations~ Applications to structure analysis.are presented 

in succeeding papers on the calculation .of- average. ~:tructures (Part 

II), inertial defects (Part III)., and isotopic substitution {Part 

IV). 

PRE.tiiviiNARY ANALYSIS OF Sil\1PLE CASES . 

The basis for approximation~ to be introduced in the general 

treatment can be illustrated most simply vdt;h diatomic and triatomic 

molecules·. 

Diatomic Molecules 

Tne vibrational average of any function of internuclear 

distance is readily obtained from a series expansion in ~ = (r-re)/re, 

the relative deviation from the equilibrium distance~ Thus the 

average nth power of the bond distance is given by19 

(l) 

where the scale ~actor is 

· ~ 1(- ) c? 
~ = 1 + <~>- 2 1-n <~~> + .•• (2) 

' . 

. . . 

i 

I " 
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The corresponding correc'tion terms for moments of inertia and 

rotational constants are given by 

(3a) 

(3b) 

·ln these formulas 

<~> (4a) 

(4b) 

whe:J,.,e roe is the harmonic vibrational· frequency and a
1 

is a 

(dimensionless) qubic an.l-larmonic constant. 20 In Eqs. ( 4) and else-

\iher·e only terms linear in the vibrational quantura number are 

retained~ this approximation is well justified empirically. 

In Table I various lcinds of average bond lengths are compared. 

For the ground vibrational state the direct average, <r>j is essentially 

the smr.e as the parameter rg(o) obtained from electron diffraction. 21 

This is always larger than the effective bond length, l"'o (n = -2 

average}, obtained from rotational.spectroscopy., which is in turn· 

larger than Cos.tain' s substitution pararaeter _, r' s. The inverse cube 

average; <r-3>·113, appears in interaction constants measured in 

1nagnetic :r:esonance19 or microv.rave lnasier22 experiments. 

As indicated in Table I, the deviation of: <r> from re is due 

entirely to anharmonicity. Furthermore, Eq. (1) gives .the same 

anharmonic contribution for any nth power average. Any of these 

averages can therefore be derived from <r> by means of a correction 

vlhich involves just the harmonic vibrational amplitude.? 



(5) 

·This gives rise to the parallelism displayed in Fig .. 1~ in,which 
. ( 

the value of K- 1 for each bond.length is plotted versus the 
""'. ~ . 

anharmonic constant • The ordinate scale is :marlced in multiples of'; ": 

<~ 2 >; thus 3 for a typical ground.state value of <~ 2 > = 10-3, each 

division co!'responds to an 0.1% deviation from r . . . e 

The anharmonic cons,tant can be determined from ae" the spectre-
. ' . 

scopic Vibratimt-rotation interaction constant. ·Since 

B = B -(v + 1 } .a , 
v · e · . 2 e (6) 

· comparison itlith Eq. (3b) gives 

(7) 

In structure analysis it is convenient to use instead a parameter 

€ which gives the correction to the effective moment of inertia~ 

(8) 

(9) 

. 11Jhere K = h/Bn2 • In terms of' €) the scale factor fo:r the effective 

bond length is 

(10) 

·' 

' . 

~rte ratio of the anha~monic and harmonic vibrational contri- ~• 

butions in Eq. (10) is just equal to the av~ar.monic constant~ 

(11) 

. / 

/ 
( 
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as seen.:from-Eq. (9). Since a1 is between -2 arid -4 for almost 

all diatomic molecules~ 23 the aru1armonic term predominates; however, . . ' . 

. the harmonic term is of opposite s:tgn and compensate·s f'Ol"' abou"'c 25% · .. ' 

to 5Q% of the anharmonic displacement. For the general nth power ,' - ; 

average the ratio in Eq. (11) becomes 3a
1
/ (1-n), so onl.y for n > 1: 

does the harmonic term reinforce the anha~monic one. On the other 

hand; only ror large negative values of n does the cancellation 

become substantially complete (at n = -5 for a
1 

= -2;-at n = -11 for 

a = -4). 1 

The effect of vibrations on structures determined by isotopic 

differences12 is considered in Part IV, trJhere it is shollm that 

the scale factor ror the rs bond length is 

(12a) 

{12b) 

Here m
1 

and m2 denote the masses of the atoms in the parent molecule 

and !J..
1

, J.L 2 the reduced masses of the isotopically substituted 

molecules~ The factor f varies only slightly with isotopic substi-

tution. !t approaches an upper limit of one-half when both J.L1 and 

1-Lz diffel"' negligibly from !J., wher_eas f = o. 414 for deutel~iu..rn sub ... 

stitution in H 2 ~ As seen by comparing Eqs. (10) and (12); the 

deviations from equilibrium 



-s ... 

. '2 
are·corresponding1y less than those for the effective bond length.1 

Similarly, it:; is found. that r
8 

wili show about 50% less variation· 

t"lith isotopic· .. s·pecies than does rv• H:owevel:';; . the use of. isotopic· 

differences ... does not. alter the .ratio· of anharraonic and harmonic 

contributions~ which is.still given byEq. (11). 

. '. "~ 

Triatomic r-1o1ecules. 

The effective moment of inert~a for a linear triatomic molecule, 

.. ,,. '• 

contains contributions from the symmetric (s = 1) and antisymmetric 

(s = 3) stretching vibrational modes and from the doubly degenerate 

bending (s ~ 2., d2 = 2) mode. These corrections may be written in 

a form 

(13) 

··analogous to Eq. 
) 

{ 9). The harmonic terms H
8 

are readily evaluated 

from formulas given in Part II. Ho\'.rever, except for a few cases, 24 

the anharmonic potential constants are not known sufficiently well 

to allow reliable values of the As to be calculated. Experimental 

values of some of the es coefficients are available for several 

molecules and by subtracting calculated values of the harmonic con

tributions -v,re have evaluated the A~. terms. Table I! lists the 
. .., 

ratios 

€ (~nharmonic )/ e (ha:r>Inonic) = As/H
8 

which \:Jere obtained. !t is seen that for all the linear molecules 

.the anharmonic contribution is dominant and opposite in sign to the 

harmonic contribution, ·just as for diatomic molecules. For. the 

l 

I 
.J 
t .. , 
j 

' 
.,{ 

~ .. 
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syrr~11etrlc stretching mode.:: the ratlo is roughly the·;' same as that 

given by Eq. (11) for related diatomi~s. 
·, 

In most cases, however, 
,, 

/'1.' 

.the anht!.rmonic contribution is e:nha,noed considerably in the other 

modes ar.d in the total correction. 
! 

This pattern does not hold fol" H20_. ·'especially in. the bending 

mode. As yet there is virtually no information available for other 

nonlinear·triatomic molecules. 

Unlike the diatomic. case, in isotopic differences.the ratio of 

contributions from A and H does not l"'emain ccnsta<1t. Often it is .s s 

widely di1,..;ferent for different modes. Again the arLharm.onicity 

nearly al1:-v"ay;;r gives the doniina.il.t. contribution, as sho'\l<m in Pa:i.."t IV. 

Figu.r·e 2 indicates the relative ·contribution of the stretching 

and bending;. :;.;.odes. . Data is included for all polyatomic molecules 

for which tbe eqt.1.ilibriu.m moment of ine.rtia is _knovm. It is found 

that the contributions from bending. are usually opposite in sign to 

those from .stretching, but someHhat smaller in magnitude. Conse-

quently~ the total correction: 

€ = 2: d r= s s~s" 

(shov·m by the solid points) in most cases falls substan'i:iially below 

the dashed line.)) ~·Jhich gives the corrections due to stretching alone. 

Another comparison (shown by open points) with the sum of stretching 

terms is obtained by assigning to each bond the observed e
8 

value 

for the corresponding diatomic molecule. Except_ fo1" c2r-r2, HCN, and 

H20., this proves to be a considerable underestimate. An examplE$ in 

trJhich the contribution from bending outvmighs that from stretching 

is the a-axis principal moment of inertia of H2o. 
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1 

For a linear, symmetric XY2 molecule~ 

the nth power average of the bond distance, 

it is feasible to expres~ 
i ' 

.<rn>l/n~ and the vibratipn-

rotation parameters of Eq .. (13) as explicit functions of the forc.e 

constants, :·atomic masses.? and geometry. The results are collected .tn 

.Table !II. As indicated, the quadratic and cubic force constants 

refer to internal displacement coordinates, and sJ;nunetry allovm only 

certain terms to appear in the potential energy. 18 For the symmetric 

stretching mode., the form of• the vibrational parameter. ;..1 and the 

'co~fficien~cs H
1 

and A
1 

is the same as in the diatomic case; however, 

this is not so for the other modes. The calculation of <r11>l/n starts 

from the relation 

Up to terms linear in v + ~s the only normal coordinate v-rhich enters 

is the s;ywnetric stretch;~ pl"'oportional to · S + 8'2, and the vibrational 1 ..) 

averages may be evaluated as indicated in Eqs~ (34) and (35) and 

Appendix c. It is found that Eqs. (1)-(3) and (5) still hold, but 

~ is replaced by ~ (s
1 

+ S;:) and the averages in Eq. ( 4) tal-ce the values 

given in Table III. 

' From these results, it is readily shown t)lat the effective 

rotational constant Bv/ is not simply the vibrational average, <B>. 

The latter is given by 

where m is the mass of the Y atom. Fro~ Tables I and III, we find 

(14) 

1 

J 
:1 
i 

'1 

J ., 
1 

I 
.l 

i 

l 
j 

I 

• j 
I 

; 
1 
I 

i 
;;;·! 

I 
l 
I 
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The effective bond length, however>, is given by 

with 

~ \ ...... ' ... 

as in Eq. (10). Thus we find 

rv = <r>- L:s(3Be/rus)Hs(vs +~) (15.) 

so that rv has terms involving H
2 

and. H
3 

not present in <r-2>-l/2 
• 

. ' 
As· shown fo:J.:.. the general case in Eq. ( 26) and Appendix B, these 

"extra 11 terms arise f'rom Corio lis interactions. Only for diatomic 

molecules is the effective rotational constant simply proportional 

to <I-1>. 

In Eqs. (14) and (15) it is again found, hovJever, that any of 

the nth power average bond lengths may be computed from the effective 

bond length without knowledge of the anharmonic force constants;; 

just as in Eq. (5) for the diatomic case. 

Table·IV gives a detailed analysis of the contributions to 

!
0 

- Ie. for co 2 ~ It is seen that the Coriolis ter>ms H2 and H3 ar·e 

compavable to H1 . Another typical feature, found for all the linear 

triatomic molecules of Fig. 2, is the substantial cancellation which 

occurs betv;een bending and stretching and between harmonic and 

anharmonic terms·. 

' 



GENERAL FOFJIDLATION 

The results found for the diatomic and linear XY2 molecules 

suggest th~t even in a polyatomic molecule the raain effect of vibra-

tional anharmonicity is to displace the average configuration of th? 

atoms from the equilibrium one. vie shall confirm this by deriving! 

relations bet1!Jeen the effective moments of inertia obtained from 

spectroscopy and the moments that correspond to various configurations 

o'f the atoms. Although a pei~turbation treatment parallel to the 

usual one5. gives the sam.e repults, another approach; patter·ned after 

the treatment of diatomics, is used here to simplify the formulation. 

Coordinates and Hamiltonian 

···~ 

The positions of the atoms are specified by vectors Ei whose 
' 

Cartesian components (al. ~ 13.7 s "'· ) are re.ferred to a set of axes 
~ l . 

moving VJ'i"Gl1 the molecule: (the so-called nmolecule-fixed" axes). A 

. standard configur2.tion of the atoms~ which need not be the equilibrium 

26 configuration but should not·differ greatly from it, is defined by 

. "'* ~· *· a set of coordinates {a
1

, t:>
1

)1 'Y
1

)o Vibrational displacements from 

the standar•d configuration are described by normal coordinates Q~:; ... 
vtlLich are defined in terms of the ·increments 

etc. The increments are not all independent, but must satisfy the 

Eckart conditions~ 

z ... m.5ct. = 0 
J. l J. 

(16) 

(17) 

·~' .. ~~1 

... 
1 
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etc. These six conditions serve both to define tqe molecule-fixed 

axis system and to complete the transformation equations which relate 

-.,."" the SN atomic displacements to the SN-6 normal coordinates. 2 i 
18 

.... 00: = m-1/2 z n (a) Q 
· i 1'1 sx,is s (18a') 

and 

(18b) 

The mass adjustment makes the transformation orthonormal, so that 

(19) 

He shall consider later a method of evaluating the transformation 

coefficients, as our final results will be expressed in tenns of 

them. 

The potential energy associated 1·1ith the vibrational displace-

ments is expanded as 

. . . 
(20) 

" Unless the standard configuration is the equilibrium one, the 

coefficients of the lineal" ter·ms will not vanish. In any case, 

how·ever.; the normal coordinates can be chosen to eliminate cross 

terms in the quadratic nart of the potential energy, Furthermore, 

11Je can relate the coefficients in (20) to the usual parruneters, 

which refex· to an expansion about the equilibrium configuration. 

As shown in Eq. (42)., for practical purposes the· vibration frequencies 

and cubic constants are unchanged and ~che coefficient of the li'near 

terra takes 'che form 



\. 
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(21) . 

l·Jhere the constants o
8

s and crt;s are a linear combination of /\
8

_, k
888

, 

and ktts• · · 

The Hamiltonian for vibration and r·otation may be written as 

' 

(22i 
·f 

•! 

as sh0\'11'11. in Appendix A. (See·Table V for notation.) If the molecule 

were -vibrating but not rotating, only the .terrns18 

(23) 

1t.rould remain,') VJhereas if the molecule were ni'rozen 11 in the standard 

configuration, only the kinetic energy of rigid rotation would appear, 

(24) 

~nis involves just the inverse of the moment of inertia tensor for 

the standard configuration and since principal axes are used 

(25a) 

(25b) 

In the vibrating molecule additional contributions to the rotational 

energy arise in two ways. One is the dependence of the moments of 

inertia of' the distorted molecule on the normal coordinates. This 

can be evaluated by a straightforvmrd vibrational averagej using the 

eigenfunctions 'lfrvib associated 111ith ( 23). The other contributions 

come from the terms involving r? in (22). As shov·m in Appendix A, 

t;he operator (jJ is proportional tc '?!?and represents the part of 
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the vibl"'ational momentum Jchat arises from Coriol:t.s forces in the 

rotating molecule. A second order· perturbation treatment of these 

-~" Coriolis interactions therefore yields .. terms quadratic in ';n ·which .... 

contribute to the effective moments of inertia. Hence the effective 

moments are given by 

I == <I'""1> -I + Corio lis terras. 
-v -

(26) 

The vibrational average of I-l is evaluated in the next section and 
. -

the Coriolis terms are treated in Appendix·B. 

The result or this perturbation treatment is to replace (22) 

with an effective rota'cional Hamiltonian., 

(27) 

in Which the rotational COnstantS take the fO:i."m 

(28) 

The vibx·at;i~n.,..rotation ;tn.teractions27 thus contribute both diagonal 

and nondiagonal terms to the effective moment of inertia tensor~ 

ltlhose elements may be 'L'Jl"itten as 

v ~k · 1 aS 
I~A = I 5 A + ~ (v + -2- d )e · 
~~ . a a~ . s s s s 

(29) 

where 

as found by inverting (27). The calculation indicated in (26) will 

provide expressions for the coef'f'icients €~~ as functions of the 

molecula~ geometry, atomic masses, and potential energy parameters. 



Vibrational Averages 

The components of the instantaneous moment of inertia tensor 

may be expanded as 

where·the.coefficients 

i 
(30) .', 

are evaluated in terms of the transformation relations (18) as 

indicated in Eq., (48). The corresponding expans:i.,on of the inverse 

moment of inertia tensor is given by 

.. •· (31) 

In the vibrational average there is no mixing of the conti"ibutions 

from the various. parts of (31) and the Coriolis terrt1S of Appendi,x B, 

as long as only tex·ms linear in v 
8 

+ ~ are retained~ The cross terms 

<Q 8 ~> also do not contribute in this order of approximation. T'nus, 

after averaging and re..:invel"ting (3i) Ne have 

... - (32) 

To this vve must add the Corio lis contributions from Eq. (B6), 

:-· f __ 

..... 

; ""!"'' • 'v ~~- -~, 

\ / '1 
; 

o ;· 0 ., ... ,._·,:....~: ,,;,~H 00 0 ·.u .. ~'·~~- ~- ...... '-~--- ... ...:.. ,.,.,,,,;, Oo•OH ____ ,, ~;--·~' ,...,;_~---· _, •• ~....:;........ ...... ___ _.,...,. '-"''''"'''""'~- ...... 0 0 ' '' ....... '"'"'"~''"' ·---~ •o•k~~J ;1 
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in order• to obtain the effective moment of inertia. The requisite 

vibrational averages are given by 

and 

(35) 

as.shown in Appendix C. When (34} is substituted into (32).~~ there 

results a double sum over the nondiagonal cubic constants. However, 

this may be rearranged to make a common factor of <Q!> appear in all 

the terms. Thus we obtain 

e:::f3(har) = (2K/ro )[Aal3_.l: aa'Yai3'Y;r - 4.2.: ~;,a t;,f3 1\ j(t. -t.. )] 
~ s ss ~ 'Y t st st s s t 

(36) 

. €~ 13 (anhar) = ( - 3K/cos) [a~f3(l-csss -crss )f/\s + 2:ta~f3(l-csst-ast )/1\t] 

(37) 

as the general formulas for the "harmonic" and "anharmonic" parts of 

the coefficients in Eq. (2~). By comparison 11.rith (30) and (31) it 

is ~een that the first term in Es(har) repres~nts a direct average 

over the instantaneous moment of inertia.p <I>; the second term arises 

.because it is the reciprocal moment which is actually averaged; and 

the third te1~n accounts for the Coriolis contributions. 28 The two 

latter effects do not enter es(anhar), however. These formulas 

enable us to•relate the moments of inertia.for any choice of the 

standard configuration to the observed effective moments. 



- . 
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Comparison of Equilibrium and Average.Con.figurations 
·,_,, ;' 'v. 

~'/hen the equilibrium configuration is the standard., crss = ost . i 0 

and the formulas (36) and (57) become eqUivalent to the results der;tved 
.... 

by Nielsen. 5 vJhen the average configuration is taken as the standard, 
' 

we shall find that 

(38) 

In the following comparisons, \IJe indicate by an overhead bar 

. quantities v.rhich refer to the equilibrium configul .... ation as the 

standardo Thus from {18) we have 

and these normal coordinates of course differ someNhat from those used 

when the average configuration is the standard. The displacement of 

the average configuration from the equilibrium one is therefore given 

by 

(39) 

Here the wavefunction :Wvib to be used in the vibrational average 

also refers to the equilibrium configuration as the standard. From 

(39} we see that a displacement from the average configuration may 

be expressed as 

so that a comparison with (18) establishes the relations 

. -·•- •-· ·- ;o ··-·-~- --··--··~ .... --~·r·- .. "···-~' ······· ,.. .. _....,._,.... .,.~·· .,.,._,..,.~-·--··· ~-· . ~--· -- ~ ·• ·.-:·---,-~---...., 

... 
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(40a) 

and ·>~ .. . :· ~"/ .. ' ,.·, 
. ~~ -. :·,: 

(40b) 

t'\There 

(4la). 

Fro~ Eqs.·. (40} we can·d,erive corresponding relations between' 

the coefficients that appear in the expansion of the potential ene~gy. 
' . : ~- ' .• 

\ 

For example~ the linear term in Eq. (20) involves 

1 ' . . . 

2 v8 = (oV/oQs)*. = zt(ov/o~).~ ?ts 

and 

(ov/o<ic }* 0 • • 

Only the first term in this derivative need be retained, as the others 

will be at least quadl."atic functions of (v + ~). Furthermore, the 

difference betvmen the two sets of transformation coefficients is so 

slight that (41) may be approximated by 

{4lb) 

The result. then reduces to 

(42a) 

after introducing (34) with crss ' '!ts = o. In the same way :trle find 

• 0 • (42b) 

(42c) 
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etc. The vibration frequencies and cubic constants can be taken to \ 

be the sa.-ne for both configurations!) since in the effective 

Hamiltonian of Eq. · (27) the corrections thet•eby omitted would not 

show up in jc;he terms proporti~nal to (v + ~). ·For the same reason 

we can omit the bars from the quantities in (42). Thus we obtain 

the form given in Eq. (21) and find that 

0ss :::: ksss ~ 0ts = ktts ( 43 ) 

viThen the standard is the average configuration. Substitution, of 

these results in the general Eqs •. (34} and (37) then leads to (38). 

. 1 
This demonstrates that (up to terms linear in v + 

2
) only the harmonic 

part of tl~e vibrational potential is required in order to calculate 

the moments of inertia fot• ·the average .structure .from the observed. 

effective r.aoments. Such calculations are given for several molecules 

in Part ·II of this series. 

A similar derivation shows that other: choices for the standard 

coni'igurationriwould again lead to Eq. (21) with Eqs. (43) replaced 

by expressions analogous to those found in Table I for the diatomic 

case. 

CALCULATION OF PARAMETERS· 

The numerical evaluation of' the vibration-rotation parameters · 

in Eqs. (36)' and (37) requires; in addition to the potential constants, 

a calculation of the coeffici~nts$ ·a~~ and A~~' in the expansion of 

the moment of inertia and the Coriolis constants, ~~t· These quantities~ i 

may be expressed in terms of the transformation coefficients .ei~) ·· ; 
"11 I 

\'Ihich define the normal coordinates. 5 As seen from Eq. (18), the. 
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coefficients can be written as derivatives, 

(44a), 

but proper account must be taken of the Eckart conditions (since 

there are 3N displacement coordinates oa
1 

and only 3N-6 nor.mal coor~ 

d:'l..nate~ Qs). ·This gives rise to a number of useful relations 

', 1 1 ; th' '- af3 Aa.f3 d ~"a ' 1 h h b full nvo v_ng e parameGers as ~ ss' an ~st, wn c ave een , y 

d 1 b ' 1 1 29 ' 30 eve oped y Mea and Po o and by Oka and r.1orino. Particularly 

convenient is the general relation, 30 

vlhich enables us to rewrite Eq. (36) as 

The parameters A~: are unity or zero for several simple types of 

molecules (including the linear XY2, XYZ, and x2Y2 molecules, out-of

plane axis of' bent XY
2

, and tetrahedra~ XY
4

). Furthermore, the 

methods derived by Meal and Polo often circumvent much, or all of 

29 
the normal coordinate anawsis in calculating the Coriolis constants. 

Thus, as illustrated in Part II, there are several cases of interest 

in which €~f3(har) can be evaluated without a normal coordinate analysiso 

" We shall outline a convenient method of obtaining the _e(a) is 

coefficients for more general cases. 31 This will be used to derive 

formulas for some examples (linear \:JXYZ., branched WXYZ, and symmetric 

.. '<:. :h."YZ
3 

molecules) and to treat a model in which several of the vibrations 

,are regarded as ".frozen stiff. n 
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Derivatives Sub,ject to Eclcart Conditions 
""'\ ~ t\. J 

\.. / 

The del"ivatives in ( 44a) al"'e to be evaluated at the standard ' 
I 
!· 

conf'i&ruratiol1 and an"e re1'erred to the principal a.x.ea system of ( 25 )\~ ·"~· 

An arbitrary .set of incl"ements in the coOl"dinates, 

' ' 

$ 
.. j 

would no·c in general satisfy the Eclcart conditions (16) and (17), 

since the distorted configuration (when viewed f'rom the original i 

molecule-fixed system) would have its center of mass displaced.along 

the a-axis by an amount· ·. 

s:;..,. ""' "' '/M v ~a = ..::.im1oai· 1 

and would be J!.otated through an angle'· · 

(46a) 

(4Gb) 

abou·c the .Y-axis ?2 Ho~1ever 1 any such set of displacements- can be 

converted into a set 

which does satisfy the Eckart conditions by subtracting the appropriate 

rigid translations and rigid rotations of the whole molecule.
33 

From 

Eqs. (46)'we find 

(47) 

The fr.eedom v.rhich this formulation allows in the choice of the primed 

displacements is an important advantage. Thus, a comparison with 

(18) nmv shoHs that the derivatives in (44a) are given by, 

' (44b) 



t\rhere oa16 denotes the increment computed from ( 4 7) by choosing a · 

·set of px•imed displacements such that. Qs = 1 and all other normal 

,.· coordinates (t I= s) vanish. ~Je shall refer to such a set of dis

placements B£fs as an f
1expans:ton of normal m~de Qs o n 

~ ' . 

Before presenting a scheme for constructing,the specia;L set of 

increments, let us not~ that this leads to a very simple formulation 

of· the vibration-rotationcoefficients. Substitution of (44b) into 

Nielsen 1 s definitions5 gives 

(48a) 

(48b) 

(48c) 

( 4:8d} 

(49) 
'· 

These exp;r>essions may also be obtained directly from Eq. (18) and 

(AlJ) of Appendix A. From Eq. · (30) we find that the moment. of inertia 

components cor~esponding to the expanded configuration specified by 

( ) 
. 34 

· 44 are given by 

( 
·J<o ) . ( -J!o ) + a af3 A af3 

Iaf3 ~1 + 0 ~is = Iaf3 £1 . s + ss ' 
. . 

\>Jhere r
013 

(£~) == I~oaf3' as given by (25). This may be confirmed by 

' •. inspection of (48). Also vJe see that 

Aa!3 = I ,o.(5ri ) ss a.... .... s 
(50) 

and therefore 
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. """· .'; 
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';: .. 

,;·'. 

"' 
·.,. 

~ ' ' . ' : .: ' ' . 

.... 

.. : ... ,·· 

' ... , ·.· '. 

a~t3 = Ietf3(£~ + O£is) ~ Iaf3{6£J.s) - !af3(£~) ... :_: 

•... ltit,hough the CoriOiis <>onstants ar¢ not conv1enily expressed JJitrms '.· ··.: 
• ' .1· 

of mome'nts 'or ··inert tit, there are already available· sev,er~f 'to~:ula- i 

l'iell. suited. to nume;ical c~l~ulation. 29 The ~~ctor form~ ~-· •.'• ·' 

. ~si; - Zimi {ll~ia x 6£1t)' · .. (~~i,~ 
in identifying which or. the components of t;, · · wi'li' b.~·. 

-st .··.: j 
., 

Also ·vie note that the, 'relation . I 
., : .··:-

· •.. 
I : ;.• 

}_;.\: ,, (53) ·.· .. zimie.· r_.i .. s .• ··5ri .. t, ·= o .t. 

.. . - .. s . 

. implied/by the orthogonality. condition (19) is :frequently userJ£ • 
' .. ': .: ' 'I'. ~ . ·' 

I: .. 

Construction of Normal l-'lode E:x:pansicms 

.. 
,:,.t The expansion of a mode can be r~adily evaluated in terms. of 

.... 1)',:'(;:,~ .. :.'{1/ . . ', . . .· ' ., . 

... ·. t~~/;~··~-&stomary internal coordinates sk, vvhich measure dev'iations of 
. ' .. · .. ~ .. :·.:;,~;;~~;:/!\.;;.::·. ' ' . 

··.· .. · th~_">bond l~ngths and angles from their values for the standard con-

':· ·figUration. ·A normal coord~.nate. an~lysis 18 provides the trans for.:..· 

mat ion equations, 

. . '' .•'• (54) . 

') 

. ;, . . " .. 
; 

·· .. ··The. molecular confi€;-uration corresponding to Q
8 

= 1, With. other ~ = 
·: ·, ,, .· 

'· . ': .. ·. 

, .. ': ..... 

··· .. :·o, is· thevefore given by· 

d 

{55) 

., I 

i 
. i 

! 
i 

. ·; 

·i . ' 

., · .. 

' _;· 

'• ,-. 

' ... ·. ·.·· . . . 35 36 . ,··· 
· By means. of a method borrowed fvom statistical mechanics, ~ _. .. · -, \_ 

· we may deriv-e from (55) . the 3N Cartesian displacements that . co~prise 

the expansion of the mode~· This method, which will be descvibed 

. .. 
'.''. 

.·.• ·. 

' .. , 

. ' ·. ·~ ',. :· 

: ''' 

. '·~ : . . 

..... '. 

:.·; .. 

:.,.·1 

" i 

" . , 

' 
i 



\.~Jith the aid of Fig. 33 generates the displacements atom-by-atomo 

In Fig,. 3(a)~ 'Ne start t·Jith the atoms in the standar·d conf:lgur-ation.v 

* .Ct. ·'? 
\ltith cool.~dinates (a1» f3j_>. 1'j_). Any atom may be chosen as the first 

one ( 1 ~ l) and the others nu.ml.'.ler·ed in sue cession.,. The· internal 

coordinates are also specifiedi s1 is taken as the 1-2 bond stretch 9 

s2. a.s the 2-3 bond stretch~ s ... as the 1-2-3 angle bend,il etc.. Since 
. .::1 

the six extra degr•ees of freedom that appear in the Cartes.:ian trans

cription of (55) at>e later to be eliminated by use of Eq .. (47), v;e 

can begin with atom 1 as. a fixed origin and also fix the Ol"ientation 

of' the 1 ... 2 bond and 1-2-3 plane. Ne:xt;ll in l~'lg. S(b),1 the displace

mel'lt of atom 2 is· obtained by shifting it (and all those nbeyond n) 

a distance L. along the 1 ... 2 bon.d diJ."ectiono t:'oz• ai;;om 3 the dis-
.:.S 

placement is dctel"""mined by tt·m internal cool"dinates. Therefore:~ in 

Fig,. S(c)., we .first pull at;om S and those beyond it oui;wards a 

distance L
26 

parallel to the 2 ... 3 bond (or.~~ if L
28 

is negative.~~ we 

push· them inwards), and then change the 1-2-3 bond angle by shifting 
., ... 

atom 3 a distance rz
3

L
38 

pe:~..,pendit:ulal ... to the 2-3 bon(t. In the same 

,,~;r;.y we f'ind the displacements ot: atom 4 (given by L,~s-' Lss~~ L
68

) and 

the later atoms, which will each involve three :internal cool,.,dinates. 37 

The ar-x•ay of.' displacements thus obtained ·o.oes not., of· courseo give 

a unique expansion of' the mode (o.s a different or•der of numbering 

will lead to dii'f'eren.t results)~ After the tran.slatiof\ .. 15 and 

l ... otations are removed 'by use of Eq. (4'7 ).!I howevel"'~ the description 

· of the d:tstorted conf'1gul"ation becomes unique; this final set of 
the 

displacements· (oa16 , ap16 .1 6'Y;ts) might be calledAtrEckart e~tpansion 

· of mode Q.
3 

b {f 
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.~ ... ""' .. · "' 

.It should be emphasized that the·d'l).f3.tomary18 internal coordin

ates sk adopted here are defined sothat theytransf'orm linearly to 
. . 

j 
I 

Cartesian and to normal coordinates. · ConsequenJ~;ly, only for infini- .. 
. ' 

tesmai amplitudes of vibration does the stretching coordinate:·; s2, 
, .. · 

for example; measure the increment; in the instantaneous distance < "· 

bet11.reen atoms 2 and 3. The s2 coordinate actually represents the·· 

1 F,if?,,.~ection of t;he true instantaneous displacement of the atoms onto 

.. "trie·:,\6rigin~l direction or' the undispl~ced 2...:3 bond. 38 This is why 

bending displacements take the _·form illustrated in Fig. 3(c ). To 

maintain the proJ~Ct:i.on COnstant~ 'lfJe have to make the 11bending II j 

m()tion perpendicular to the bond; wher>eas, if instead the actual· 2-~:. : \;::l 

distance had to be preserved.; we would need to swing atom·· 3 ai-ong '''·"'\/? :>1 

·an arc of length (r;3 ·+ L2s)L38 about atom 2. Since the displacements.· 

~<s 'are generally quite large, these two .operations give appreciably 

different results and it is important to use the first pPocedure. 

In this we do not presume the linear relat1ons of' Eqs. (18) and (54) 

to be valid beyond small amplitude vibrations. Rather.., in deriving 

relationships between the transformation coefficients.~> we use the . 

linear :relations merely as definitions of the coefficients.., which 

must remain th.e_same regardless -of the. size of the displacements.
39 

An anal;ytic form for> the expansion of a mode is readily obtained. 

T"ne linearity of the transformations allolrJS us to \IJrite 

_(56) 

. VJ11e1"~ the Eil-\: are disp:L_acement vectors, each. .. chosen so that the 
: ;.'.:.···:::.: .. 

increment in a particular coordinate -~ is p:rit~:Y while all other 
'· ... : ': ::1,;<{~~-. 

internal coordinates. '~emain fixed at .. their values· for the standard 
. ... ~I . 

• ~~ '/,> I > 

i' 
' 
i 
I 

l 
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·dbnfiguration. Such vectors have already been :tntroouJ~~ into 

. vibrational analysis by Polo·~,',4°. He points out that ?tl~e~~ vectors form 
.. a set rec'ipr;PCEi+ to Wilson 181'8 Hell~lb:'lot'Jn s-vector>s;i •. . . _. 

-~-> · .. ·."· ·. ('·', ... :#V . . . . 

'•:}_:-:_:·<>,::_. .. ·.·_: .. 
_,·.·. 

and the e;o.vectors:~~e often sin'lply.pr6l;>or'fional to the a-vectors. 

F:.P:~i\':;~11 cormnon ti:~es of . internai ::g~ord'inates Polo has listed formulas 
.·:··~::::::·.};·/~~~-:._:·.~:;·._:~ ·... -~~--- .. ·1: 

•/: :~k$~!.>the p ... vectors.J expressed iri te:rms of unit vectors parallel and 
N .... :·-.;>~·~;.-;:_: , , . . ·.·,'· 

perpendi9ula~ t;9 tlt~·:·bonds of the undistorted molecule. In practice 
·'. 

(56}•.is 'qii:tte convenient; since most normal coordinates contain 
.. . 

sig~:i..f'icantcontributions from only a few internal coordinates. A 

··good approximaJcion can usually be obtained by taking no more than 

three of the transformation coefficients ~s as nonzero. Furthermore, 

~ost of thl$ internal coordinates are defined in terms of bond:f,a.~d 

. angles iilvolving just 2, 3; or 4 atoms. · 
' . .'' . 

. i 

For symii1etrica1 molecules, t:;be calcula.tions are s:llnplified ·by 

· use of SYJ.T.rrietry coordinates formed from linear combinations of the 
r r 18 

internal· 0'6ort1inates ~ '
41 

If the sets of £ik vectors are chosen 

to have the appropriate symmetry, vibrations· of each S;ylni·netry species 

can be considered separately. Also, the Eclcart corrections in Eq. 

( 47) vanish Unless the corr·esponding translation or rotation has the 

sam.e ,symtnetry as the vibrational mode. 

To find the appropriate Eik vectors, we haye.'to displace the 
....... \ ,1~ ·,,...,. 

symmetrically equivalent atoms simultc;~.neously, rather than proceeding 

atom-by-atom, but this is usually simple to do (as illustrated belmtJ). 

v.Jhenever a sym:metry species contains only one vibration, the Eckart 

expansion of that mode will depend only on the atomic masses 

. t 
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In this case Eq. (54). reduces to 
42 

and the transformation coefficient., 

(57) 

involves just a diagonal element of Wilson's b-matrix. vlhen there 
same. 

are two or more vibrations of the/symmetry, th.e transformation 

coeffioients also. involve the vibrational force constants and must 
. . . 18 

be found by solving a secular· equatio.n~ · . Other points which arise 
·'· 

in the calculation of normal mode expansions will be bought out in 

. the course of derivin'g formulas for some examples. 

EXAMPLES 

Linear VJXYZ Mo'lecule 

If \ve choose the z-axis along the molecular axis., then for any 

linear molecule the rollo~ving quantities all. vanish: 

Gxis" Oyis; O't"xs" O't"ysg . 5 ~xs" 0 ~ys" 0 ~ZS 1 

for the stretching vibrations and 
... ,.. 
'", . 

0 ~is; 6 ~zs 1 aazs' ., 
'\: 

for> the bending vibrations. .··Fig •. 4 . sho1rm the nU!nberingoof atoms 

· and coordinates. vJe may consider the· stretches and bends. separately 

since theyare in dif'f'erent synunet.ry species. The stretching coor-
.. ~: . 

dinates are defined by 

sl ·= 5z 2 oz1 

s3 :::; oz7. oz2 0 
~58) 

s = oz.!! oz
3 5 .. ~ 

I 

1 

-~J 

~~ 
I 



Therefore vie find the expansion to be 

f 
0 ozls ::::: 

t 

Lls oz2s -
oz~ 3 = ~s + L3s 

f 

~s + L3s + Lss 5z4s = 

for any one of the three stretching normal modes. After accounting 

for the E:::kart conditions by use of (47)_, we have 

5 '7 

""is 

for i = 1,~~2 and 

(59a) 

(59b) 

f'or i = 3,4. These results are readily visualized; .for example, 

when the 1-2 bond is stretched an amount Lls" we f'ind atom 1 moves 

to the left a distance 

and the other three atoms shift to.the right a distance 

The bending coordinates in the xz plane are defined by 

s2x = (ox2 - ox1 )/r12 + (ox2 - ox3 )/r23 
(60a) 

(60b) 

I· ,, 
,r 

.. 

and analogous expressions (with x replaced by y) hold for the yz 

plane. The simplest "vfay to obtain an expansion of· a bending mode is 

to set all displacements equal to zero except 

(61) 
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The Eckart expan$ion is then found to be 

( 6.2a) 

for i == 1.,2,3,4. These formulas can be readily specialized to 

simpler cases or extended to an even longer string of atoms. 

l 
i ' 

' 

Usually there are many possible alternative choices for the 

primed displacements. The corresponding formulas for. the EGkart 

~xp~nsions will. sometimes look quite different, but the various 

al-ternatives tvill give. identical nmnerical l"esults. The. bending 

mode of a linear XYZ molecule provides. a conv.enient; example of' this. 

(In applying the forgoing results; we disregard the fourth atom and 

set L4s = L58 = o. ) From Eq. ( 60) 1t\le see that instead of the choice 

· given .in (61) we could set all displacements equal to zero except 

ox~s = RLzs ; 

Where R = r 12r 2d' (r12+r23 ) •. This leads to 

... ,. 
; .. .:a ...... (62b) 

. ,\ .t'\./J'{ 

i = 1, 23 3, instead of Eq. (62a}. However, the center of mass condition, 

:Eim1z1 = 0, together with the def'ifl..itions r 1 j = zj - z1; yields the 

relations 

MZ3 = (mlrl3 + m2r23) 1 

·r = ~(mlzlrl3 + ra2z2r23) 

.. ,... .. ' 
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(and others obtained by cyclic permutation of subscripts} and from 

these we see that Eq. (62b) is actually identical to (62a) • 

To illustrate the use of symmetry coordinates.:~ v1e may consider.· 

a linear ~Y 2 molecule such as ac.et;ylene. Table VIgives the de.f'ini-,, 
. . 18 

tions of the symmetry coordinates, as obtained by the usual methods. 

The species which have nonvanishine; Ed<:art corrections are found 

from the character table of the D..,h group. According to Eq. (55), ~\fe 

A-2 • need to find displacements such that~ Jk = ~s· By inspection of 

Table VI and Eq. (58) we see that for the two z+ modes the appropriate 
g . 

displacements are 

-Bz - 5'""' = 2-1./2 ('1~ ·+ 21 ro2.s ls - ""'4s "-' ,;;, "-' (63) 

-oz2 = oz ... 
S .:>S 

1 
= 2 .c2s 

and no Eckart corrections enter for this symmetry species. For .the 

+ Z- mode, 
u 

1 = f -2-1/2 ~ 
ozls 024s = w3s (64) 

and afteJ.." subtracting the translational correction of Eq. { 4 7) we 

find the Eckart expansion is 

(65) 

From Eq. (60) vle obtain re:;;mlts of the same form as (64) but with 

z replaced by x.., for the x-compo_ nent of the IL . mode; the results for u . 
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'. 

~he IIgm'?¢l.e q.lso.have this form.except that.the sign o~ 5x,l
8 

is 

reve1->s ~d. Thus we . find the. :follm-ving Ecka:ri! expal"J.s,ions for the 

bending vibrations: 

ox :::::· -ox = 2 1 /~(m z z /I)r .c. · 
... 2s · . 3s , · 1 1 2. . 4s . 

(66) 

. ,·. 

for ' the rrg species and· .. ' 

ox
1

-
. s 

~- _21/2( /M·)· _ . r~ . 
vx~ 8 - . . m2 ~ r o..-5s 

(67) 

for the rrtr. spec .. ies., . Only the z! modes require the solution of a 
0 ' 

secular equation~ f.'or the otillers the . ~s c,oeff'icients can be evaluated 

.· froni Eq. (57} and. the ~.:.matrix elemen'Gs in Table yr. 

Branched VlXY.l. l\iolecule 

V.Jhen expre-ssed in the vector notati.ori o.f Eq. (56)$ the prQcedure 

indicated in Fig. 3 yields 

0 £~s = ~12Ll5 (68) 

0£
1 

3s. - 0 ~2s + ~23L2s + {;:<!> X ~23)r23L3s ' 

(69) 

is a unit vector normal to the plane of the l-2-3 angle. Addition of 

a flourth atom introduces .the three neH internal coordinates shOV\.'11 in . 
Fig. 5(a). If the standard coni'iguration of the molecule is planar, 

. ' 
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we find 

This follows from Eq. (56) an~ the three e,4k vecto_rs pictured in Fig~ · 

5(b)~ The p vectors for the ;£;.,.4 bond stretch and 1-2-4 angle bend "t .... 
. I 

are analogous to.those in {68); that for the out-of-plane bend is 

perpendicular to the plane and of length r
24

• If the molecule is 
4.'Z 

nonplanar., the last two terms 'in (70) are replaced by-'"' 

(7ij.) 
~-

Here ·:1
143 

is the dihedral angl~;. bet1t1een the 1-2-4 and 3-2-4 planes; ·. 
i ·':., 

:;:,$ t is given by ( 69) with the s~ubscript 1 replaced by 4; and ~v- is a 

unit vector parallel to the 1-2:"'3 plane and perpendll.cular to the 2-4 

bond.' The £4k vectors are shm-J:,~ in Fig. 5(c) .. Note that the e-vector 
~ . . ,, 

for the 1-2-4 angle bend no lon[~er lies in the plane of the angle but 

novt is normal t;o the plane of· tt:e adjacent 3-2-4 angle; its length is 

also increased by the factor cs~'t 143 • 

Except when treating the s:t.mplest molecules~ we have found it 

expedient to :first evaluate the 1~rimed displacements numerically and 
i . . 

then use Eq .. {55), rather than dE;rive analytic formulas for the 

Eckart expansions. For any plana1~: molecule (vJith the out-of-plane axis 

taken as the z-direction)., the C
6

\group character table shows that the 

following quantities vanish: 

for the in-plane vibrations and 
,,,, 

·' . ' 
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for the out-of-plane vibrations. As a plan~r molecule of four 
. . . 

atoms has only one out-of-plane mo.de (s = 6), in this case it is 

preferable to· lJJOrk trlith the· Eckart expansion, which· is given by 
\' 
\ 

~. 

I 

(72)} 

. . 
!n applying Eq. (56) to symmetrical molecules, \ve may take 

advantage of the fact that the· symmetry coordinates are defined by 

an Ol"'thogonal transformation of the internal coordinates, rJ = US 
. r.: . ..-". ·. ,...., Afii/'V • 

. ~.,""- ;" \_,...·l~ 

In most cases it is easy to choose the e.-vectors for the internal 

coordinates so that under the g:i:•ou.p operations they transform in 

the sarne way as the internal coordinates. Then by simply forming 

· the linear combinations dic~cated by the transformation u., . we can --
construct the appropriate euc vectors for each symmetry coordinate. 

A planar vJXY
2 

molecule such as formaldehyde offers a simple 

example for this method. The symmetry coord;tnates are given in Table 

VII. The coordinate s5 .is th'e increment in the 3-2-4 angle,; to bring 

out the·sym.rnetry it is used in preference to the coordinate_s
3 

shown 

.. in Fig. 5{a). The connection with. the previous description is 

obtained from the redundancy relation, 

(73) 

By definition, the Cik vectors for a symmetry coordinate, for 

example, 

~-A 2-112 :(s· .·. ·.:... s ) 
~4- = . 1 . ~ 2 '· J 

' ,,.,~ 

I 
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must make J4 = 1 while the other synunetry coordinates remain zero. 

If we find the e-vectors for ~l and -s2 in the way already illustrated, 

the sum of these will give 

Hence, to get the desired result· we merely have to renormalize the 

sum by dividing through by 21/ 2 • The orthogonality of the transfor

mation guarantees that this procedure will alter only J
4

•. The complete 

expansion generated from Table VII in this way is 

o::2s = o 
(74) 

• f 
ori·"' - ~ 

= 2-1/2 ( (. + ,. ) -1/ 2 ( ) ( + ) 
~2i ..._ls - ..._ 4s · + 2 ~~ x ~21 r .C2s - J:Ss :~ 

for i = 1 (upper sign) and i = 3 (lower sign). 

This molecule is simple enough to make explicit formulation of 

the Eckart expansion worthwhile. The results can. be tidily written 

by defining the quantities 

Xk£ = sin a ~s - r cos a .c£s 

where a is one-half of the .1-2-3· angle. · The components of the dis-

placements parallel to the symmetry axis are, for the A1 species: 

(75a) 

1 = 2~4 and 



for the B
1 

species: 

6Yzs = 

6yl. = . s 
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The perpendicular components are, for the A1 species: 

5xzs = 6x4s = 0 

oxls = -ox3s = -2-l/2x 
. 12 .$ 

and for the B
1 

species: 

i = 2.,4 and 

(75b) 

(75c) 

. (75d) 

and since J~ = s 3 is the proper symmetry coordinate for a bent XY2 -

molecule., v-ve need to replace .c2s by 

('' - 1/2 
...,2s - - 2 .C2s • 

1 
~- I 

i 

) 

-.. . 
; , 
! 
I 

• ! 

i 
---~-' 

0 
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Symmetric VlXY0 Molecule 

Typical molecules of·this type are the methyl halides, CH
3

X • 

Ttie H atoms are numbered ·1, 2, 3; the C :atom .4; the X atom 5. Bonds 

and angles are denoted by R for ex,. r i for CHi, cxi for Hj CHk, and 

t3j_ for XCH
1

• The general, nontetrahedral model ~!,ill be considered. 44 

The s~metry coordinates for the A
1 

species are45 

,;; 

Jl -. AR 

. 9 = --1/2( A~ A~ /\,~ ) 
10 2 ;) ~-1 + ~-2 + ~-3 

J3 = 6-l/2f[ool+oo2+&x3 - ry(l$1+~f32+ll!33lJ 
• 1/2 ", /'·v' 

= ( 2/3) f (&xl +lkt2+.6o:3) , 

v,rhere the .second forr~ for J
3 

is obtained by use of· the redundancy 

condition. The parameters f' and "(, which are equal to unity for the 

tetrahedral. case, are defined by 
"· 

f' == 21/2 ( 1 + '12) -1/2 

and 

"( = -3
1
/

2 cos p sec ~ . 

The coordinates for the degenerate E species consist of pairs; 

equivalent except for orientation . 

and 

.J ,_ 6-l/2{2.6rl-f1r2.:..f:llo3) 
4x -

and the two remaining pairs of coordinates, ~ 5 and J'6, are defined by 

replacing Ar1 by .6ai and Af:3i' respectively. 



-38.;, 

'{' 

'l ·,· 

i 
' i' 

The fo~n of the p-vectors for the internal coordinates has been .... 

illustrated in the previous examples. However, here we must take 

some care to start with a set which transforms under the group ope~..: 
l .. 

' 

ations in the same way as .the internal coordinates •. As in Figs .. · 3(~} 
' 

and 5(b) and Eq. (68)., to increase 6r1 and At31 by unity we shift 

atom H
1 

by 

e, . 
....,l;J:J. 

(76) 

(77) 

~~~ 

These vectors obviously transf-orm properly already, since they lie 

)t 

in the XCH
1 

SYlil.m.etry planes. On the ether hand~ for ~.i the e-vector 

used in Fig. 5(c) and Eq .. (71) would move either Hj or Hk in an 
1

. 

unsymmetrical fashion. Therefore, to increase bui by unity, we shift 

both atoms by half the usual distance and thus maintain symmetry with 

respect to the XCHi plane. 

. 1 . 
£j(ha1 ) = 2(~ 41 x ~ 4 j} r esc * esc a (78a) 

(78b) 

-vvhere 1,. j, l.( = 1, 2, 3 in cyclic order and 'lfr is the dihedral angle 

between successive H1cx and HjCX ~lanes. 

The p-vectors for the symm~try coordinates·"may now .be constructed · , .... 

by the method illustrated with formaldehyde. For example, as the 

vector for 06x '\'le take 

This combination of displacements gives 

. . 

. ,, 
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p - 6-1/2(·2 . 1 1) 
..o 6x - Nx · + . + -

(since the £it3 are defined ~o that ·.(1(31 = 

ization constant is assigned the value 

1) and therefore the normal-
:' 

For the 03 coordinate3 the use of Eqs. (78) leads to 

where i = 1,2,3 and N3 = 6-112/f. Thus in this case the displacement 

of each H atom must be .obtained by addition of tttw vectors; it is 

readily shown that the resultant lies in the XCH
1 

plane and is given 

by• 

(79) 

in confo:rm.ity 'lluith the redundancy relation. 

~1e expansion obtained for the A1 modes is 

(BOa) 

(1 = 1, 2 Jl 3) \'>There N 
2 

= 3 -l/ 2 and N 3 = -6 -l/ 2/ 'Yf. 

For the Ex components of the degenerate modes, 

5r' 
-ls = Nx [ 2 ~4l.r, 4s + e1t3 ~.c,sr:/'Y + 2.c,6s >] 

= Nx[-~41.r,4s + £it3(.c,5s/'Y-£-es> + 32ia..C5s] 

(80b) 
5£ls 

and i = 2,3 .• . For the ~ components, 
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.· 

5£is = N;r[el (Lla2) .. £1 <~3)] .css 

(8oc> 

with i = 2 (plus. sign)~ i = 3 (minus sign), and NY,= 2~ 1 ( 2 ; p 
-ia 

denotes e1 (6a1 ); and the r~l~tion {79) has. been used to simplify some 

terms~ Atoms 4 and 5 have zero displacements. 
•'·' 

. Cartesian expressions for the ~ 4 i and £if3/ltettors are obtained 

easi].y, but those for the e
1 

(Llaj) vectors are rather avlkvrard. It is 

only necessary3 however3 to evaluate the ·components of £ = e2{Aa1 )J 

which are 

1 . t 
P x = - 2 .r c s c 'if! sin '1/1. cos 13 

P'y = - ~ r cs e t cos 1ft ' (81) 

1 
Pz = 2 r esc 1 sin '1ft'· sin 13, 

' ' .. 

vvhere '1ft • is the dihedral angle between a XCH
1 

plane and the adjacent 

· If'
1
cB:j plane. The z-axis points along the 4-5 bond and the x-axis lies 

in the XCH
1 

plane. By reversing the sign of the ·y-component in (81) 

es(Aal) is obtained and the relation 

then provides the other coordinates that enter Eqs. (80).- In terms 

of: interbond angles, the .dihedral angles are given by 

cos, ·ift - (cos a ,t;::::cos 213)/sin2
(3 · 

.• . i -~ : 

cos 1/1 1 . ·= cos t3(1 - cos a)/(sin a ·si~ t3}. 
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The· Eckart col .. rection for the A
1 

modes involves j'ust translation 

along the symmetry axis~ 
. -

I 

For the degenerate modes, the nonzero corrections. are 5-rx_, o'I}Y for ·· 

The expressions givenabove may also be applied tosymmetric 

pyrimidal XY
3 

molecules •. Terms arising from 1.1
1

, .J
6
,.and m

4 
are 

discarded; .J3 is renormalizedand accordingly N
3 

= ~; ~ 3-l/Z. It 

' is convenient to retain the angles 13
1

, which are nowdefined with 

reference to the symmetry axis. 

"Partly Frozen" Model; Group Vibrations 

The one or two normal modes of' lowest frequency are often found 

to contribute the dominant tern1s to vibration-rotation interactions •. 
' ) ' 

Examples which have been well characterized experimentally include 

the torsional oscillations ·of methyl groups, 46 the 11\·Jarpingtr Vibra

tions of planar rings, 47 and (as sho1<m in Part I~I) a large class of 

inertial defects. Molecular models in which various parts are 

regarded as rigid have given good results for such cases. The form 

of Eqs. (47) and (56) makes it eas·y to derive a 11partly frozen" 

approximation for any type.of molecule~ To· freeze an atom, its dis-

•. placement o~Is is merely set equal to zero. In c<;:>n:trast to previous 
.. "' " ... · 

examples in which parts of a molecule \'lere discarded, here' the masses 

of.the frozen atoms still enter, by way ofthe M and !a elements in 

the Eckart corrections. \iJhen all the atoms involved in an internal 

coordinate are frozen,. the coefficients for that coordinate vanish 

' ' 
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(for all s). Moreover_, the values of the ~s f'or other coordinates,: 
i 

are in general altered somewhat .. These coefficients are most con- l 

veniently determined frora a reduced vibrational secular equation \, 

involving the G-l elements for the unfr~zen. coordinates. 4 ~ Fortun- ·~ 

ately~; 110ifleVer, a. matrix inversion can be av()ided since Polo has 

derived the 1 .... elation40 

(82) 

Here the Ec;kart corrections a~e ·to be included in the £ik and the 

sum must be extended over all. the atoms (including ·tlie frozen ones). 

The simplest example to consider has a single atom m1 vibrating 

against the center· of inass of a group. This is a useful approx-

imation for the c--I stJ."'etch in CH
3
I. Eq. (47) requires that 

~-.rhere i = 2; ••• .,N~ m~ = z
1
mi is the mass of the group., and 

L = (mlmej(ml+mg)]-1/2. 

Although L has the same form as for• a diatomic molecule; the contri

butions to the· vibration-rotationparameters·also involve (via the 

~lg factor) the direction cosines between the principal axes and 

the line joining m1 to the center' of mass. 

As. another example., consider the symm.etric. ben¢1. w2 .for planar 

VJXY2 or bent XY
2 

molecules. This mode often accounts for most of 

the inertial defect, as shown· in Part III. If' the stretching vibrations 

of an XY
2 

molecule are .frozen, the secular equation.reduces to 

• l,O I 

' 
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where F22 is the· bending force constant anct40 

1• 1 2 ·. . ' 2 
(a:- )22 = 2 IDyl" [1 - 2(my!M) sin a:] 

Eqs. (75a) and (75c) yield the same result for a WXY2 molecule, 

1 
except that the factor of 2 is replaced by unity because of the 

change in normalization of J2• The corresponding values of 

' (' -1) -1/2 
£,22 = G . 22 

are used in Eqs ~ (75), tdth the other ~s = o_, in order to calculate 

the vibration-rotation constants for this model. 

• Vibrational frequencies characteristic ot.' a particular functional 

group appear in many molecules. From Eq. (45) it is seen that the 

·contributions of these group frequencies to e(harmonic) can be con

sidex>ed:separately, provided that·the Coriolis constants~.~.. connecting 
Sv 

the group arid frame\'lork vibrations are sufficiently small. . Even 'Vlhen 

this does not hold$ the calculations can often be simplified by use 

of. the treatment of group frequencies recently presented by King 

and Crawford. 49 

,!, 
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·APPENDIX A 

VIBRATION-ROTATION HAMILTONIAN 

,., 

1 ;. 
; \'.., 

Previous treatments5 have all been based on Eckart's expressio!f 

for the classical kinetic energy> 

(Al) 

and the Hamiltonian derived from this by "t'Jilson and Howard, 4 

2H = (-rn-m)t!-L(m-m) + ptp + 2V 
~ ~ ~ ~ ~ ~ 

(A2} 

Hhere 

m= - {A3) 

Here the matrix A is I, the moment of inertia tensor$ and for the - -
usual choice of normal coordinates £ is just ~' the unit matrix. The 

matrix B involves the Coriolis coupling coefficients and is a linear -
function or the normal coordinates.. The fact that the matrix l-L is -
not merely the inverse of the moment of inertia tensor has compli-

cated the formulation and interpretation of vibration-rotation 

perturbations. This difficulty can be avoided by expressing the 

Harniltonian in another form, 
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The del?ivation proceeds from (Al} and the definitions 

J ... 

Hhich yieldi. 

1n =Am+ BQ 
"'V 'V,.., ftt##V 

(A sa. X 

I 

p = Btm + c't~ . 
......., ·""" ,..., .~II'W 

(A8b) 

Thus the total angUlar momentum 1n. of the vibrating rotor contains -
a contribution from the internal motion; like'L~ise, the vibrational 

mornentu1n P 'includes contributions dependent on the velocity of over-- . 

all rotation. For a rigid rotor the quantity 

t 
_, 

7n. I ~tn 
,., ~. ,.... 

would be equal to twice the kinetic . energy ( ~. = C)..; for the vibrating 

rotor we find. 

. (AS) 

The matrix !}.:~ defined by the terms within square brackets·, may be 

regarded as a reduced mass matrix' associated t'lith the vibrations. 

This suggest,,s that we write · 

p = RQ + (j) (AlO) 
,.., ....,,., I'W 

in which cY represents the part of the total vibrational momentum that - . 

arises from the rotation (via Coriolis interaction). A comparison 

of (A8) with (AlO) shows that (j) must be defined as in (A6). Sub.--
stitution of (AlO) into (A9) then yields the des.ired form of (A5·). 

As shown by Eckart; 
2 

the elements. of the matrices A (3x3), B -
(3x3N-6) and C (3N-6x3N~6) are defined by 
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Bas = ~imi [ai (cq:3i/0 Qs) - i3i (oajf':;,Qs) ]_x

cst = za imi (oai ()Qs )* (C'Ja/o~ )* 

(All) 

It may be remarlced that these expressions and the Hamiltonian Toi'ms 

(A2) or (A5) are quite general., and still hold (i) when the normal· 

coordinates are replaced by any set of int,ernal coordinates; (ii) 

when a configuration other than the equilibriu.:m one is chosen as 

the standard; and (iii) whether or not Eckart's second condition.p 

Eq. (17), is applied •. ::tf internal. coordinat;es are used the c matrix -
becomes ~·Jilson' s a:-1 matrix.18 vlhen the second Eckart condition 

. -
is imposed~ ;che B matrix becomes a linear function of the normal 

' -
cooi•dinates. Accordingly R and <? as well as I are quadratically 

~ . ~ ~ 

depe~dent on the no1~al coordinates. However, for a treatment in 

'!.'J'hich only the vibration ... rotation interactions coDrect to terms 

'1 
linc:a.r in {v 

8 
+ 

2
) are required~ it is Stlfficient to use jurst the 

leading tel"'ms 

R :::: E + • .• (Al2) - -
t:) = ~ . i'Ci.Q'!b/I 
\l "'., + ••• 
- .... a.... -- -a 

(Al3) 

This is the case dealt with in the text and in Appendix.B. 

To obtain the corresponding quantum mech~nical Hamiltonian, it 

is necessary to evaluate the pr>oper Laplacian operator •.. This is 

.awkv.rard.since the coefficients of the momenta are not constants and 

the rotational momenta ·used are riot conjugate to any·coordinates. It 

4 18 
has been· verified that the procedures used by \rJ'ilson and Howard.:~ .:~ 

-. -~ 

! 
' 
! 

..• 
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<~an be applied to (A5) with m and P- <9 taken as the quantunr mechanical 
~ ~ ~ 1 

operators. [The result has a form analogous to Eq. (10), p. 280, 

of referenoe .18., .\;;rith the deJcerminant of r:1 replacing that· of' 1-l·] 1 

"""' #flt,6 ., , I 

. i 

Hovmver, in .the perturba.tion treatmel..;.Lt 'what;· is. actually used .is an· · 

expansion of the Hamiltonian up to terms quadratic in Q and P. It : 

is found that to·this order the correct results are obtained by 

merely s;y1l1Jnetrizing products such as P8Qs in the classical 

Hamiltonian • 
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APPENDIX·B 

TREATMENT OF CORIOLIS TErutJ.S 

The p~:rturbation treatment ·of the Hamiltonian given in_ (A5) 

conveniently separates into two :Parts"' In the text the. contributions 

from the leading term have been evaluated by simply calculating the 

vibrational average of the inverse moment of inertia. Here -vm shall 
,, 

de!"ive the additional contributions'that arise from the second.tena 

and involve the Coriolis constants. -In the ·approximation represented 

by Eq,. (29) of the·text" only those terms proportional to both 1nttn 
. . - -

-and to (v s + ~1 will contribute to the effecr:ive moment of inertia. 

Contributions of this-form are contained in the term 

(Bl) 

and in the cross term 

, (B2) 

According to (A13)., the tel"m (Bl} can be averaged directly to give 

(B3) 

i'rhere s ~ t, a~ and t3 ·are all summed over. (For cOl).venience the 

summation variables have been r~shuffled to '];>Ufv~ first. ) The cross 

.term (B2) must be evaluated as a second order perturbation since it 

has only nondiagonal vibrational_ matrix elements$ 

<v s v;; I v 
8
+l,v't+l> = z( -iK)(ws ...rot )(.(v 

8
+1) (v t +l)/mswt]

112 
(B4a) 

(B4b) 

~ . 
! 
l 

1 
! 

] 
1 

l 
I 

1 
I 

·l 
j 
i 

( 

1 

i 
. ! 
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\ 

The tvw terms. in (B2), one with ~stPsQt.and the other with ~tsPt,Qs": 
\" 

have been combined using the relation ~ts = -(st. The second order ·· 

pertur•bation sura r·educes to the same form as (B3) with one more 

factor 

(B5) 

The total Coriolis contribution to the effective rotational Hamiltonian 

of Eq. (27) thus contains the factor 

and in the coefficients of Eq. (36) appears as 

(B6) 

In the effective moments of inertia for the ground state (v =vt= ..• =O) 
.s 

pairs of terms e and et may be added together to gi~e 
s 

(B7) 

This shows :t1hat flresonant 11 Corio lis perturbations will not appear in 

. the groU11d vibrational state. 
5. 29 

It should be mentioned that other· Coriolis effects " are present 

for degenerate vibrations.. These show up in separate terms involving 

the angular momentum of the degenerate vibrations, and therefore are 

not regarded as part of the effective moment of inertia. Thus in 

the forgoing the constants ~st which connect different components of 

a degenerate vibration are ignored_. There are, hmvever, useful rela

tions between (B6) and the coefficients associated tl!ith the degenerate 

Coriolis perturbations.?5 -' 30 · 
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APPENDIX C 

ANHARMONIC V!BRATIONAL AVERAGES 

In our treatment the linear and cubic terms in the potential 

function of Eq. (20) a!'e regarded as the primary perturb~·t;.:i.ons. The 

f'irst-order perturbed vibrational wavefunction obtained from ~·Eq·. E'23) 
:'1 
)I 

is then used to average the interaction terms in the kinetic en(~rgy, 

a procedure equivalent to a second-order perturbation treatment of 

the Ham1ltohian. 50 As shown in the text., the calculation reduces 

just to evaluating 

(Cl) 

fo'T n == 1,2. Only an approximation which yields the leading tenas_, 

proportional to the vibrational quantum nt~mbers_, is required. 

In tvib .= Vh + ta the unperturbed or '1harmonic 1
t part is the 

product .of harmonic oscillator functions, one for each normal mode: 

(C2) 

·(where t = s) fo1~ a given vibrational state with quantum numbers 

v1 ., ..• , v 8 ,.~.; v 3N_6• The "anharmonic" part ta consists of a 

linear combination of: many nondiagonal terms in which one or more 

of the vibrational quantum numbers differ .from those in7J;11 • ·However, 

the only terms which enter in the evaluation of (Cl) are of the type 

(C3) 

· The coefficients · 
,1. 

. ._, i 

.. 1 
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are fox'med from matrix element:s of those perturbation terms that arEr, 

linear.or cublc !"unctions of the sth normal coordinate, 

:; 

Vlhen v
8 

is even (or odd), 1[rh is an even (or odd) function of Qs and· 

1Ya is an odd (or even). function. Therefore in (Cl) we find 

and 

The aPJ~armoniC. part of.' <Q;> is dropped, sinc.e it contains only terms 

at least quadratic in v + ~· Thus 'Vle are left with just the result 

for a simple harmonic oscillator, 

'' 

<Q;> = (2K/ru
8

)(vs + ~) ,. 

The two tel"ms .in <Q
8
> are equal and we find 

After introducing the harmonic oscillator matrix elements and the 

, relation K/ru
8 

= ~(hro 8 /t..s ),_ we can reduce this to 

(G4) 

This becomes Eq. (34) of the text when (21) is taken into account. 

It is interesting to note that if we separate the potential 

en~rgy into harmonic and anharmonic parts~ 

.. .. . ' 



--;.-

-52-

then (C4) is equlvalen)c to the condition 

Q\
5

,<.Q
6
>· = <ovt~oQ 8 > ~ _;~ova/oQ 6 > 

or •, '' 

o •. 

{Again~ just terms lineal"' in v + ·~· are retained •. ) 

Often it is convenient to expt>ess'the pote.ntial energy in terms 

Of' internal COOrdinateS rather, than· :t'lOrmal coor•dinates 1 by 't.l.Se Of 

Ec;t. (54).. When transfor:rn1.ng 1 ... esults front one basis to the other, 

it again proves useful to consider the expansion of a m:>de., as the. 

following .relations hold: 

r..· ..... 2 Vh(:f:) s . -. 
·'.,::· 

ksss = 2 V<J.(:f:) 

3k<:!s"- = 2(crv a!()~)' 
.;>• "' ·+ 

2~k ( oV a/o s1t) =f: 
. ' 

= ~tt· 

Here the sym"Jol u+n indicates that tne function is evaluated at 

the coni'igur·ation speoified in Eq. (55). 

(C5) 

·~ 
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Table I. · Comparison of bond lengths for 

diatomic molecules.a 

Bond length 
/ . 

Effective., r = <r-2> -l/2 · 
v 

Average, <r> 

Rrrs; <r2>1/2 

Inverse cube., <r-3>-113 

1+ <;>- ~;2> 

l +<lf.> 

l+<lf.> +~lf.2? 

1 + <~>- 2<;
2> 

;,.,, Substitution, . r s 1 + f ( < ;> - ~; 2> ) . 

aThe quantities <;>, <~ 2 >, and f are defined 

in, Eqs ... (4) and (12) of the text • 

. '• 



iJ Table II. Ratio of anharmonic to harmonic 

contribution to inoment of inertia. a 
-.. 

Molecule . €1 ·€ . 
2 €3. .Zsdses 

C02 -2.86 - 3.48 ·- 8.22 -6.72 

cs2 -2.45 - 7.66 -15.08 -5.40 

ocs -3.32 - 4. 33. -10.41 -7.26 

OCSe -3.53 - 5.40 

SCTe -10~84 

HCN -2.46 - 2.07 - 3.59 -4.83 

ClCN - 5. 37 . 

BrCN -3.51 - 6.90 

ICN -2.96 - 8.08 

NNO -3.04 - 2.04 - 7.63 -9.03 

H20 

c-axis -2.42 - 0.316 - 1. 82 -5.18 

b-axis -2.09 - 0.392 - 1.37 -1.23 

a-axis -2.86 0.669 - 4.16 -0.637 

aReferences to experimental data are given 
under Table III of Part II. .. 

c . .. 
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Table III. Formulas for linear symmetric\/ XY
2 

molecule .• a 

2vhar = Fir<sf +s;) + 2F128183 +F22< 8 ~a+ 8 ~b) 

2Vanhar> = Flll(si +S~) + 3Fll3(si83 + 8 1 8 ~) + 3 Fl22(Sl+S3)(S~a + S~b) 
' '. ' 

"-1 ::: ·(Fll + 'pl3)/m, "-2 = ·4F22/1J.r
2

, "-3 = 2(Fll- Fl3)/IJ. . 

Hl = 1 . , H2 = (3f..2 + J\3lt('f..3- J\2) , H3 = (3f..3 + ·,._2);{f..3- f..2) 

. . ' 

A3 =· (f..;/f..l)r(Fil·l-Fll3}{Fll-Fl3) 

<f;>. -~ ~(3Befm 1 )[A 1 (v 1 + ~) +~(ro 1 /m 2 )A 2 (v 2 ~'l)+(mJ!m 3 )A 2 (v 3 +~)] 

<;2> = (2Be/ml) (vl + ~) . 

as1 = 5rxy; 8 2 = 5 ; 8 3 = orxy•; ~ = ~ (s1 +S3 }. . .rrass oi' X atom is 

It1, of: Y atom m.t and IJ.. == 2mW(2m:f-M). 

' .\ 
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Table IV. a 
Vibration-rotation parameters for co2• 

. ' 

Mode Harmonic An.llarmonic Total 

1 -0.0747 0.213 0.139 

2; 2' 0.0673 -0.234 -0.167 

3 -0.0470 0.386 0.339 

Sum -0.0544 0.365 0.311 

aThe tabulated quantitie·s are the contri

butions to~= !
0
-Ie (in amu A

2 
units). 

Data used is from C. P. Courtoy [Can. J. 

Phys. 35, 608 (1957)]: B~ = 0.39}625, 

a
1 

= 0.00126, a2 =-0.00076, a 3 = 0.003088, 

m
1 

= 1354.9, ro2 = 673.02, m3 = 2396.4 (all 

in em ... 1 units). · · · 



. :~ 

.. 

Table v.. Notation and units. 

~ 1 ~ tsi" Yi. ·' = coordinates of .!.th atom with respect to . 

. principal axis system, chosen from x, y 3 z. in 
c.;clic . order . (A) • . . . . . . . 

Qs . . = no.rmal .coordinates (g1f,2 mole ~ 1 / 2 10. 

P· 
s 

totai vibrational momentUil1 associated with 

sth normal coordinate 

part of vibrational momentu.il ~rhich arises 

from Coriolis interaction., defined in Eq. 

(A6) of Appendix A •. 

'111a = components of total angular momentum along 

. the principal axes 

ro
8 

= harmonic vibrational frequency (cm-1 ) 

A 8 =4n
2 c 2 m~! =· 5~8893 x 10-7 ro! (105 dynes cm-l g-1 mole) 

cubic anharmonic vibrational constant (lo-11 

ergs g-312 mole312 K-3) 

K = h/87T2. = l6.863'·g mole-1 K2 cm-1 

.. - .·- ...:....:..... ~ 

.. 

·'· 

·--.· 

I 
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Table VI. Symmetry analysis for a li~ear x2Y2 molecule. a 

S;ymntetry .·Eckart Mode 
Jl{ ~kl-c Species Carr. No. 

~+ 
g 

. 1:' 

. s=l 2-1/2(81 +8s) (2/m1 ) + (2/m2 ) 

2 83 2/m2 

+ 
~u. 6-rz 3 2-l/2(sl-85) (l/m1 ) + (l/m2) 

rrg o~x.;6V"Y 
.. 4 2-112(8 -s J (1/m r 2 )+ L(1 +.£) 2 

..... 2 .. 4. . 1 m2 r R 
• : ·;: ~- i 

.·' l' .. 

rr· o·-rx;;6-ry 5 2-1/2 (s2·+s4) (~ + m1) 
1 

-u ~ 1 2 r 

a 
Here r= r

12
= r 34 ,; R = r 23; m1 = m4 ; m2 = m3 • The non-

. diagonal element ~ 2 for the z: modes has the value -2/m2 • 

}' 



Table 'VII.. Symmetry coordinates for a planar l:J'XY
2 

molecule. a 

Species Eckart 
Corr .. 

liiOde 
Jl" No.-

l 2-1/2(sr+Sz) 

2 2-1/2(~f5+S~) 

5 s4 

4 2-112 (s s ) 1- 2 

6 ss 

8 R - tl - 4 _ = r 24; r = r 12 = r 23; m1 = m3; 1e z-ax...s 

' ' 

is out-o.f'-plane, the y-axis along the 
Syrril"aetry axis" 

I 
, I 

I 

-.. 
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Captions for Figures 

Fig. 1. · Relative deviations from r e for various types of 

average bond lengths as a function of the 

anharmonic constant. Ordinate scale is in 

;multiples of the mean square harmonic vibrational 

amplitude. 

Fig. 2. Comparison of vibrational cont!>ibutions to 

effective moment of inertiao Abscissa and dashed 

line show sum of corrections for stretching modes • 
. 

Solid circles show total correctionJ the sum of 

bending and stretching terms. Open circles show 

'· sum obtained· by assigning to each bond the 

observed correction for the corresponding diatomic 

molecule. 

Fig. 3. Construction of a normal moqe expansion. 

Fig. 4. Internal coordinates for a linear WXYZ molecule. 

Fig. 5. Internal coordinates and displacement vectors for 

a branched WXYZ molecule. 
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LEGAL NOTICE ·--------------. 

This report was prepared as an account of Government sponsored work. 

Neither the United States, nor the Commission, nor any person acting on 

behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 

respect to the accuracy, completeness, or usefulness of the information con

tained in this report, or that the use of any information, apparatus, method, 

or process disclosed in this report may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 

resulting from the use of any information, apparatus, method or process dis

closed in this report. 

As used in the above, 11 person a~ting on behalf of the Commission 11 

includes any employee or contractor of the commission, or employee of such 

contractor, to the extent that such employee or contractor of the Commission, 

or employee of such contractor prepares, disseminates, or provides access 

to, any information pursuant to his employment or contract with the Commis

sion, or his employment with such contractor. 


