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Influence of water on the dissolution of cellulose in selected 
ionic liquids 

Mathieu Mazza · Dan-Andrei Catana · 
Carlos Vaca-Garcia · Christine Cecutti 

Abstract Cellulose (7% water) was thoroughly dis
persed in various ionic liquids (IL) and the turbidity of 
the mixture was investigated to distinguish real 
dissolution from fine dispersion. The dissolving ability 
of 1-butyl-3-methylimidazolium chloride (BMIMCl 

know cellulose solvent) and 11 other commercial IL 
(not reported as cellulose solvents) was studied. From 
the latter, only 1,3-dimethylimidazolium dimethyl
phosphate (DMIMDMP) could dissolve cellulose. The 
influence of water content on the real dissolution of 
cellulose in these two IL was investigated. The 
maximum theoretical amount of dissolved anhydrous 
cellulose in the IL was determined by extrapolation 
methodology at different temperatures. For cellulose in 
BMIMCl, it was 8.75 g/100 g of IL at 95 °C. 
DMIMDMP could achieve real cellulose dissolution 
only in a practically anhydrous system (2.3 g/100 g of 
IL at 30 °C) but dissolution was physically limited by 
high viscosity. 
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Introduction 

The cellulose-containing materials and their deriva
tives have been widely used in our society. In some 
physico-chemical processes, cellulose has to be dis
solved. Solvents like LiCl/DMAc are used to perform 
reactions in homogeneous media (Vaca-Garcia et al. 
1998; El Seoud and Heinze 2005) and solvents like 
NMMO and cuen have been used as non-derivatizing 
solvents for regeneration (Johnson 1985; Heinze 
2005). For both applications, ionic liquids (IL) are 
currently attracting much attention because they are 
liquid at relatively low temperatures ( <100 °C) and are 
described as chemically and thermally stable, non
flammable, and non-volatile. Their extremely low 
vapour pressure is the leading characteristic in pro
cesses where volatile organic compounds (VOC) must 
be avoided. As far as VOC emissions are concemed, IL 
are more environmentally friendly than traditional 
organic solvents (El Seoud et al. 2007). 

Diff erent studies have shown that cellulose can be 
dissolved in methylimidazolium salts, especially l-butyl-
3-methylimidazolium chloride (BMIMCl) (Swatloski
et al. 2003, 2002) and 1-allyl-3-methylimidazolium
chloride (AMIMCl) (Zhang et al. 2005), ammuniom salt
like benzyldimethyl(tetradecyl)ammonium chloride
(BDTACl) and pyridinium salt like l-butyl-3-methylpy
ridinium chloride (BMPyCl) (El Seoud et al. 2007). In all
these cases, the dissolution of the cellulose is also due to
the action of the chloride anions, which internet with the
hydroxyl groups of cellulose by disrupting the hydrogen



bonds in the biopolymer (Moulthrop et al. 2005). These 
interactions have been put in evidence by NMR in 
solutions of cellulose in BMIMCl at 5% at 90 °C 
(Moulthrop et al. 2005; Remsing et al. 2006). In other 
works, the maximum cellulose concentration in BMIMCl 
has been reported. Different values are reached depend
ing on the temperature and on the heating device: 6 wt% 
at 80 °C (Schlufter et al. 2006), 10 wt% at 100 °C or up 
to 25 wt% if the dissolution is carried out using a 
microwave heating system (150 °C maximum) (Swatlo
ski et al. 2002, 2003). Moreover, the solubility depends 
also on the origin of cellulose and its degree of 
polymerisation (Heinze et al. 2005; Barthel and Heinze 
2006). 

In all these studies, the assessment of dissolution 
was done by: static and dynamic light scattering 
methods (Chrapava et al. 2003), NMR (Moulthrop 
et al. 2005) and visual methods (Swatloski et al. 2002). 

There is a possibility that confusion arises between 
real dissolution (complete solvation of the cellulose 
molecules) and fine dispersion of cellulose particles 
or even aggregates formation during or after disper
sion in the solvent. In regeneration processes, it is 
important to reach total dissolution of cellulose in 
order to obtain a homogeneous product. 

Thus, one of the aims of our study is to propose an 
alternative method to differentiate real dissolution of 
cellulose. Turbidimetry was selected as a simple technique. 

A second aim of our study was to quantify the 
negative influence of water when dissolving cellulose in 
IL. Water can corne from (i) the hygroscopicity of IL, 
(ii) the initial cellulose water content, and (iii) the 
process, in particular when precipitating the dissolved 
cellulose. Therefore this information can be exploited in 
different manners, for instance, the following questions 
can be answered: how much undried cellulose can one 
dissolve in a particular ionic liquid? In what extent the 
concentration of cellulose can be increased if cellulose is 
previously dried? What is the minimum quantity of 
added water to precipitate cellulose?

Materials and methods 

Materials 

Twelve commercial IL (Table 1) were purchased 
from Solvent Innovation (Koln, Germany) and Solv
ionic (Toulouse, France). They had a purity of 

minimum 98% and were used as received. Sigma
Aldrich (France) fumished o:-cellulose having a water 
content of 7% (determined by thermogravimetry and 
Karl Fischer methods) and was used without further 
drying in this study. Cellulose acetate (DS = 2.4) and 
tetrahydrofuran (THF, 99.5% purity) were purchased 
from Sigma-Aldrich (France). NaCl (99.5% purity) 
was purchased from Acros Organics (Belgium). 

Turbidimetric measurements 

Turbidity was measured with a nephelometer featuring 
a scattered light detector perpendicular to the light 
beam (Fig. 1). The correlation between transmitted 
and scattered light constitutes a precise evaluation 
parameter of the presence of non-dissolved partiel es in 
a solution as they are bigger than the wavelength of the 
incident light (860 nm). The units of turbidity from a 
calibrated nephelometer are called Nephelometric 
Turbidity Units (NTU). Calibration was done between 
1 and 1,000 NTU. The latter corresponds to a milky 
opaque sample. 

Dissolution of cellulose in ionic liquids 

Turbidimetric clear glass vials containing a precise 
quantity of ionic liquid (around 15 mL) and a 
magnetic stirrer were placed into a heating oil bath. 
The use of a hot water bath was avoided to limit the 
water uptake by hygroscopy. Small precise amounts 
of cellulose (around 10 mg) powder were added 
discretely into the vials. In between each addition, at 
least 15 min were allowed for dissolution and 
turbidity was measured until a stable NTU value 
was reached. Tests were realised at 90 °C for 
BMIMCl and at 30 °C for the other IL, which are 
in liquid form at room temperature. 

Influence of the water content 

Initial solutions of cellulose in BMIMCl and 1,3-
dimethylimidazolium dimethylphosphate (DMIMD 

MP) were prepared at 125 and 105 °C, respectively 
in order to evacuate the ambient moisture. Three 
different cellulose concentrations (0.5, 1, and 2 g in 
100 g of IL) were used. The solutions were put 
into vials with a magnetic stirrer and placed in an oil 
bath at controlled temperature (85, 90 or 95 °C). 



Table 1 Ionie liquids used in this study 

Referenee on Ionie liquid CAS 

Fig. 3 number 

1 l-Butyl-3-methylimidazolium ehloride BMIMCI 79917-90-1 

2 l-Butyl-3-methylimidazolium tetrafluoroborate 174501-65-6 

BMIM BF4

3 1-Ethyl-3-methylimidazolium 2(2-methoxyethoxy) n.a.

ethylsulfate

4 AMMOENG 100 n.a.

5 1-Ethyl-3-hydroxymethylpyridinium ethylsulfate n.a.

6 1-Ethyl-3-methylimidazolium ethylsulfate 342573-75-5 

7 1,3-Dimethylimidazolium dimethylphosphate 654058-04-5 

DMIMDMP 
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Table 1 continued 

Reference on Ionie liquid CAS 
Fig. 3 number 

8 Butylmethylpyrolidinium 223437-11-4 

bis( trifluoromethy lsulfony 1 )imide 

9 AMMOENG 102 n.a.

10 1-Ethyl-3-methylirnidazolium dicyanarnide n.a.

11 Methyltrioctylammonium n.a.

bis( trifluoromethy lsulfony 1 )imide 

12 1-Ethyl-3-methylpyridinium ethylsulfate n.a.

n.a. not available

Formula 
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Transmission 
----+--- detector 

Scattering 
------ detector

------- Sample □-------+---- Light source

Fig. 1 Principle of a nephelometer 

Small precise amounts of water (100 or 200 µL) were 

added discretely into the vials and turbidity was 

measured every 15 min until constant values. The 

water content in each vial is known precisely from 

the water content at the beginning (Karl Fischer 

titration) and the quantity of added water. 

Results and discussion 

Validation of the turbidimetric principle 

Turbidity is the cloudiness of a fluid caused by 

particles in suspension. They will scatter a light beam 

passing through the sample. This property is consid

ered as a significant consequence of solid particles in 

suspension. More light reaches the scattering detector 

if there are solid particles scattering the source beam. 

To some extent, how much light is scattered by a 

given amount of particles depends on the properties 

of the latter: shape, colour, and reflectivity. In our 

case, we will measure particles of a unique solute: 

cellulose. Comparisons can therefore be made. 

Before testing the proposed method on cellulose, 

the principle of solubility evaluation by turbidimetry 

was validated using independently an ionic com

pound (NaCl) and a linear polymer (cellulose acetate) 

dissolved in water and tetrahydrofuran, respectively. 

Turbidity is expected to keep reasonably constant 

as much as the solute is perfectly soluble. When the 

maximum solubility is reached, the newly added 

solute remains solid and turbidity is expected to 

increase sharply. 

The predicted behaviour of turbidity was con

firmed with the study of the dissolution of NaCl in 

water at 30 °C (Fig. 2). Turbidity was perfectly 

constant then increased sharply at concentrations 

higher than 38 g/100 g water. This result is 
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1- 800 

■ Cellulose acetate in THF (25°C) 

.?' 600 

I◊ 
400 1- End of solubility 1 
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0 - _________ .. \./ 
0 5 10 15 20 25 30 35 40 45 50 

Solute concentration (g / 100 g of solvent) 

Fig. 2 Turbidity versus solute concentration: NaCl in water 
and cellulose diacetate in THF 

consistent, though not the same, with the known 

solubility value: 36.1 g of NaCl in 100 cm3 of water 

at 30 °C according to the Handbook of Chemistry and 

Physics, CRC citing (Apelblat and Karin 1998). 

Thus, the perfect dissolution of a salt in water does 

not increase the turbidity. 

In the case of a polymer, the dissolution of 

cellulose acetate in THF (Fig. 2) gave a linear trend 

with a small slope, which can be considered almost 

constant with regard to the whole scale of turbidity 

(1-1,000 NTU). The end of solubility could not be 

reached because the solution became tao viscous to 

be stirred preventing the homogenisation of the 

sample. Nevertheless, the main principle could be 

confirmed for ionic compounds and macromolecules. 

Dissolution of cellulose in selected ionic liquids 

All the commercial IL listed in Table 1 were tested to 

assess their ability to dissolve cellulose. Although 

undried cellulose was used in the experiments, the 

concentration values were reported on a dry basis. 

Only two of the IL were able to dissolve cellulose: 

BMIMCl (number 1, already known: reference) and 

DMIMDMP (no. 7, not previously described as 

cellulose solvent). These two systems show practi

cally fiat lines in a plot of turbidity versus 

concentration (Fig. 3). The other 10 IL showed an 

immediate and constant linear rise of the turbidity 

when the cellulose concentration was increased. The 

turbidity values were significantly high to indicate the 

presence of solid particles even at the lowest 

concentrations. The rise in turbidity for a given 

increase in cellulose concentration was different 



Fig. 3 Turbidity versus 
cellulose concentration for 
12 ionic liquids. For legend, 
see Table 1 
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according to the ionic liquid. The slopes of the lines 
in Fig. 3 that correspond to the biphasic systems vary 
from 569 to 3,397 NTU/g cellulose. It is evident that 
the interactions between cellulose and IL are different 
and affect the light dispersing properties of the 
particles. Three groups of lines can be distinguished 
in Fig. 3 according to the slope values. It is interest
ing to observe that the IL that share the same type of 
anion belong to the same group: bis(trifluoromethyl
sulfonyl)imide for IL 8 and 11, alkylsulfate anions for 
IL 3, 4, 6, 9, and 12. The interactions affecting light 
scattering seem to be independent of the cation of the 
ionic liquid. 

The maximum solubility of a-cellulose in 
BMIMCl and DMIMDMP was determined by addi
tion of cellulose portions to the IL to put in evidence 
an abrupt change of turbidity (Fig. 4). The experi
ments were done at 90 °C for BMIMCl and 30 °C for 

350----------------� 
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5' 250 1-
� 200� '6 150 :c 
:i 100 1-

50 

DMIMDMP 

End of solubility 

\ .�(· 
················ \ �•••••••
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BMIMCI .. � .. •·· ott:i:,:j���.:,__m�m�m�m�-m�.---1 

0 2 3 4 5 6 7 8 

Cellulose concentration (g / 100 g of ionic liquid) (dry basis) 

Fig. 4 Maximum solubility of cellulose in BMIMCl and 
DMIMDMP 

DMIMDMP according to their melting points 
(Table 1). 

The curve of the BMIMCl system showed a neat 
increase of slope at 6.2 g/100 g IL. This value is in 
agreement with the values reported by Swatloski 
et al. (11.1 g/100 g IL at 100 °C and 3.1 g/100 g IL 
at 70 °C). 

In the DMIMDMP system, the end of cellulose 
solubilisation could not be detected by turbidimetry 
because the solution became too viscous to be stirred. 
This limit was reached at 2.3 g/100 g IL. Nonethe
less, this value corresponds to the highest cellulose 
concentration that can be reached in this ionic liquid 
under the practical conditions. 
Influence of the water content 
Oven-dry cellulose was not used for this study. We decided 
to keep using the standard cellulose containing 7% water 
(moisture at equilibrium) to avoid the hornification 
phenomenon that can reduce severely its solubility. Results 
were, however, expressed on a dry basis. 

In a system in which cellulose is perfectly 
dissolved, the addition of a non-solvent (in this case, 
water) perturbs the solvation of the biopolymer. 
Turbidity is expected to remain constant as far as 
cellulose is still soluble but when the maximum water 
content in the solution is reached, cellulose would 
precipitate and the turbidity is expected to increase 
sharply. After precipitation of all the cellulose 
molecules, the turbidity should keep constant. 
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Fig. 5 Influence of water content in the turbidity of cellulose 
solutions. Example given for 1 g of cellulose in 100 g of 
BMIMCl at 95 °C. Maximum water content before precipita
tion was 0.1708 g of water/g of BMIMCl 

The expected behaviour was verified in the case of 
the BMIMCl/cellulose solutions. An abrupt increase 
of the turbidity was observed at the beginning of 
precipitation. Turbidity starts to level off when little 
cellulose remains in solution and much cellulose 
passes in suspension (Fig. 5). 

The start of the cellulose precipitation was deter
mined by the tangent method. For an initial solution 
of 1 g cellulose/100 g BMIMCl, precipitation 
occurred at 0.1872 g water/g BMIMCl (Fig. 5). It is 
evident that this value, which represents the maxi
mum water content in a homogeneous cellulose/IL 
system, depends on both the concentration of cellu
lose and the temperature. The values determined for 
different conditions are given in Table 2. 

The relation between these values and the initial 
cellulose concentration at constant temperature 
showed a linear trend (Fig. 6). The intersection of 
the straight line with the Y-axis represents the 
maximum theoretical amount of cellulose that can 
be dissolved in BMIMCl at a given temperature 
when the water content in the solution is zero. At 
95 °C, this value is 8.75 g/100 g of BMIMCl, i.e., 
8.0 wt%. At 90 °C, the expected value decreases to 
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Fig. 6 Linear behaviour of cellulose in solution in BMIMCl as 
a function of maximum water content at constant temperature. 
Circles represent values from Swatloski et al. 2002 

5.87 g/100 g IL, which is in agreement with the 
experimental result reported above (6.2 g/100 g IL). 
The small difference is justified by the uncertainty 
of the extrapolation. 

The maximum solubility values for the reported by 
Swatloski et al. are also shown in Fig. 6 as points on 
the Y-axis. From our experimental and the reported 
values, we can plot the maximum solubility of 
cellulose in anhydrous conditions as a fonction of 
temperature (Fig. 7). The behaviour is not linear but 
follows a classic parabolic trend observed elsewhere 
for most solutes in classic solvents. 

In the case of DMIMDMP at 95 °C, the turbidity 
increased immediately after the first addition of water 
to the cellulose solution. The increase was observed 
regardless of the cellulose concentration (0.5, 1, and 
2 g of cellulose in 100 g of DMIMDMP). As more 
water was added in the solutions, the turbidity kept 
increasing (Fig. 8). It seems that perfect dissolution 
of cellulose in this ionic liquid is possible only in 
practically anhydrous conditions, as those used to 
trace Figs. 3 and 4. In addition, we verified that water 
and DMIMDMP form a miscible clear solution, as 
demonstrated by the fiat line of Fig. 8. Therefore, the 
increasing behaviour of the turbidity is only due to 

Table 2 Maximum water content (including cellulose moisture content) before precipitation for different cellulose concentrations in 
BMIMCl at different temperatures 

Temperature (0C) 

95 
90 

0.5 g of cellulose 
in 100 g of BMIMCl 

0.1967 
0.2934 

Values given in g of water/g of BMIMCl 

1 g of cellulose 
in 100 g of BMIMCl 

0.1872 
0.2702 

2 g of cellulose 
in 100 g of BMIMCl 

0.1614 
0.2120 
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Fig. 8 Turbidity against water content for a solution of 0.5 g 
of cellulose in 100 g of DMIMDMP and for pure DMIMDMP 

the precipitation of cellulose from the first addition of 
water in the case of DMIMDMP/cellulose solutions. 
No description of the cellulose dissolution mecha
nism was found in the literature that can help 
understand this behaviour. In contrast, these results 
may help in the future to understand the dissolution 
mechanism of this new ionic liquid. 

Conclusion 

It was demonstrated that turbidimetric measurements 
are a method allowing to distinguish real dissolution 
from fine suspension of cellulose in IL. Only one, 
among the selected new 11 IL tested, could dissolve 
cellulose (DMIMDMP). 

The influence of water in the dissolution of 
cellulose was quantitatively evaluated. Cellulose 
could be dissolved in BMIMCl at different water 

contents. The more water, the less concentration of 
cellulose in solution is obtained. The maximum 
theoretical amount of anhydrous cellulose in solution 
was 8.75 g/100 g of BMIMCl at 95 °C determined by 
extrapolation methodology. All the results are in 
agreement with those from literature . 

Tests on DMIMDMP showed that the cellulose 
can be perfectly dissolved only if the system is 
practically anhydrous. The maximum obtained value 
was 2.3 g/100 g IL at 30 °C. More cellulose could be 
theoretically dissolved but the high viscosity of the 
solution avoided further dissolution. A small amount 
of water added to the system leads to the formation of 
cellulose aggregates. 
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