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Abstract

We present simulations of two-phase flow using the Rothman and Keller colour gradient 

Lattice Boltzmann method to study viscous fingering when a “red fluid” invades a porous 

model initially filled with a “blue” fluid with different viscosity. We conducted eleven 

suites of 81 numerical experiments totalling 891 simulations, where each suite had a dif-

ferent random realization of the porous model and spanned viscosity ratios in the range 

M ∈ [0.01, 100] and wetting angles in the range �
w
∈ [180◦, 0◦] to allow us to study the 

effect of these parameters on the fluid-displacement morphology and saturation at break-

through (sweep). Although sweep often increased with wettability, this was not always so 

and the sweep phase space landscape, defined as the difference in saturation at a given 

wetting angle relative to saturation for the non-wetting case, had hills, ridges and valleys. 

At low viscosity ratios, flow at breakthrough is localized through narrow fingers that span 

the model. After breakthrough, the flow field continues to evolve and the saturation contin-

ues to increase albeit at a reduced rate, and eventually exceeds 90% for both non-wetting 

and wetting cases. The existence of a complicated sweep phase space at breakthrough, and 

continued post-breakthrough evolution suggests the hydrodynamics and sweep is a compli-

cated function of wetting angle, viscosity ratio and time, which has major potential impli-

cations to Enhanced Oil Recovery by water flooding, and hence, on estimates of global oil 

reserves. Validation of these results via experiments is required to ensure they translate to 

field studies.

Keywords Lattice Boltzmann simulation · Multiphase flow · Viscous fingering · 

Wettability · Porous media

1 Introduction

In this paper, we study the physics and morphology of immiscible two-phase fluid flow 

in a 2D model of a porous medium with the aim of increasing understanding of patterns 

fluid–fluid displacement and their effect on the fluid saturation, and in particular, the effect 

of wettability, a measure of the degree to which a fluid is attracted to the solid.
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We will make use of the Lattice Boltzmann Method (LBM), a well-known method to 

simulate fluid flow, which is capable of modelling flow of immiscible fluids at the pore 

scale. Lattice Boltzmann Methods have their origins in Lattice Gas Automata (LGA) in 

which particles move and collide on a discrete lattice representing a simplified discrete 

version of molecules moving and colliding in a gas. LGA were first proven by Frisch et al. 

(1986) to yield the Navier–Stokes equations in the macroscopic limit. The LGA lead to so-

called Lattice Boltzmann Methods where one is solving the classical Boltzmann equation 

on a discrete lattice involving number densities moving and colliding on a discrete lattice. 

Since an efficient method via relaxation to calculate the collision term due to Bhatnagar, 

Gross and Krook—the BGK method (Bhatnagar et al. 1954)—was developed (Qian et al. 

1992; Chen and Doolen 1998), research and applications of the Lattice Boltzmann Method 

have undergone an explosion (see Succi 2001, 2018).

The Lattice Boltzmann Method has been applied to various studies of viscous finger-

ing. Dong et  al. (2010) used the Shan and Chen Lattice Boltzmann Method (Shan and 

Chen 1993) to simulate viscous fingering in a channel and investigate the effects of wetting 

and viscous fingering in a Hele-Shaw cell and simple porous media (Dong et  al. 2011). 

The Rothman–Keller (RK) colour gradient multiphase LBM has been applied to study 

the mode of flow (viscous fingering, capillary fingering and stable displacement) in the 

phase space of capillary number versus viscosity ratio by Huang et al. (2014). A forcing 

term Lattice Boltzmann approach has been applied to simulate viscous fingering where 

the porous medium was mimicked using the grey lattice Boltzmann or the Brinkman force 

model (Vienne et al. 2019). And the RK LBM was applied to the study of immiscible dis-

placement by a shear-thinning fluid in a porous medium (Wang et al. 2019). In 2019 (Zhao 

et  al. 2019), a benchmark study was conducted where 14 teams compared the results of 

using a range of different pore-scale flow simulation methods including the LBM method 

in 2D and 3D, and found that no single method excels across all conditions and that corner 

flow and thin films present significant challenges, although LBM methods seemed to cap-

ture such effects at least to some extent. In this paper, we make use of the Rothman–Kel-

ler colour gradient Lattice Boltzmann Method (Rothman and Keller 1988; Latva-Kokko 

and Rothman 2005; Reis and Phillips 2007) to study viscous fingering due to its ability to 

simulate large viscosity ratios and ease and accuracy of simulating different wettability. 

The main pitfall of the RK LBM is that the colour gradient required to calculate the effect 

of fluid cohesion has some numerical errors which leads to anisotropy of the interfacial 

tension and spurious currents. This can affect details of phenomenology such as droplet 

and finger formation but the use of more accurate and isotopic colour gradient calculations 

renders these inaccuracies negligible (Mora et al. 2021a).

It is well established that when a low viscosity fluid such as water is injected into a 

porous rock matrix saturated with a higher viscosity fluid such as crude oil, patterns of vis-

cous fingering occur (Homsy 1997; Måløy et al. 1985; Chen and Wilkinson 1985; Lenor-

mand et al. 1988). Namely, the formation of patterns at the unstable interface between the 

two fluids in the porous medium (typically, patterns of narrow tendrils of the injected fluid 

in the porous medium). This is an interesting physical phenomenon with practical impli-

cations to Enhanced Oil Recovery (EOR) where water is injected into one well to help 

extract the oil from the hydrocarbon reservoir at an adjacent production well. The displace-

ment morphology of immiscible fluid displacement in a porous medium is complex and 

is affected by many parameters of the fluids including the viscosity ratio of the two fluids 

and the wettability. Wettability refers to the relative affinity of the solid for one of the fluids 

with respect to the other. Thus, we say that a porous medium is wetting to water rather than 

oil if it exhibits a tendency to be coated by water and to repel oil. The angle of the fluid 



513Influence of Wetting on Viscous Fingering Via 2D Lattice Boltzmann…

1 3

interface relative to the solid surface is called the wetting angle. A wetting angle approach-

ing 180
◦ means that a droplet is almost circular in 2D (spherical in 3D), and such fluids are 

termed non-wetting. The opposite case is a highly wetting fluid where the fluid droplet is 

more attracted to the solid and the angle between the fluid interface and solid approaches 

0
◦ . Our aim here is to apply the Lattice Boltzmann Method to the study of immiscible flow 

patterns such as viscous fingering in a model porous medium in 2D, and in particular, to 

study the effect of the wetting angle on the sweep, which is well known in petroleum engi-

neering to play a vital role in determining the “recovery factor”—the total fraction of oil 

in a given hydrocarbon reservoir that can be produced (Deng et al. 2020). Numerous stud-

ies in the field of petroleum engineering have led to a broad consensus that the recovery 

factor can be increased by increasing the wettability of the invading fluid (Kennedy et al. 

1955; Jadhunandan and Morrow 1995; Seethepalli et al. 2004; Morrow and Buckley 2011; 

Sharma and Mohanty 2013).

There have been many studies, experimental, theoretical and numerical on the influ-

ence of wettability on the pattern of flow in porous media. Stokes et al. (1986) found in 

experimental work that wettability affects the finger width. Cieplak and Robbins (1988); 

1990 (Cieplak and Robbins 1990) developed a numerical model for quasi-static fluid–fluid 

displacement and conducted numerical experiments of flow in a 2D array of discs show-

ing that as the wetting angle decreases, a progressive smoothing mechanism occurs and 

that the width of invading fingers seems to diverge beyond a critical angle which depends 

on porosity. Trojer et al. (2015) conducted a systematic experimental study of fluid–fluid 

displacement in a granular pack and found that wettability profoundly affects the invasion 

morphology. Namely, they observed a compactification of viscous fingering and a regime 

of compact displacement at low capillary numbers for weak imbibition. Zhao et al. (2016) 

found in microfluidic experiments involving vertical posts representing a porous medium, 

that as wettability is increased, there is more efficient displacement and higher saturation 

up until a critical angle is reached, after which, the system undergoes a wetting transition 

and the trend is reversed. Other microfluidic research combined with theoretical analysis 

and pore-scale simulations (Hu et al. 2019; Lan et al. 2020) have studied the phase dia-

gram capturing the viscous to capillary fingering transition to study the impact of medium 

disorder and wettability on this transition. Research using an invasion–percolation model 

by Primkulov et  al. (2018) extended the Cielpak and Robbins description of quasistatic 

fluid invasion reproducing the wetting transition in strong imbibition. There have been 

many core-scale experiments which show that the displacement efficiency can be improved 

when the wettability is increased towards imbibition such as by addition of surfactants or 

by using low–salinity water flooding (Kennedy et al. 1955; Seethepalli et al. 2004; Morrow 

and Buckley 2011; Sharma and Mohanty 2013).

In the following, we apply the Rothman and Keller colour gradient multiphase Lattice 

Boltzmann Method—RK colour gradient LBM (Latva-Kokko and Rothman 2005) with the 

aim of studying the effect of wetting on morphology and efficiency of flow of an injected 

lower viscosity fluid into a porous rock matrix saturated with a higher viscosity fluid. Our 

reason to choose the RK LBM is its ability to handle large viscosity ratios, a wide range—

over ten orders of magnitude—of surface tensions, and its accuracy as well as convenience 

of setting the wetting angle.

In previous work, we found that the effect wettability on saturation at breakthrough was 

complex and demonstrated that the saturation did not necessarily increase with wettability, 

and that optimal wetting angles �
w
> 0 that maximized saturation could occur at specific vis-

cosity ratios (Mora et al. 2021b). In this work, we extend the previous work and aim to study 

the effects of wetting angle and pore matrix geometry on the morphology of viscous fingering 
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and the impact of wettability on saturation at and beyond breakthrough, and to improve under-

standing of the patterns of viscous fingering and its effect on sweep.

2  Numerical Simulation Methodology

In this paper, we apply the Rothman–Keller (RK) multiphase Lattice Boltzmann model which 

was originally derived for a Lattice Gas Automaton (Rothman and Keller 1988; Gunstensen 

et al. 1991), and later extended to the Lattice Boltzmann Method (LBM) by Latva and Kokko 

(2005). The colour gradient RK Lattice Boltzmann model involves modelling particle distri-

butions denoted f k
�
 of two fluids (red and blue for k = 1 and k = 2 ) moving and colliding on a 

discrete lattice. The total number density of the two-phase fluid is given by

where the subscript � specifies the direction in the lattice, and the superscript k = 1, 2 

denotes fluid 1 and fluid 2 (red or blue fluid).

There are three steps in this method which are (i) streaming, (ii) collision, and (iii) “recol-

ouring”. The streaming step is the same as the standard Lattice Boltzmann Method streaming 

step. Namely, in one time-step, the particle distributions can move by one lattice spacing along 

the orthogonal axes, or along diagonals. We use the standard LBM notation DnQm for a simu-

lation in D = n dimensions, and with Q = m velocities on the discrete lattice. In the following, 

we restrict ourselves to 2D and use the D2Q9 Lattice Boltzmann lattice arrangement shown in 

Fig. 1. In this lattice, we define f k
�
(�, t) as the number density of particles of fluid k moving in 

the �-direction where the Q = 9 velocities are given by

This choice means that �
0
 is the zero velocity vector and therefore represents stationary 

particles, and �
�
 for � = (1,… , 8) are the velocities in the eight directions shown in Fig. 1 

which is defined such that �
�
= −�

�+1
 for � = (1, 3, 5, 7) . The lattice is unitary so the lattice 

spacing and time step are Δx = Δt = 1 . The streaming step is specified as

f
�
(�, t) =

∑

k

f k
�
(�, t),

�
�
= [(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1),

(1, 1), (−1,−1), (1,−1), (−1, 1)]Δx∕Δt

(1)f k
�
(�, t) = f k

�
(� − �

�
Δt, t − Δt),

Fig. 1  The D2Q9 lattice
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The collision step for the two-phase LBM involves two terms and can be written as (Latva-

Kokko and Rothman 2005)

where the superscript  denotes the post collision distributions, and (Δf k
�
)1 and (Δf k

�
)2 are 

the two collision terms which represent how the particle distributions change during each 

time step due to collision (Δf k
�
)1 while encouraging colour segregation (Δf k

�
)2 . The first 

collision term is nearly the same as the standard collision term of the LBM and is given by

where � is the relaxation time and f
k,eq
�

(�, t) is the equilibrium distribution which is given 

by

where c
s
= Δx∕(

√

3Δt) = 1∕
√

3 is the speed of sound in the lattice. The above equilib-

rium distribution is the same as the standard equilibrium distribution except for the rest 

factor C
�
 instead of w

�
 . The coefficients C

�
 are given by Grunau et al. (1993)

where �
k
 is a parameter that enables the density of the two fluids to be adjusted (Grunau 

et al. 1993; Reis and Phillips 2007) and is given by

The other weights are the same as the standard LBM. Namely, w
0
= 4∕9 , w

�
= 1∕9 for 

� = 1, 2, 3, 4 and w
�
= 1∕36 for � = 5, 6, 7, 8 . The macroscopic density of the two fluids 

are given by

the total density of the fluid is given by

and the momentum of the fluid is given by

(2)f k∗
�
(�, t) = f k(�, t) + (Δf k

�
)1 + (Δf k

�
)2,

(3)(Δf k
�
)1 =

1

�

(

f k,eq
�

(�, t) − f k
�
(�, t)

)

(4)

f k,eq
�

= �k

(

Ck
�
+ w

�

[

�
�
⋅ �

cs2

+
(�

�
⋅ �)2

2c4
s

−
��

2c2
s

])

= �k

(

Ck
�
+ w

�

[

3(�
�
⋅ �) +

9

2
(�

�
⋅ �)2 −

3

2
�

2

])

(5)C
�
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

�
k

� = 0

1−�k

5
� = 1, 2, 3, 4

1−�k

20
� = 5, 6, 7, 8

,

(6)
�

1

�
2

=

1 − �
2

1 − �
1

.

(7)�k =

∑

�

f k
�

,

(8)� =

∑

k

�
k
,
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The relaxation time �
k
 relates to the kinematic viscosity �

k
 of each fluid as follows

At the interface between fluids, the relaxation time changes abruptly, which cannot be han-

dled well numerically. Therefore, in order for the relaxation parameter to change smoothly 

at the interface, it is interpolated as follows Grunau et al. (1993)

where � is givenby

and g
1
(�) = s

1
+ s

2
� + s

3
�

2 , g
2
(�) = t

1
+ t

2
� + t

3
�

2 , s
1
= t

1
= 2�

1
�

2
∕(�

1
+ �

2
) , 

s
2
= 2(�

1
− s

1
)∕� , s

3
= −s

2
∕(2�) , t

2
= 2(t

1
− �

2
)∕� and t

3
= t

2
∕(2�) . In these equations, the 

positive free parameter � affects interface thickness and is usually set as � = 0.98.

The second collision term is more complex and there are several forms in the literature. 

Here, we use the term as written in Reis and Phillips (2007)

where �(�, t) is the colour gradient, �
�
 is the angle between �(�, t) and �

�
 and A is a param-

eter that controls the interfacial tension. The colour gradient �(�, t) is calculated according 

to Mora (2021a) which optimizes isotropy of the gradient as

where the �
�
 are the velocities and b

�
 are scalar coefficients of the finite difference approxi-

mation of the gradient that is accurate to second order, namely

W is given by

and w = 0.3 is the weight given to diagonal nearest neighbours relative to orthogonal near-

est neighbours in the finite difference calculation of the gradient. Choice of the value of 

w = 0.3 optimizes isotropy of the gradient at small radius of curvature interfaces such as 

those that occur in flow through a porous medium (Mora et al. 2021a) for the choice of 

the interfacial thickness parameter � = 0.5 which will be described shortly. This choice 

of w has an order of magnitude better isotropy than the standard choice of w = 1 from the 

(9)�� =

∑

k

∑

�

f k
�
�
�

.

(10)�
k
= c

2

s
(�

k
− 0.5)Δt.

(11)�(x) =

⎧
⎪
⎨
⎪
⎩

�1 � > �

g1(�) 0 < � ≤ �

g2(�) −� ≤ � ≤ 0

�2 � < −�� < −�

,

(12)�(�) =
�1(�) − �2(�)

�1(�) + �2(�)
,

(13)(Δf k
�
)2 = A|�|

(
w
�
(cos(�

�
)|�

�
|)2 − B

�

)
,

(14)�(�, t) =
∑

�

b
�
�
�

(

�1(� + �
�
Δt, t) − �2(� + �

�
Δt, t)

)

,

(15)b
�
=

{

1

W
� = 1, 2, 3, 4

w

W
� = 5, 6, 7, 8

,

(16)W = 2 + 4w,
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original paper on the RK colour gradient LBM given by Latva and Kokko (2005), and a 

factor of two superior isotropy for small radius of curvature interfaces such as those occur-

ring in porous flow than the choice of w = 0.25 derived by Leclaire et al. (2011) based on 

obtaining isotropic errors in the gradient calculation to second order. As such, the choice 

of w = 0.3 is optimal to obtain the most accurate pore-scale phenomenology which require 

isotropy of the colour gradient and hence surface tension, to correctly capture behaviour 

such as viscous fingering, droplet formation and other pore-scale phenomena.

In Eq. (13), the cosine term is given by

and B
0
= −4∕27 , B

�
= 2∕27 for � = 1, 2, 3, 4 and B

�
= 5∕108 for � = 5, 6, 7, 8 . Reiss and 

Phillips (Reis and Phillips 2007) have shown that the above parameters yield the correct 

term for interfacial tension � in the Navier–Stokes equations.

The final step in the Lattice Boltzmann Method for two-phase flow is a so-called 

recolouring step, which achieves separation of the two fluids. This is achieved as fol-

lows (Latva-Kokko and Rothman 2005)

and

where f ∗
�
=

∑

k f k∗
�

 , and A and � ∈ (0, 1] are adjustable parameters that affect the interfacial 

properties. Namely, � affects the interfacial thickness, and A and �
1
 and �

2
 affect the inter-

facial tension. That is, parameter A controls the surface tension, but surface tension in the 

model is also affected by the two viscosities �
1
 and �

2
 , and hence �

1
 and �

2
 . One must con-

duct a numerical experiment of a static droplet and apply the Young-Laplace formula for a 

given set of viscosities �
1
 and �

2
 to obtain the exact relationship between A and surface ten-

sion at that set of viscosities. This will be further explained later in the paper. In the above 

recolouring equation, the equilibrium distribution at zero velocity is given by the standard 

equilibrium distribution, namely

The pressure in the flow field is obtained from the equation of state and can be calculated 

as

In the Lattice Boltzmann Method, one achieves no-slip boundary conditions by “bounce-

back” boundary conditions at the solid interface. Namely, particle number densities bounce 

back in the direction they came from at fluid–solid interfaces. The RK model for two-phase 

flow allows any wetting contact angle �
w
 to be specified by setting the densities of the two 

fluids in the solid region through (Latva-Kokko and Rothman 2005)

(17)cos(�
�
) =

�
�
⋅ �

|�| ⋅ |�|
,

(18)f 1

�
=

�1

�
f ∗
�

+ �
�1�2

�2
f eq
�
(�, � = 0) cos(��),

(19)f 2

�
=

�2

�
f ∗
�

− �
�1�2

�2
f eq
�
(�, � = 0) cos(��),

f eq
�
(�,� = 0) = w

�
�.

p = c
2

s
�.
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where �
w1

 is the density of fluid 1 in the solid regions, �
w2

 is the density of fluid 2 in the 

solid regions, and �
i
 is the initial density of the majority component = �

2
.

3  Results

In the following numerical experiments, we explore flow of immiscible fluids involving an 

invading fluid (red fluid = fluid 1) being injected at the left side of a simple 2D model rock 

matrix saturated with another fluid (blue fluid = fluid 2) over a range of viscosity contrasts 

M and wetting angles �
w
 , where the viscosity contrast M is defined as

The goal is to study the flow regimes over the phase space of (M, �
w
) . In particular, a major 

goal is to study the effect of the wetting angle on the flow regimes from viscous fingering 

when the invading fluid has a lower viscosity than the second fluid, to stable displacement 

when the invading fluid has higher viscosity. We wish to determine whether the wetting 

angle plays a critical role in determining the flow morphology and the saturation S which 

is defined as the percentage of red fluid in the pore space at the moment of breakthrough, 

when the red fluid breaks through the right side of the model. As the percentage of red 

fluid equals the percentage of blue fluid evacuated from the model, the saturation is equal 

to the Recovery Factor in Petroleum Engineering.

One can consider the case of M < 1 to be analogous to the case of water being injected 

into a porous rock matrix filled with crude oil which typically has a viscosity several to a 

hundred times that of water (for light-intermediate crude oil) up to tens to hundreds times 

that of water for intermediate to heavy crude oil. In the simulations, we ran at viscosity 

contrasts ranging from M = 0.01 through M = 100 at intervals of Δ log10 M = 0.5 , so we 

have M = (0.01, 0.0316, 0.1, 0.316, 1, 3.16, 10, 31.6, 100) , and for wetting angles from non-

wetting �
w
= 180

◦ through to perfectly wetting �
w
= 0

◦ at intervals of −22.5◦.

The model consists of a square region of size 300 × 300 pixels initialized with non-

overlapping random sized solid circular particles with radii ranging from r = 5Δx through 

r = 15Δx , with a minimum separation of 4Δx . Figure 2 shows the model rock matrix that 

is used in the initial suite of simulations.

In our simulations, we set the densities of the two fluids to be identical with �
r
= �

b
= 1 , 

and we set the numerical parameter controlling interface thickness in Eqs. (18) and (19) to 

be � = 0.5 , which is one of the typically used values in RK colour gradient LBM simula-

tions. The other parameter affecting interface thickness, � in the equation for the relaxation 

time given by Eq. (11), was also set to the value typically used in RK colour gradient LBM 

simulations of � = 0.98.

3.1  Wetting Angle Verification

In order to verify the wetting angle implementation of Eq. (20), we ran several experiments 

in which a semicircular region of red fluid was initialized above a solid wall, and a simu-

lation was run until there was no further change. Hence, the final configuration will be a 

(20)�
w

= cos
−1

(

�
w1 − �

w2

�
i

)

,

(21)M =

�
r

�
b

.
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deformed droplet on the lower wall such that the wetting angle (angle between the red fluid 

in the droplet and the wall) will be consistent with the specified angle using Eq. (20). In 

our simulations, we set the density of the red and blue fluids in the solid regions as

and

which obeys Eq. (20) while ensuring reasonable values of the number densities of the flu-

ids in the solid regions of �
r
∈ [0, �

i
] and �

b
∈ [0, �

i
] . This is important as Eq. (20) does 

not lead to a unique formula for �
w1

 and �
w2

 , and a bad choice that still obeys Eq. (20) can 

be numerically unstable. Figure 3 shows the result of the wetting angle tests using angles of 

�
w
= (60◦, 90◦, 135◦, 180◦) and indicates that the range of wetting angles can be correctly 

simulated using the RK colour gradient LBM.

3.2  Injection Simulations

3.2.1  Setting the Simulation Parameters

In the following, we wish to investigate the transition from viscous fingering to stable dis-

placement as a function of the viscosity ratio M, and also, to study the effect of the wetting 

angle �
w
 on the morphology of flow and the saturation at and beyond breakthrough. In 

order to ensure that we are in the viscous fingering regime, the simulations must be per-

formed at a sufficiently high capillary number such that viscous forces dominate over capil-

lary forces. In addition, we wish for the simulations to be at flow rates that are sufficiently 

low such that we are well below the laminar to turbulent flow transition of Re
t
∼ 2300 

and also, where inertial effects are negligible where Re denotes the Reynolds number. It 

is generally known that inertia can be safely ignored for flows with low enough Reyn-

olds numbers such as Re < 1 which is well below the turbulent transition. In addition, the 

simulations should be tractable (not too computationally expensive) and accurate. These 

(22)�
w1 = �

i

1 + cos(�
w
)

2
,

(23)�
w2 = �

i

1 − cos(�
w
)

2
,

Fig. 2  Model porous rock matrix
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constraints can be achieved by careful choice of the viscosities and other parameters in the 

RK colour gradient LBM as follows.

The capillary number is a dimensionless quantity that relates to relative effect of viscous 

drag forces versus to surface tension or capillary forces and is defined as

where �
r
 is the dynamic viscosity of the invading fluid, �

r
 is the kinematic viscosity of the 

invading fluid, �
r
 is the density of the invading fluid, u

in
 is the injection rate, and � is the 

surface tension. In the RK colour gradient LBM, the value of A in Eq. (13) has been found 

to relate to the surface tension as

where the scalar � ∈ [0.55, 0.79] for a wide range of viscosities of the two fluids �
r
 and �

b
 

(Mora et al. 2021a), and where the colour gradient is calculated with Eqs. (14) through (16) 

using the optimal isotropy weight of w = 0.3 . The exact value of � above can be deter-

mined through a simulation of a droplet and application of the Young-Laplace formula

where ΔP is the difference in pressure inside versus outside a droplet of radius r
0
 . When 

the capillary number is sufficiently high, the viscous forces are dominant. In the follow-

ing, we will set the interfacial tension such that Ca ≳ 7 which ensures viscous forces are 

dominant. The other constraint of sufficiently slow flow rates such that inertial effects and 

turbulence are negligible can be achieved through the Reynolds number which is another 

dimensionless quantity that relates to the flow pattern. The Reynolds number is defined as

(24)Ca =

�
r
uin

�
=

�
r
�

r
uin

�
,

(25)� = �A,

(26)� =
ΔP

r0

=
Pin − Pout

r0

,

Fig. 3  Plots showing a droplet on a surface with various wetting angles. From upper left to lower right 
�

w
= 60

◦ , �
w
= 90

◦ , �
w
= 135◦ and �

w
= 180

◦ . The greyscale shows the density of the red fluid
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where D is the diameter of a tube, � is the kinematic viscosity, and u is the flow speed. 

In the following experiments, we set the injection flow rate u
in

 such that Re = 0.2 for an 

assumed diameter D = 4 which is the smallest width between grains in the solid matrix. 

Obviously, the matrix has larger throat widths than D = 4 , but the assumption of D = 4 is 

sufficient for the order of magnitude calculations done here. Hence, from Eq. (27), we have

Next, we must specify the values of �
r
 and �

b
 for the simulations over the range of viscos-

ity ratios M ∈ [0.01, 100] such that the BGK RK colour gradient simulations are stable 

and accurate. In the following simulations, we choose the product of the viscosities to be 

�
r
�

b
= (0.2)2 . With this choice, the simulations at M = 0.01 will have �

r
= 0.02 and �

b
= 2 , 

those at M = 1 will have �
r
= �

b
= 0.2 and at M = 100 we will have �

r
= 2 and �

b
= 0.02 . 

These viscosities can be accurately simulated by the BGK RK colour gradient LBM. Using 

this choice of viscosities, we have

From Eq.  (28), we can see that for the case of M = 0.01 and M = 100 which has 

min(�
r
, �

b
) = 0.02 , we will have an injection velocity u

in
= 0.001 , and for the case of 

M = 1 ⇒ �
r
= �

b
= 0.2 , we will have an injection velocity of u

in
= 0.01 . Note that the rea-

son we do the above calculations is that we wish to minimize computational time, while 

ensuring accurate results. Use of Eqs. (28) and (29) to set injection velocities and viscosi-

ties achieves this goal.

Once the viscosities are set from the desired viscosity ratio M using Eq.  (29) and the 

injection velocity is set using Eq.  (28) such that the Reynolds number is at a value of 

Re = 0.2 , we can apply Eq. (24) to determine the surface tension required to meet the crite-

rion Ca ≳ 7 which ensures we are in the regime where viscous forces dominate and viscous 

fingering will occur. Namely, from Eq. (24), we have

where � is a parameter that depends on the viscosities that is typically in the range 

� ∈ [0.55, 0.79] Hence, we can calculate the interfacial tension parameter A required by 

Eq. (13) using

Here, we use a value of � = 0.55 and Ca = 10 , so for cases where � = 0.55 , the interfa-

cial tension parameter A will be set such that the capillary number will be Ca = 10 in the 

simulation. For cases where � approaches the upper limit of � = 0.79 , the capillary number 

of the simulation will be Ca ∼ 7 . Application of Eq. (31) results in A-values ranging from 

A = 3.6 × 10−5 through A = 0.0036 respectively for M = 0.01 and M = 100 which are 

well within the range that can be accurately simulated using the RK colour gradient LBM. 

Specifically, this viscosity ratio range can be stably simulated and these A-values can be 

accurately simulated (Mora et al. 2021a). In summary, simulation parameters are set using 

(27)Re =

uD

�

,

(28)uin =
Re min(�

r
, �

b
)

D
=

0.2 min(�
r
, �

b
)

D
= 0.05 min(�

r
, �

b
).

(29)�
r
�

b
= M�

2

b
= 0.2

2
⇒ �

b
=

√

0.22∕M and �
r
= M�

b
.

(30)� = �A =

�
r
�

r
uin

Ca
=

�
r
uin

Ca
,

(31)A =

�
r
u

in

�Ca
.
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Eqs. (28), (29) and (31) which ensures simulations are done at sufficiently high capillary 

number Ca such that viscous forces dominate over surface tension forces ( Ca ∼ 7 → 10 ), 

and such that inertial effects are negligible ( Re ∼ 0.2 ). We note that these Ca numbers are 

significantly higher than in microfluidic experiments which are typically done at Ca ≲ 0.1 

which means that such experiments may be in the capillary fingering regime at least at 

some viscosity ratios. Due to our higher Ca numbers than those of experiments, it is 

entirely possible that our results may not be directly comparable to microfluidic experi-

ments, either due to the possibility that these experiments are in the capillary fingering 

regime, or that another phenomenon is playing a role such as the possibility of Bretherton 

films (i.e. when the invading fluid leaves a film of defending fluid behind, adhered to solid 

walls). Similarly, we recommend caution comparing to field experiments where Ca num-

bers are significantly lower.

In the following numerical experiments using the parameters as explained above, we 

simulate flow of a red fluid being injected from the left boundary of our model rock matrix 

shown in Fig. 2 at a rate of u
in

 , and we impose a constant pressure boundary condition at 

the right of the model. These boundary conditions are achieved using Zou and He velocity 

and pressure boundary conditions (Zou and He 1997). Periodic boundary conditions are 

used in the z-direction.

3.2.2  Typical Patterns of Flow and Viscous Fingering at Breakthrough

In an initial suite, we performed a total of 81 simulations using the porous matrix model 

shown in Fig. 2 spanning the space of (M, �
w
) with log10(M) = (−2,−1.5,… , 1.5, 2) and 

with wetting angles spanning from �
w
= 180

◦ down to �
w
= 0

◦ at intervals of −22.5◦ . Fig-

ure  4 shows snapshots at the time of breakthrough when the red fluid reaches the right 

boundary of the model for M = (0.01, 1, 100) and for �
w
= (180◦, 90◦, 0◦) . These snapshots 

clearly show the effect of the viscosity ratio. For the cases of M = 0.01 , one observes vis-

cous fingering in which narrow tendrils of the red fluid (shown as black) invade the blue 

fluid (shown as white). At this viscosity ratio, the saturation at breakthrough is relatively 

low. At a viscosity ratio of M = 1 , there are no longer the narrow tendrils, leading to a sig-

nificantly higher saturation, although the front of the red fluid remains irregular so satura-

tion is far from full saturation. Finally, at a viscosity ratio of M = 100 , there is an almost 

linear front of the red fluid that invades the blue fluid (stable displacement) and the satura-

tion is over 90%. These results are as expected given knowledge of viscous fingering which 

is known to occur when a low-viscosity fluid invades a higher viscosity fluid at high capil-

lary number.

The cases for the fully wetting fluid ( �
w
= 0

◦ ) in Fig.  4 show a somewhat different 

morphology of the viscous fingers at viscosity ratio M = 0.01 than the non-wetting fluid 

( �
w
= 180

◦ ). Specifically, the viscous fingers for the wetting fluid are somewhat broader 

and more rounded relative to the fingers of the non-wetting fluid which is consistent with 

the studies of Stokes et al. (1986), Trojer et al. (2015), Zhao et al. (2016) and Primkulov 

et  al. (2019). However, visually, the saturation level seems to be similar for the wetting 

and non-wetting cases. This will be studied in detail later in this paper. Figure 5 plots the 

fluid velocity for the same set of viscosity ratios and wetting angles and clearly shows that 

when M < 1 , the flow is dominantly through narrow fingers of the invading red fluid. As 

such, it is expected that the flow pattern will tend to continue to flow through the narrow 

fingers after breakthrough. The evolution of flow and saturation after breakthrough will be 

explored in a subsequent section. For the lowest viscosity ratio of M = 0.01 in Fig. 4, the 
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non-wetting case has one narrow finger spanning the model, and a second narrow finger 

spanning about half of the model near the top. In contrast, the fully wetting case has a 

broad finger spanning the model centred on the same location as the finger for the non-

wetting case and is starting to form the second finger at the top of the model. Despite the 

main finger being broader, the velocity is only high in a narrow channel in the centre of the 

finger spanning the model (see Fig. 5). It is interesting to note that the morphology of the 

fingers and velocity flow paths are somewhat different for the different wetting angles. This 

shows that the relationship between wetting angle and both morphology and the details of 

the flow pattern is complex.

To gain a more quantitative understanding of the saturation at breakthrough for the 

different viscosity ratios and wetting angles, Fig. 6 shows the saturation as a function of 

M and �
w
 at breakthrough, where the saturation is computed as S = n

r
∕n

pore
 where n

r
 is 

the number of fluid sites occupied by the red fluid at breakthrough, and n
pore

 is the total 

number of lattice sites of the fluid filled pore space. This plot clearly shows the effect of 

the viscosity ratio with low saturation levels of S ∼ 38 % for the lowest viscosity ratio of 

M = 0.01 , and S ∼ 91 % for the highest viscosity ratio of M = 100 , with an intermediate 

value of S ∼ 68 % at a viscosity ratio of unity. However, one cannot see on this plot the 

Fig. 4  Snapshots showing the invading fluid at the moment of breakthrough for three values of viscosity 
ratio M and three different wetting angles �

w
 . From left to right M = 0.01 , M = 1 and M = 100 . From top to 

bottom �
w
= 180

◦ , �
w
= 90

◦ and �
w
= 0

◦ . The black region indicates the red invading fluid
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Fig. 5  Snapshots showing the velocity at the moment of breakthrough when the red fluid reaches the right 
side of the model for three values of viscosity ratio M and three different wetting angles �

w
 . From left to 

right M = 0.01 , M = 1 and M = 100 . From top to bottom �
w
= 180

◦ , �
w
= 90

◦ and �
w
= 0

◦

Fig. 6  Phase space showing 
the saturation at the moment 
of breakthrough as a function 
of viscosity ratios and wetting 
angles
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effect of wetting angle because of the dominant effect of viscosity ratio, at least at the rela-

tively high capillary numbers used in our simulations.

To better visualize the variation of the saturation with wetting angle, Fig. 7 shows the 

difference between the saturation at a given wetting angle relative to the saturation at a 

wetting angle of �
w
= 180

◦ , namely, we plot ΔS(M, �
w
) = S(M, �

w
) − S(M, 180◦) . One can 

see that the saturation has a general tendency to increase as the fluid becomes more wet-

ting. However, the saturation landscape is not simple with the existence of hills, ridges and 

valleys. For example, at log10(M) = −2 , the sweep (saturation at breakthrough) increases 

with wettability to a maximum at the optimal wetting angle of �
w
= 22.5◦ , followed by a 

decrease in sweep. Furthermore, there is a valley in the saturation difference landscape in 

the range of log10(M) ∈ [−1,−0.5] , and the saturation does not seem to vary significantly 

with wetting angle.

Figure 8 shows profiles of the saturation as a function of wetting angles for the viscos-

ity ratios of log10 M = −2 and log10 M = −0.5 , and clearly shows the peak in saturation 

at �
w
= 22.5◦ for the case of M = 0.01 . This increase in saturation with wettability for the 

low-viscosity case with M = 0.01 up to a certain angle, followed by a decrease in satura-

tion is consistent with the microfluidic experiments by Zhao et al. (2016) involving vertical 

posts representing a porous medium. In the case of M = 0.01 , the optimal saturation is 

S = 49.5 % at �
w
= 22.5◦ , compared to a saturation of S = 38.7 % for the non-wetting fluid 

with �
w
= 180

◦ , a relative increase of 28%.

Fig. 7  Phase space showing the 
difference in the saturation at the 
moment of breakthrough as a 
function of viscosity ratios and 
wetting angles relative to the 
saturation at a wetting angle of 
�

w
= 180

◦

Fig. 8  Plots of the saturation versus wetting angle at breakthrough for the cases of viscosity ratio of 
log10 M = −2 (left) and log10 M = −0.5 (right)
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The profile of the saturation as a function of wetting angle for log10 M = −0.5 which 

occurs in the valley of the saturation difference phase space is more complex and shows 

that the saturation is slightly higher for a non-wetting fluid than for a wetting fluid, the 

opposite to what is expected. Furthermore, there are two peaks in the saturation at 

�
w
= 22.5◦ and �

w
= 90

◦ , with the highest saturation occurring for the intermediate wetting 

angle of �
w
= 90

◦ . However, the saturation range is relatively small between the highest 

saturation at �
w
= 90

◦ of 61.6% compared to the lowest saturation of 56.9% at �
w
= 45◦ , a 

relative difference of only 8%.

In summary, for the model shown in Fig. 2, the saturation difference landscape generally 

has somewhat higher saturation at higher wettability, but in detail, the landscape is com-

plex with a valley in saturation for moderately small viscosity ratios log10 M ∈ [−1,−0.50] 

and a hill at �
w
= 22.5◦ for the lowest viscosity ratio of log10 M = −2 . This result suggests 

a complex relationship between flow morphology, wettability and viscosity ratio. We will 

explore the effect of variations in the porous model geometry on the saturation difference 

phase space in a subsequent section.

3.2.3  Evolution of Flow and Saturation After Breakthrough

In this section, we explore how the flow patterns and saturation evolve after breakthrough. 

Based on the plots of the velocity shown in Fig. 5, for low viscosity ratios of M = 0.01 , 

most of the fluid flow at breakthrough is occurring only through narrow fingers. As such, 

one may expect that after breakthrough, flow will continue to be dominant through these 

narrow fingers and that the flow pattern will cease to evolve significantly. It is for this rea-

son that many studies focus on the saturation at breakthrough. In the following, we investi-

gate whether or not this expectation is fulfilled.

Figure 9 shows snapshots of the evolution of a non-wetting invading fluid through time 

( �
w
= 180

◦ ) both before and after breakthrough. Based on this plot, it is clear that the fluid 

pathways are not static after breakthrough and the red fluid continues to invade more pore 

space in the model rock matrix after breakthrough. That is, the fingers and flow pathways 

Fig. 9  Snapshots showing the evolution of a non-wetting invading fluid ( �
w
= 180

◦ ) through time up to and 
beyond breakthrough for a viscosity ratio of M = 0.01 . Breakthrough occurred at t = 89333 (Fig. 4 shows 
the snapshot at breakthrough)
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continue to evolve and expand. Figure  10 shows corresponding snapshots of the evolu-

tion of velocity through time before and after breakthrough and indicates that although the 

fingers are evolving and expanding, most of the flow initially remains through the initial 

finger flow paths, although the number of flow paths increases with time.

Figure 11 shows snapshots of the evolution of a perfectly wetting invading fluid through 

time ( �
w
= 0

◦ ) before and after breakthrough. There are some differences between these 

snapshots and those for the case of a non-wetting fluid invading (Fig.  9). Mainly, the 

morphology is somewhat different with wider fingers for the fully wetting case in agree-

ment with experimental observations (Stokes et al. 1986; Trojer et al. 2015). However, the 

Fig. 10  Snapshots showing the velocity for the case of a non-wetting invading fluid ( �
w
= 180

◦ ) through 
time up to and beyond breakthrough for a viscosity ratio of M = 0.01 . Breakthrough occurred at t = 89333 
(Fig. 5 shows the snapshot at breakthrough)

Fig. 11  Snapshots showing the evolution of a perfectly wetting invading fluid ( �
w
= 0

◦ ) through time up to 
and beyond breakthrough for a viscosity ratio of M = 0.01 . Breakthrough occurred at t = 117308 (Fig. 4 
shows the snapshot at breakthrough)
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general trend is the same as for the non-wetting case with the fingers expanding and the 

invading fluid eventually occupying most of the pore space. Figure 12 shows correspond-

ing snapshots of the evolution of velocity through time before and after breakthrough for 

the case of a perfectly wetting fluid ( �
w
= 0

◦ ). Again, although the fingers are evolving and 

expanding, most of the flow initially remains through the fingers. As for the case of the 

non-wetting invading fluid, the finger flow paths increase in number with time and eventu-

ally occupy most of the model.

Finally, Fig. 13 shows the saturation as a function of time prior to and after breakthrough 

for the non-wetting case ( �
w
= 180

◦ ) and for the perfectly wetting case ( �
w
= 0

◦ ) with vis-

cosity ratio of M = 0.01 . This plot shows that the saturation continues to increase after 

breakthrough, although the rate is decreased initially by around a factor of 2 relative to the 

rate before breakthrough, and the rate continues to decrease with time. The decreased rate 

of saturation increase post breakthrough indicates that a considerable fraction of the flow 

Fig. 12  Snapshots showing the velocity for the case of a perfectly wetting invading fluid ( �
w
= 0

◦ ) through 
time up to and beyond breakthrough for a viscosity ratio of M = 0.01 . Breakthrough occurred at t = 117308 
(Fig. 5 shows the snapshot at breakthrough)

Fig. 13  Plot showing the evolu-
tion of the saturation through 
time before and after the moment 
of breakthrough for the case of 
viscosity ratio M = 0.01 and 
the non-wetting and perfectly 
wetting cases (i.e. wetting angles 
�

w
= 180

◦ and �
w
= 0

◦)
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continues to go through the narrow fingers that span the model after breakthrough. None-

theless, after breakthrough, the fingers continue to evolve and widen, and the porous matrix 

begins to fill up with the invading fluid and eventually occupies most of the pore space 

( S ∼ 90%). This continued increase in saturation is a consequence of the continued evolu-

tion and growth of fingers that occurs in the numerical model as explained above. Another 

interesting feature is that the saturation versus time plots for both the wetting and non-wet-

ting case are almost the same for before and after breakthrough for these constant injection 

rate experiments. Hence, while breakthrough occurs later for the wetting case, and hence, 

saturation at breakthrough for the wetting case is higher, the saturation and hence oil recov-

ery factor in the simulation, is similar for both the wetting and non-wetting cases at any 

given time after commencement of injection. This suggests that final EOR production by 

water flooding may be more related to the time of duration of water flooding rather than the 

wettability of the injected fluid.

These results have implications to enhanced oil recovery and suggests that an oil field 

can continue to produce significantly after breakthrough when the water reaches the pro-

duction well albeit at a reduced rate due to the flow preferentially following the break-

through finger. Furthermore, based on Fig. 13, the saturation increases for both injection of 

a non-wetting and wetting fluid, and in both cases, the saturation after 10
6 time steps is sim-

ilar and exceeds 90% (i.e. ∼ 10 × tbreakthrough ). Hence, while the perfectly wetting case has 

a greater relative saturation at breakthrough than the non-wetting case (45.9% cf. 38.7% ⇒ 

a 19% relative increase), if one continues to inject beyond breakthrough, the final sweep 

injecting both a wetting and non-wetting fluid is similar and exceeds 90%. These results 

suggest that: (1) subject to economic viability due to dropping rates of production, a well 

could continue to produce up to and beyond 90% of the total oil contained in the reservoir 

through continued water injection beyond breakthrough, and (2) the time of water flood-

ing may be the primary factor determining total production rather than fluid wettability. 

These results, if validated with field and experimental tests, could have major significance 

in terms of extending global oil reserves by around a factor of two or more.

4  E�ect of Variations in the Porous Matrix Geometry

In order to study the effect of the details and statistics of the model on results, we have con-

ducted ten additional suites of 81 runs using models generated with the same algorithm but 

using a different random number seed. Namely, random sized solid circular particles with 

radii ranging from r = 5Δx through r = 15Δx , with a minimum separation of 4Δx were 

dropped into a square region of size 300 × 300 pixels. Figure 14 shows the original model 

and the ten additional random realizations of the model.

Figure 15 shows plots of the saturation difference ΔS(M, �
w
) for the ten new runs along-

side the phase space for the original run where the order of the plots is such that similar 

phase space landscapes are plotted adjacent to one another. We observe that there are two 

main groupings with somewhat similar phase spaces Group 1 consists of four cases (the 

original model and models 1, 2 and 4) with a phase space in which for most viscosity 

ratios, the saturation has a tendency to increase with wettability in a manner similar to the 

phase space of the original model. Namely, aside from the valley at log10 M ∈ [−1,−0.5] , 

the saturation is higher for more wetting fluids, and at the lowest viscosity ratio of 

log10 M = −2 , there is a hill in the range �
w
∈ [0◦, 22.5◦] . Group 2 also contains four cases 

(models 5, 6, 7 and 8), but aside from a ridge at �
w
< 135◦ for log10 M ∼ 0.5 , the saturation 
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does not significantly depend on wettability. In addition to these two major groups, there 

are three additional cases of which, two cases (models 9 and 10) have a broad plateau for 

�
w
< 135◦ and log10 M ≥ 0 . Finally, one case (model 3), shows saturation increasing with 

wettability at all values of M, but with a main plateau for �
w
< 112.5◦ and log10 M ≥ −1.5 . 

From these plots, one can see that while there is some tendency for saturation to be higher 

Fig. 14  The original model from Fig. 2 and ten different random model realizations that were created using 
the same algorithm and input parameters as was used to generate the original model
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for more wetting fluids, there are many cases (models or M ranges) where the satura-

tion is not significantly affected by wettability. We see that in roughly half of the cases 

(models: original, 1, 2, 3 and 4), there is a strong tendency for saturation to increase with 

wettability but not for all M’s. Specifically, for four of the five cases, there is a valley at 

log10 M ∈ [−1,−0.5] . And there is an optimal wetting angle that is low �
w
∼ 22.5◦ but 

above zero at log10 M ∈ [−2,−1.5] for three of the five cases (models: original, 2 and 4) 

. In contrast, the other six of the eleven cases have no tendency for saturation to increase 

with wettability for small viscosity ratios log10 M ≲ −0.5 , although at higher viscosity 

ratios log10 M ≳ −0.5 , the saturation does increase with wettability for at least some values 

of viscosity ratio.

These results suggest that the phase-space saturation landscape depends strongly on 

the porous matrix geometry. For some porous matrix geometries, one will observe what 

is widely accepted, a tendency for an increase in saturation with wettability, although the 

optimal wetting angle that maximizes saturation may be greater than perfectly wetting such 

as �
w
∼ 22.5◦ . But for other porous matrix geometries, this may not occur, or else, there 

may be a complex phase space saturation landscape with hills, ridges and valleys which 

means that at certain viscosity ratios, the saturation will be maximized at certain wetting 

angles which may range from intermediate wettability such as �
w
∼ 90

◦ , to high wettability 

such as �
w
∈ [0◦, 45◦].

Figure 16 shows the snapshots at breakthrough for the lowest viscosity ratio of M = 0.01 

for the non-wetting case ( �
w
= 180

◦ ) and the perfectly wetting case ( �
w
= 0

◦ ). From these 

plots, one can see that the simple picture of flow morphology variation with wettability for 

the low viscosity ratio case of M = 0.01 that we saw in our first suite shown in Fig. 4 is not 

typical. Rather, it is but one picture of many possibilities. Namely, in Fig. 4, we see that 

for non-wetting fluids, the viscous fingers were narrow, and these became more rounded 

with wettability which translated into a higher saturation with wettability at M = 0.01 as 

shown in Fig. 7. In Fig. 16 showing all eleven suites for M = 0.01 and �
w
= (180◦, 0◦) , we 

Fig. 15  Plots of the phase space of the difference in saturation ΔS(M, �
w
) for the suites with the ten different 

random model realizations. The plots are ordered such that similar phase space topographies are adjacent 
one another
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Fig. 16  Snapshots showing the fluid flow pattern at breakthrough for the original suite plus the ten addi-
tional suites at a viscosity ratio of M = 0.01 and for the non-wetting and perfectly wetting cases
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also see that wettability affects flow morphology. Generally, the fingers and flow patterns 

at �
w
= 0

◦ are somewhat broader and/or more rounded than at �
w
= 180

◦ , but the flow pat-

terns are complex and it is not a simple “cartoon” picture of rounding and broadening of 

fingers with high wettability. Furthermore, the visual appearance of some rounding and/or 

broadening does not always translate into an increase in saturation. Namely, the change in 

flow morphology with wettability at M = 0.01 only translated into an increase in saturation 

in five of the eleven models that we ran.

4.1  Discussion on the Influence of Porous Matrix Geometry

In this paper, we were constrained to quite small models sizes for computational reasons. 

This means that we do not have large enough models for an accurate statistical represen-

tation of a porous medium. For this reason, we chose to run suites for eleven different 

random realizations of a porous matrix to study the variability in the results due to ran-

dom variations in our small models. In effect, because the models are small, each different 

case can be considered as a different porous matrix model, with different details and some-

what different statistics. We found that both the flow morphology variation with wettability 

and the saturation landscape for each different model were different. What is interesting 

however is that the differences in the saturation landscape were not all entirely different. 

Rather, at low viscosity ratios, roughly half of the cases had a tendency for saturation to 

increase with wettability, and the remainder did not. Furthermore, while each saturation 

landscape was different, there were two main groups with similar features including hills, 

ridges and valleys. These results clearly demonstrate that the porous matrix structure plays 

a vital role in controlling saturation. And the optimization of sweep (saturation at break-

through) is not necessarily a simple matter of trying to maximize the wettability of the 

injected fluid. Namely, for some porous matrix structures, saturation may be maximized 

by setting the wettability to a specific value between fully wetting ( �
w
= 0

◦ ) and partially 

wetting ( �
w
∼ 90

◦ ), where this optimal wettability depends on the viscosity ratio. For other 

porous media, the wettability may not affect saturation at low viscosity ratios, in which 

case, changing the wettability of the injected fluid may be futile.

In this research, we were restricted to small model sizes and 2D which means unrealisti-

cally high porosity to enable viable permeability. As such, the details of all results can be 

expected to change if one had the resources to perform large-scale 3D simulations of real-

istic porous matrix structures. However, some general conclusions will remain such as the 

possibility of complex saturation phase spaces with hills and valleys, and the sensitivity of 

the saturation phase space to the porous matrix structure. Ultimately, one can imagine per-

forming large enough 3D simulations of a real medium such that the saturation phase space 

could be mapped for that hydrocarbon reservoir, which would then enable the optimal wet-

tability for the given reservoir with its viscosity ratio to be predicted.

5  E�ect of Grid Re�nement

In the above, the model was quite small due to computational limitations. In order to test 

whether model resolution plays a role, we have performed simulations for the wetting and 

non-wetting cases at a viscosity ratio of M = 0.01 and at a resolution of 901 × 901 which 

is at three times the initial resolution. We then compare the higher resolution results to 

those obtained at the lower resolution of 301 × 301 . The high-resolution model contained 
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circular grains of the same size at the same location as the low resolution model. Figure 17 

shows the fluid flow pattern at breakthrough for the runs using the higher resolution model, 

and Fig. 18 shows the flow pattern for the runs using the same model at the lower resolu-

tion. We see that the finger morphology is somewhat different in the high and low resolu-

tion runs but some key features of the flow persist. Namely, there are two main fingers and 

these are broader for the wetting fluid than for the non-wetting case. This is what we have 

observed in previous sections and is consistent with microfluidic experiments and leads 

to the wetting case having higher saturation at breakthrough than the non-wetting case. 

However, these fingers for the wetting case are broader in the low resolution run than in the 

high resolution run which means that the saturation increase of the wetting case relative to 

the non-wetting case for the higher resolution run is not as great as in the low resolution 

case as shown in Table 1. The main reasons are the decreased finger width coupled with 

Table 1  Comparison of 
saturation at breakthrough for 
high and low resolution models 
for non-wetting and fully wetting 
cases

Resolution Saturation at breakthrough (%)

�
w
= 180

◦
�

w
= 0

◦

901 × 901 30.0 32.4

301 × 301 36.1 47.0

Fig. 17  Fluid flow patterns at breakthrough for runs using the higher resolution model of 901 × 901 pixels 
at �

w
= 180

◦ (left) and �
w
= 0

◦ (right)

Fig. 18  Fluid flow patterns at breakthrough for runs using the lower resolution model of 301 × 301 pixels at 
�

w
= 180

◦ (left) and �
w
= 0

◦ (right)
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differences in the fingering pattern. Namely, in the higher resolution run at �
w
= 0

◦ , the 

lower finger does not progress as far as in the lower resolution run.

5.1  Interpretation and Implications of Grid Refinement

Based on the above, we can see that while the resolution of the run has a significant effect 

on the details of the finger morphology, the key properties of flow remained the same. 

Namely, there are two main fingers model, with broader fingers for the wetting fluid and 

hence, greater saturation at breakthrough for the wetting case. This implies that realistic 

large-scale 3D simulations will be required to obtain accurate results, but that the general 

features of flow are likely to remain unchanged as resolution is increased. As such, we 

expect our main results and conclusions to be qualitatively correct.

We suggest that the differences between the two cases mentioned above are primarily 

related to the relative scale of the fluid interface thickness in the model (a few lattice spac-

ings) relative to the throat size in the porous medium ( 12
+ for the high-resolution model 

and 4+ for the low resolution run). If this is so, then our grid refinement study suggests 

that care must be taken when applying the RK LBM to study viscous fingering and flow 

in porous media. For example, is the model large enough to eliminate the finite interface 

thickness effect in the LBM?

6  Conclusions

The Lattice Boltzmann Method is a flexible computational tool that allows, among other 

things, one to simulate multiphase fluid flow in complex heterogeneous media. In this paper, 

we present 2D simulations of immiscible two-phase fluid flow in a porous medium to study 

the effect of the wetting angle on the morphology of flow and the evolution of saturation. 

Eleven suites of 81 simulations totalling 891 simulations were performed of two-phase flow 

in the regime of viscous fingering (high capillary number) and where inertial effects are 

negligible (low Reynolds number). Each suite used a different random realization of our 2D 

porous model. The simulations show, as expected, that when the viscosity ratio is low and a 

less viscous fluid invades a more viscous fluid, we see viscous fingering behaviour and low 

saturation levels at breakthrough with narrow fingers of the low viscosity fluid invading the 

high viscosity fluid. Similarly, as expected, when the viscosity ratio is above unity, the flow 

tends towards stable displacement of a front of the invading fluid which becomes increasingly 

linear as the viscosity ratio increases. However, the effect of wetting angle was not as simple. 

We see a different morphology of the fingers for more wetting fluids, typically with more 

rounded and somewhat broader fingers. However, there is no simple relationship between 

wetting angle and saturation. Sometimes, the different finger morphology for wetting fluids 

translates into higher saturation, but for other cases, this is not so. For example, in nearly half 

of the suites (5 out of 11) at a low viscosity ratio of log10 M = −2 , we observe an optimal 

wetting angle of �
w
∈ [0◦, 22.5◦] that maximizes saturation at breakthrough at low viscos-

ity ratios of log10 M ∈ [−2,−1.5] , with of order 30% higher saturation relative to the case 

of a non-wetting fluid. However, at moderately low viscosity ratios of log10 M ∼ −0.5 , four 

of these five suites exhibit no increase in saturation with wettability. For the remaining half 

of the suites, there was no increase in saturation with wettability at low viscosity ratios for 

log10 M < 0.5 , and for one suite of the eleven, saturation tended to increase with wettability 

at all viscosity ratios. For low viscosity ratios at breakthrough, most of the flow is through 
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narrow channels centred on the viscous fingers and the saturation is typically of order 35%. 

After breakthrough, the flow pattern evolves with these fingers expanding, and after ten times 

longer than the breakthrough time, the saturation exceeds 90%, both for non-wetting and wet-

ting injected fluids. This suggests that while wettability can be optimized to maximize sweep 

(saturation at breakthrough), at least at certain viscosity ratios and for certain models, wet-

tability matters little to the ultimate productivity of a hydrocarbon reservoir if it was viable to 

continue water injection beyond breakthrough for a long time.

In summary, our results point to a complex relationship between sweep and wettability 

dependent on the statistics and details of the porous model and the viscosity ratio. Namely, 

the phase space of saturation difference as a function of wettability and viscosity ratio may 

have hills, ridges and valleys. The results suggest that at least for certain porous medium 

models, one can optimize sweep by a specific choice of wetting angle for the viscosity 

ratio appropriate to a given reservoir. And furthermore, saturation may continue to increase 

post-breakthrough albeit at a lower and decreasing rate. The above conclusions require fur-

ther verification with experiments, especially since our simulations were done at a signifi-

cantly higher capillary number than microfluidic experiments.

This paper involves small-scale 2D simulations of two-phase flow in a porous medium, and 

as such, further research using larger scale and 3D models is required to verify how our 2D con-

clusions translate to realistic 3D examples. These intriguing results require experimental valida-

tion and further research to understand. This is particularly so given that our simulations were 

done at significantly higher capillary numbers than those in microfluidic laboratory experiments 

and field studies. As such, further research is required to investigate whether the general conclu-

sions in this paper still hold at lower capillary numbers more comparable to those in laboratory 

and field studies before our results can be applied in practice. Nonetheless, the results demon-

strate the potential of the LBM to be used to study multiphase flow and viscous fingering phe-

nomena, and to uncover unexpected behaviour relevant to Enhanced Oil Recovery.
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