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The influence of wind on extreme wave events in deep water is investigated experimentally
and numerically. A series of experiments conducted in the Large Air-Sea Interactions Fa-
cility (LASIF-Marseille, France) shows that wind blowing over a short wave group due to
the dispersive focusing of a longer frequency modulated wave train (chirped wave packet)
may increase the time duration of the extreme wave event by delaying the defocusing
stage. A detailed analysis of the experimental results suggests that extreme wave events
may be sustained longer by the air flow separation occurring on the leeward side of the
steep crests. Furthermore it is found that the frequency downshifting observed during
the formation of the extreme wave event is more important when the wind velocity is
larger. These experiments have pointed out that the transfer of momentum and energy
is strongly increased during extreme wave events.
Two series of numerical simulations have been performed using a pressure distribution
over the steep crests given by the Jeffreys’sheltering theory. The first series corresponding
to the dispersive focusing confirms the experimental results. The second series that corre-
sponds to extreme wave events due to modulational instability, shows that wind sustains
steep waves which then evolve into breaking waves. Furthermore, it was shown numer-
ically that during extreme wave events the wind-driven current could play a significant
role in their persistence.

1. Introduction

The main objective of this paper is to better understand the physics of extreme wave
events in the presence of wind. This study deals with the fundamental problem of the
air flow structure above steep water wave groups and its impact on wind-wave coupling,
namely its effects on air-sea fluxes. The present experimental and numerical investiga-
tions concern the rogue wave phenomenon in the presence of wind. This work which has
been motivated primarily by the problem of rogue waves goes beyond the scope of these
water waves and can be applied to the field of the interaction between wind and strongly
modulated surface wave groups in deep water.
There are a number of physical mechanisms that focus the wave energy into a small area
and produce the occurrence of extreme waves called freak or rogue waves. These events
can be due to refraction (presence of variable currents or bottom topography), disper-
sion (frequency modulation), wave instability (the Benjamin-Feir instability also called
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modulational instability), soliton interactions, etc. For more details on these different
mechanisms see the reviews on freak waves by Dysthe (2001) and Kharif & Pelinovsky
(2003). Until now there is no consensus about a unique definition of rogue wave events.
One definition often used is based on height criterion. A wave is considered to be a rogue
wave if its height, Hf , satisfies the condition

Hf > 2.2Hs. (1.1)

where Hs is the significant height.
To our knowledge, the present experimental and numerical study is the first one to con-
sider the direct effect of strong wind on the rogue wave formation. In different situations,
several authors have investigated experimentally the influence of wind on the evolution
of mechanically generated gravity water waves. Bliven et al. (1986) , Li et al. (1987) and
Waseda & Tulin (1999) have studied the influence of wind on Benjamin-Feir instability.
Contrary to results reported by Bliven et al and Li et al, Waseda & Tulin found that wind
did not suppress the sideband instability. Banner & Song (2002) have studied numerically
the onset of wave breaking in nonlinear wave groups in presence of wind forcing. In the
present paper we investigate how wind forcing modifies unforced extreme wave events
due to spatio-temporal focusing and modulational instability.
Extreme wave events that are due to spatio-temporal focusing phenomenon can be de-
scribed as follows. If initially short wave packets are located in front of longer wave
packets having larger group velocities, then during the stage of evolution, longer waves
will overtake shorter waves. A large-amplitude wave can occur at some fixed time be-
cause of superposition of all the waves merging at a given location (the focus point).
Afterwards, the longer waves will be in front of the shorter waves, and the amplitude of
the wave train will decrease. This focusing-defocusing cycle was described by Pelinovsky
et al. (2000) within the framework of the shallow water theory. Later, Slunyaev et al

(2002) used the Davey-Stewartson system for three-dimensional water waves propagat-
ing in finite depth. More recently, this technique was also used in the experiments on
extreme waves conducted by Giovanangeli et al. (2005) and Touboul et al. (2006).
Another mechanism generating extreme wave events is the modulational instability or the
Benjamin-Feir instability. Due to this instability uniform wave trains suffer modulation-
demodulation cycles (the Fermi-Pasta-Ulam recurrence). At the maximum of modulation
a frequency downshifting is observed and very steep waves occur. Many authors have in-
vestigated rogue waves or extreme wave events due to modulational instability. Among
them one may cite: Henderson et al. (1999), Dysthe & Trulsen (1999), Osborne et al.

(2000), Kharif et al. (2001), Calini & Schober (2002), Janssen (2003), Dyachenko & Za-
kharov (2005) and Clamond et al. (2006). Nevertheless, all these studies did not consider
the direct effect of wind on the dynamics of extreme wave events.
In presence of wind, separation of the air flow occurring in the lee of very steep crests,
suggests that the Jeffreys’ sheltering mechanism can be applied locally in space and time.
Banner & Melville (1976) explored both experimentally and analytically the occurrence
of air-flow separation over a simple gravity surface wave. Herein we used the simple wind
modelling suggested by Jeffreys (1925).
The wind influence on extreme wave events due to spatio-temporal focusing is investi-
gated experimentally and numerically while extreme wave event caused by modulation
instability is considered numerically only.
In section 2 we present the experimental facility and results concerning extreme waves
generated through the spatio-temporal focusing. A wind modelling is proposed in section
3, based on the Jeffreys’ sheltering mechanism that is used for the numerical simula-
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Figure 1. A schematic description of the Large Air-Sea Interactions Facility.

tions corresponding to the spatio-temporal focusing and the nonlinear focusing due to
the Benjamin-Feir instability respectively.

2. Experiments and results

2.1. Experimental facility

The experiments have been conducted in the large wind-wave tank of IRPHE at Marseille
Luminy. Figure 1 gives a schematic presentation of the facility. It consists of a closed loop
wind tunnel located over a water tank 40m long, 1m deep and 2.6m wide. The wind tunnel
over the water flow is 40m long, 3.2m wide and 1.6m high. The blower allows to produce
wind velocities up to 14m/s and a computer-controlled wave maker submerged under
the upstream beach can generate regular or random waves in a frequency range from
0.5Hz to 2Hz. Particular attention has been paid to simulate pure logarithmic mean
wind velocity profile with constant shear layer over the water surface. A trolley installed
in the test section allows to locate probes at different fetches all along the facility. The
water surface elevation is measured by using three capacitive wave gauges of 0.3mm
outer diameter with DANTEC model 55E capacitance measuring units. A wave gauge
is located at a fixed fetch of 1m from the upstream beach. The other wave gauges are
installed on the trolley to measure the water surface elevation at different fetches from
the upstream beach. The typical sensitivity of the wave probes is of order 0.6V/cm. The
longitudinal and vertical air flow velocity fluctuations, u′ and w′, have been measured
by means of an X-hot wire. The fetch is defined as the distance between the probes on
the trolley and the end of the upstream beach where air flow meets the water surface.

2.2. The spatio-temporal focusing mechanism

Extreme wave events are generated by means of a spatio-temporal focusing mechanism.
This mechanism is based upon the dispersive behavior of water waves. In this chirped
wave packet, the leading waves have a higher frequency than trailing waves. Within the
framework of a linear approach of the problem the sea surface is a superposition of linear
waves of frequencies ω(x, t). According to Whitham (1967), the spatio-temporal evolution
of the frequency of these components is governed by the following hyperbolic equation

∂ω

∂t
+ cg(ω)

∂ω

∂x
= 0 (2.1)

where cg is the group velocity. This equation can be solved by using the method of
characteristics. The solution is given by

ω(x, t) = ω0(τ), vg(τ) = cg(ω0(τ)) on t = τ + x/vg(τ) (2.2)
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where ω0 corresponds to the temporal frequency distribution of the wave train at x = 0.
The temporal partial derivative of the frequency is

∂ω

∂t
=

dω0

dτ

1 − x
v2

g

dvg

dτ

(2.3)

One can notice that the case dvg/dτ > 0, which corresponds to short waves emitted
before longer waves, leads to a singularity. This singularity corresponds to the focusing
of several waves at t = Tfth

and x = Xfth
. For infinite depth, the frequency to impose to

the wavemaker located at x = 0 is given by

ω(0, t) =
g

2

Tfth
− t

Xfth

(2.4)

where Xfth
and Tfth

are the coordinates of the point of focus in the (x− t) plane. Using
ω = 2πf the coordinates of the focus point reads

Tfth
= ∆T

fmax

fmax − fmin

Xfth
=

g∆T

4π

1

fmax − fmin

(2.5)

where fmax and fmin are the maximal and minimal values of the frequency imposed to
the wavemaker during a period of time equal to ∆T and g is the acceleration due to
gravity.

The wave amplitude, a, satisfies the following equation

∂a2

∂t
+

∂

∂x
(cga

2) = 0. (2.6)

This equation corresponds to the conservation of wave energy, and its solution is found
explicitly by

a(x, t) =
a0(τ)

√

1 − x
v2

g

dvg

dτ

, (2.7)

where a0(τ) is the temporal distribution of the wave amplitude at x = 0. Within the
framework of the linear theory, focus points are singular points where the amplitude
becomes infinite and behaves like (Xfth

− x)−1/2.
Experimentally, the values fmax = 1.3Hz and fmin = 0.8Hz correspond to the maxi-

mal and minimal frequencies of the wavemaker and ∆T = 10s is the duration of the wave
generation. The surface elevation given by the probe located at 1m from the upstream
beach is presented in Figure 2. From these data we find that Tfth

= 26s and Xfth
= 17m

while the experimental values are Tfexp
= 26s and Xfexp

= 20m (see Figure 3). Ex-
perimental data are in close agreement with the linear theory. The difference observed
between the theoretical and experimental values of Xf is mainly due to the nonlinearity
of the experimental wave train. The wave train generated at the wavemaker is uniform
in amplitude, hence the short waves are more nonlinear than the longer waves, and the
result is a downstream shift of the focusing location.

2.3. Experimental results

The focusing experiments are performed with and without wind. The same initial wave
train is generated and propagated without wind, and under the action of wind for several
values of the wind velocity equal to U = 4m/s, 5m/s, 6m/s, and 8m/s respectively. When
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Figure 2. Surface elevation (in cm) at fetch X = 1m, for wind speeds U = 0 and 6m/s (note
that for U = 0m/s, the origin of the elevation corresponds to the value 10cm).

Wind Velocity (m/s)
√

< η2 > (cm)

0 1.88
4 1.88
5 1.87
6 1.88
8 1.87
10 1.88

Table 1. The r.m.s. elevation for different values of the wind velocity at fetch 1m.

the wind blows, the focusing wave train is generated once wind waves have developed.
For each value of the mean wind velocity U the water surface elevation is measured at
1m fetch and at different fetches between 3m and 35m. The wavemaker is driven by an
analog electronic signal to produce this signal linearly varying with time from 1.3Hz to
0.8Hz in 10s, with an almost constant amplitude of the displacement. The wavemaker
is totally submerged to avoid any perturbation of the air flow which could be induced by
its displacement.

To ensure the repeatability of the experimental conditions under the wind action, the
water elevations at 1m were recorded with and without wind.

Figure 2 shows two time series of this probe, recorded with no wind, and under a wind
speed U = 6m/s. The probe record corresponding to a wind velocity equal to 6m/s is
artificially increased by 10cm, for more clarity of the figure. We see that the two signals
are very similar, since frequency properties, phases and duration are maintained. Some
weak differences in amplitude are locally observed. Table 1 shows the root mean square
of the elevation η(x, t) obtained at fetch 1m for different wind speeds. It is clear from
these data that no significant variations are observed, and the experiment is considered
to be repeatable in presence of wind. Results of these experiments are presented in the
following subsection.

Figure 3 presents the time series of the water surface elevation η(x, t) at different
fetches for U = 0m/s. For sake of clarity, as it has been done for Figure 2, the probes
records given here are recursively increased by 10cm. As predicted by the linear theory



6 C. Kharif, J. P. Giovanangeli, J. Touboul, L. Grare, E. Pelinovsky

0 10 20 30 40 50 60
−10

0

10

20

30

40

50

60

70

80

90

100

T (s)

Fetch 12 

Fetch 14 

Fetch 16 

Fetch 18 

Fetch 20 

Fetch 22 

Fetch 24 

Fetch 26 

Fetch 28 

Fetch 30 

Figure 3. Surface elevation (in cm) at several fetches (in m), for wind speed U = 0m/s, as a
function of time.

of free deep water waves (no wind), dispersion leads short waves to propagate slower
than long waves, and as a result, the waves focus at a given position in the wave tank
leading to the occurrence of a large amplitude wave. Downstream the point of focus, the
amplitude of the group decreases rapidly (defocusing).

Figure 4 shows the same time series of η(x, t), at several values of the fetch x, and for
a wind speed U = 6m/s. The wave groups mechanically generated by the wavemaker
are identical to those used in the experiments without wind (see Figure 2). Whatever,
some differences appear in the time-space evolution of the focusing wave train. One can
observe that the group of the extreme wave event is sustained longer.

For each value of the wind velocity, the amplification factor A(x,U) of the group
between fetches x and 1m can be defined as

A(x, U) =
Hmax(x,U)

Href
(2.8)

where Hmax(x,U) is the maximal height between two consecutive crest and trough in
the transient group. The height, Href , of the quasi uniform wave train generated at the
entrance of the tank is measured at 1m. The mean height crest to through is Href =
6.13cm.

Figure 5 gives this amplification factor as a function of the distance from the upstream
beach for various values of the wind velocity, equal to 0m/s, 4m/s and 6m/s. This figure
shows that the effect of the wind is twofold: (i) it increases weakly the amplification
factor, and (ii) it shifts downstream the focus point. Moreover, contrary to the case
without wind, an asymmetry appears between focusing and defocusing stages. The slope
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Figure 4. Surface elevation (in cm) at several fetches (in m), for wind speed U = 6m/s, as a
function of time.

of the curves corresponding to defocusing changes. Before the focus point, it is interesting
to notice that the wind has no effect on the amplification factor. One can observe that
the rogue wave criterion (A > 2.2) is satisfied for a longer period of time. The effect of
the wind on the rogue wave is to shift the focusing point downstream, and to increase
slightly its amplitude. It is also interesting to emphasize that the rogue wave criterion is
satisfied for a longer distance, while the wind velocity increases.

To better understand the time-space evolution of the wave group with and without
wind, the time series are analyzed by means of a wavelet analysis. Figure 6 displays the
local wavelet power spectra of probe records at several fetches, without wind. The wavelet
power spectrum is defined as the square of the modulus of the wavelet transform. These
spectra show the time-frequency evolution of the wave group as it propagates downstream
the wave tank. At short fetches, the waves of high frequencies are in front of the group
and the waves of lower frequencies at its back. As it propagates downstream, focusing
and defocusing processes are observed. The focus point corresponds to the merging of all
the frequencies. Downstream the focus point, the waves of low frequencies are in front of
the group, and the high frequencies at its back

Figure 7 shows the local wavelet power spectra of probe records at the same fetches,
for a wind speed of 6m/s. Contrary to the case without wind, the focusing point is
shifted downstream the wave tank, confirming what we observe in Figure 5. We note
that the coherence of the group is maintained longer and consequently the extreme wave
event mechanism is sustained longer. This could explain the asymmetry observed in the
amplification curves.

We observe in Figures 4 and 7, that the background wind waves are suppressed by the
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Figure 5. Evolution of the amplification factor A(x, U) as a function of the distance, for
several values of the wind speed.

extreme wave event. The phenomenon of high frequency waves suppressed by strongly
nonlinear low frequency waves has been investigated by Balk (1996). He showed that the
effect of the long wave is to transport the short wave action to high wave numbers, where
high dissipation occurs.

To summarize the main experimental results we can claim that the effect of wind on
the extreme wave event mechanism is to shift the focus point downstream, to increase
its amplitude and lifetime leading to an asymmetry of the amplification curve. Figures 6
and 7 demonstrate that the effect of the wind is to transform the short group containing
the extreme wave into a long-lived short group. The effect of the wind is to delay the
defocusing stage.

2.4. Wind-wave coupling over focusing group

The previous results show that in presence of wind the focusing/defocusing phenomenon
is significantly modified. The focus point is shifted downstream, the amplitude and du-
ration of the extreme wave event are increased even for weak values of wind velocity. To
clarify the physical processes which could explain these results, a second series of exper-
iments has been conducted to investigate the wind-wave interaction during the focusing
and defocusing stages.

The experimental conditions are similar to those described previously except that other
probes have been installed on the trolley to measure pressure and velocity fluctuations
in the air flow at different heights in the turbulent boundary layer and different fetches
in the wave tank. The longitudinal and vertical wind speed fluctuations, u′ and w′, are
measured by means of an X-wire mounted on two DANTEC model constant-temperature
anemometers. The two hot wires of the X-wire have been calibrated before and after the
experiments in a small wind tunnel. A least-square regression law is used to relate the
output voltages of each anemometer to the effective cooling velocities Ueff1 and Ueff2

respectively for the wires i = 1, 2, using the Collis and Williams law

E2

i = Ai + BiU
ni

effi, i = 1, 2 (2.9)

where the effective velocities Ueffi are related to the wind speed by the following rela-
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Figure 6. Local wavelet power spectra of probe records at fetches x = 15, 20, 25 and 30m for
a wind speed value of U = 0m/s. The vertical and bottom axes are the frequency and time
respectively.

tionship

Ueffi =

√

cos2 Φi + K2
i sin2 Φi i = 1, 2 (2.10)

Here Ki is the cooling factor of wire i and Φi is the angle between the wind speed vector
and the normal to wire i. The coefficients Ai, Bi and ni are computed during the cal-
ibration. The two components u′ and w′ of the wind velocity are determined from the
ratio E1/E2.
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Figure 7. Local wavelet power spectra of probe records at fetches x = 15, 20, 25 and 30m for
a wind speed value of U = 6m/s. The vertical and bottom axes are the frequency and time
respectively.

The pressure fluctuations in the air flow are measured using a method developed by
Giovanangeli (1988) whereby the static pressure is determined from the difference be-
tween the observed total pressure and the dynamical pressure derived from the velocity
measurements. The total pressure is measured using a bleed-type pressure sensor TSI
model 1412J. Details about the method and features of the pressure probe can be found
in the paper by Giovanangeli & Chambaud (1987). It was shown that the pressure probe
in combination with the method used here allows measurements of the static pressure
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Figure 8. A schematic representation of the experimental set-up.

fluctuations in the air flow, particularly close to steep surface waves, with an accuracy of
0.05Pa.

The key point of the present experiments is to measure the static pressure fluctuations
in the presence of paddle waves. As proved by others [Latif (1974), Papadimitrakis et al.

(1986) and Banner (1990)] the driving mechanism and the displacements of the wave-
maker induce rather large acoustic pressure fluctuations inside the wave tank. Hence, they
used different methods to correct this effect. Rather than trying to correct the contami-
nation of the acoustic mode, we choose to avoid this effect by recording the wavemaker
displacements and analyzing the data only when it is turned off. Since acoustic pressure
fluctuations propagate at the sound velocity we record output voltage of the probes with-
out acoustic contamination. The procedure summarized herein is described in detail by
Mastenbroeck et al. (1996).
The amplitude and longitudinal wave slope are computed by means of two wave gauges
installed on the trolley and 2cm spatially separated in the mean wind direction. Figure
8 gives a schematic representation of the experimental set-up installed on the trolley.
Figure 9 shows the time series of the water surface elevation η in cm, the total vertical
momentum flux from wind to water waves < u′w′ >, the form drag < p′∂η/∂x > and
energy flux < p′∂η/∂t > from wind to water waves. The pressure fluctuation is p′, ∂η/∂x
is the longitudinal wave slope and ∂η/∂t is the time derivative of the surface elevation.
The form drag, momentum and energy fluxes are time averaged on an interval of 2 sec-
onds. For a wind velocity U = 6m/s, at fetch 20m and height of 13cm above the mean
water level, it can be observed that the occurrence of focusing wave groups corresponds
to a significant enhancement of the fluxes. Notice that the time origin corresponds to the
occurrence of the extreme wave event. Note that the air flow pressure fluctuations p′ were
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Figure 9. Time series of the surface elevation η (dashed lines), vertical momentum flux (solid
line in the top panel), form drag (solid line in the middle panel) and energy flux (solid line in
the bottom panel).

measured at different heights above the interface. Hence, it was not possible to determine
the exact value of the form drag < p′∂η/∂x > at z = η(t). However the determination of
< p′∂η/∂x > at the height z will provide crucial information about wind wave coupling
between the air flow and the interface during the focusing event.
Local wavelet power spectra of the surface elevation has been computed and as shown in
Figure 7 the duration of the extreme wave event is increased in presence of wind.
Figures 10 and 11 correspond to the local wavelet power spectra of the longitudinal

wind velocity fluctuation u′ and pressure fluctuation p′ along the wave tank, at height
z = 13cm above the mean water level, for mean wind velocity U = 6cm/s. From these fig-
ures it is not easy to observe the coupling between the group and the turbulent boundary
layer. This is mainly due to the broad-band character of the spectra.

To emphasize this coupling, a cross-wavelet analysis has been applied between u′ and
w′, p′ and ∂η/∂x and, p′ and ∂η/∂t respectively (for more detail see Torrence & Compo
(1998)). These terms are considered as a contribution in time and frequency range to
the total stress, form drag and energy flux from wind to waves respectively. Figure
12 shows the cross-wavelet power for u′ and w′. The cross-wavelet spectrum for the
longitudinal and transversal velocity fluctuations is defined as the product of the wavelet
transform of u′ and complex conjugate wavelet transform of w′. The cross-wavelet power
is the modulus of the cross-wavelet spectrum. For more details see the practical step-
by-step guide to wavelet analysis by Torrence & Compo (1998). A strong correlation
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Figure 10. Local wavelet power spectra of the longitudinal wind velocity fluctuations, u′, at
several fetches for a mean wind velocity U = 6m/s and 13cm above the mean water level. The
vertical and bottom axes are the frequency and time respectively.

between u′ and w′ is observed above the groups. At fetch x = 11m, two groups can
be seen, the higher frequencies components propagate in front of the lower frequencies
components. At fetch x = 17m the two groups have begun to merge into one group which
propagates downstream. We can observe that the maximum of the cross-wavelet power
travels downstream with the group.

Figures 13 and 14 confirm the behavior observed above and demonstrate the strong
correlation existing between the group and the form drag and the energy transfer from
wind to water waves. Air-sea fluxes are strongly enhanced in presence of strongly mod-
ulated wave groups.

An accurate measurement of the maximum of the wavelet power spectrum of the sur-
face elevation η is calculated. Figure 15 displays the characteristic curves of this maximum
for several values of the wind velocity. The figure shows that the maximum propagates
downstream with a constant velocity which increases as the wind speed increases. This
velocity is equal to 0.87m/s, 0.90m/s, 0.92m/s and 0.93m/s for U = 0m/s, 4m/s, 6m/s
and 8m/s respectively. These values which are equal to the slope of the characteristic
curves plotted in Figure 15 correspond to mean values of the group velocity in the vicin-
ity of the focus area. For U = 0m/s, a more careful inspection shows fluctuations of the
group velocity during extreme wave event as observed numerically by ? at the maximum
of modulation due to Benjamin-Feir instability. The distance between two consecutive
probes is too large to detect the group velocity fluctuations accurately.

In Figure 16 are plotted the characteristic curves corresponding to the maximum of
the cross-wavelet power for u′ and w′ at several altitude above the mean water surface
from z = 13cm to z = 30cm, for U = 6m/s. We can notice that this maximum travels
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Figure 11. Local wavelet power spectra of the pressure fluctuations, p′, at several fetches for a
mean wind velocity U = 6m/s and 13cm above the mean water level. The vertical and bottom
axes are the frequency and time respectively.

at a speed close to the velocity defined previously, independently of the altitude z above
the mean water level. This figure emphasizes that the coupling between the air flow and
the water wave group is effective in the whole boundary layer and strongly attached to
the group.

In Figure 17 are plotted the characteristic curves corresponding to the maximum of the
cross-wavelet power for u′ and w′ at the altitude z = 14cm above the mean water level
for U = 4m/s, 6m/s and 8m/s respectively. The space-time diagram shows that this
maximum propagates at a velocity close to the velocity of the maximum of the wavelet
power spectrum of the surface elevation.

In Figure 18 are plotted the characteristic curves corresponding to the maximum of
the cross-wavelet power of u′ and ∂η/∂t at several altitude above the mean water surface
from z = 13cm to z = 30cm, for U = 6m/s. Herein again this maximum corresponding
to the transfer of energy between wind and waves propagates with the velocity of the
maximum of the wavelet power spectrum of the surface elevation. As for the maximum of
the cross-wavelet power for u′ and w′ corresponding the momentum flux, the maximum
of cross-wavelet power corresponding to the instantaneous flux of energy to waves due
to pressure fluctuations above the group, p′∂η/∂t, travels downstream at the velocity of
the maximum of the cross-wavelet power spectrum of the surface elevation.

Figure 19 shows the spatial evolution of the frequency corresponding to the maxi-
mum of the cross-wavelet power spectrum of the surface elevation as a function of x for
11m < x < 29m, i.e. in the vicinity of the focus point for several values of the wind
velocity. It can be seen that the frequency decreases during the formation of the extreme
wave event. Hence rogue wave is associated with frequency downshifting. This feature
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Figure 12. Cross-wavelet power for wind velocity fluctuations u′ and w′ at height z = 13cm,
for mean wind velocity U = 6m/s. The vertical and bottom axes are the frequency and time
respectively.

which has been observed by Clamond et al (2006) when extreme waves are due to mod-
ulational phenomenon or envelope-soliton collision, can be extended to extreme waves
due to spatio-temporal focusing. Furthermore, the figure emphasizes two main features
pointed out previously: The downwind shift of the focus point and time duration of the
extreme wave event increase with wind velocity. Notice that the frequency minimum de-
creases as wind velocity increases. The curves exhibit a minimum which corresponds to a
maximum of the group velocity calculated from the linear dispersion relation. The max-
ima of the associated group velocity are 0.814m/s, 0.819m/s, 0.825m/s and 0.841m/s
for U = 0m/s, 4m/s, 6m/s and 8m/s respectively. These values of the group velocity
are less than those of the velocity calculated previously. The deviations can be explained
by nonlinear effects. Indeed, the extreme waves are strongly nonlinear and their enve-
lope velocities on average are larger than the group velocities calculated from the linear
dispersion relation. Nevertheless, as emphasized previously the group velocity fluctuates
during extreme wave event and may be locally less than the linear value. This feature has
been pointed out by ? in the case of nonlinear spatio-temporal focusing due to Benjamin-
Feir instability. This tendency which is also observed experimentally for the dispersive
focusing investigated herein as been confirmed by numerical simulations.

Figure 20 shows the wind stress as a function of z for U = 4m/s with or without the
presence of focusing wave groups. It can be seen that when there is no extreme wave
event the wind stress varies of 20% from z = 10cm to z = 19cm while it varies of 130%
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Figure 13. Cross-wavelet power for pressure fluctuations p′ and ∂η/∂x at height z = 13cm,
for mean wind velocity U = 6m/s. The vertical and bottom axes are the frequency and time
respectively.

between the same values of the altitude when extreme wave events occur. This feature
can be explain by a strong longitudinal mean pressure gradient due to the modification
of the air flow structure in presence of extreme wave events or strongly modulated wave
trains.
The previous experimental results suggest that air flow separation could explain the
strong increase of the transfer of momentum and energy during extreme wave events.
To verify the validity of this assumption a series of experiments using an original probe
developed at the laboratory by ? to detect air flow separation mechanism (AFS) have been
conducted. The AFS probe is presented in Figure 21. A hot wire and a cold wire separated
each other from 1mm in the direction of the mean wind direction are installed on a wave-
follower. Any temperature fluctuation can be detected by the cold wire when it is located
in the hot wake generated by the hot wire. In presence of air flow separation, a reverse
flow directed towards the upstream direction can occur in the vicinity of the leeward face
of the crest (N. Reul & Giovanangeli (1999)) which produces both a positive temperature
fluctuation measured by the cold wire and a negative wind velocity fluctuation measured
by the hot wire. Using the wave-follower, the AFS probe has been located in the close
vicinity of the instantaneous water wave surface and particularly close to the wave trough.
Figure 22 that corresponds to the case U = 4m/s shows the records of the elevation of the
interface, elevation of the AFS probe fixed at 3cm from the water wave surface, output
voltage given by the cold and hot wires. In this figure one can observe that during the
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Figure 14. Cross-wavelet power for pressure fluctuations p′ and ∂η/∂t at height z = 13cm,
for mean wind velocity U = 6m/s. The vertical and bottom axes are the frequency and time
respectively.

occurrence of the burst of the local wave slope appears a decrease of the wind velocity
and a positive temperature fluctuation measured by the cold wire. Hence, even for a wind
velocity of 4m/s an air flow separation occurs when the local wave slope of the interface
reaches a threshold value which as been evaluated herein close to 0.35. This suggests
that the local wave slope is a significant parameter which is highly correlated to the air
flow separation phenomenon. In presence of steep wave events, the wave age is not the
unique parameter to be considered, the local wave slope is a significant parameter too.
Furthermore, it has been observed that the occurrence of air flow separation is generally
accompanied by breaking. This is in agreement with the results of Banner & Melville
(1976).
In section 3, the critical slopes that will be used in the numerical simulations of the
spatio-temporal focusing are chosen close to the experimental threshold 0.35.

3. Numerical simulations

One of the main objectives of the present section is to study frequency modulated wave
trains generated in a numerical wave tank to compare their behaviour with experiments
with and without wind. To consider conditions similar to those of the previous exper-
iments we used a numerical wave tank based on a boundary integral equation method
(BIEM). In the previous experiments sporadic breaking have been observed. To avoid



18 C. Kharif, J. P. Giovanangeli, J. Touboul, L. Grare, E. Pelinovsky

Figure 15. Trajectories of the maximum of the wavelet power spectrum of the surface elevation
for several values of the wind velocity in thex−t plane. U = 0m/s (✸), U = 4m/s (✷), U = 6m/s
(©), U = 8m/s (△)

Figure 16. Trajectories of the maximum of the cross-wavelet power for u′ and w′ at several
altitudes above the mean water level for U = 6m/s in the x− t plane. Z = 13cm (•), Z = 14cm
(✷), Z = 15cm (◦), Z = 16cm (×), Z = 17cm (∗), Z = 18cm (©), Z = 19cm (+), Z = 20cm
(△), Z = 25cm (−), Z = 30cm (✸)
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Figure 17. Trajectories of the maximum of the cross-wavelet power for u′ and w′ at altitude
z = 14cm, for several wind velocities in the x−t plane. U = 4m/s (✸), U = 6m/s (✷), U = 8m/s
(△)

Figure 18. Trajectories of the maximum of the cross-wavelet power for p′ and ∂η/∂t at several
altitudes above the mean water level for U = 6m/s, in the x−t plane. Z = 13cm (✸), Z = 14cm
(✷), Z = 15cm (△), Z = 16cm (×), Z = 17cm (∗), Z = 18cm (•), Z = 19cm (+), Z = 20cm
(−), Z = 25cm (—), Z = 30cm (©)
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Figure 19. Evolution of the frequency of the maximum of the wavelet power spectrum of the
surface elevation with the fetch for several values of the wind velocity. U = 0m/s (✸), U = 4m/s
(©), U = 6m/s (△), U = 8m/s (∗)

this two-phase dissipative process that our numerical model cannot simulate, a third
series of experiments has been conducted to compare both experimental and numerical
results and also to check the validity of the numerical wave tank.
Beside the focusing due to dispersion of a chirped wave group, another mechanism, the
modulational instability or Benjamin-Feir instability of uniform wave trains, can gen-
erate extreme wave events. This instability was discovered by Benjamin & Feir (1967).
At the same time Zakharov (1968) using a Hamiltonian formulation of the water wave
problem arrived to same instability. The nonlinear evolution of this periodic phenomenon
is investigated numerically using a high-order spectral method (HOSM), without exper-
imental counterpart. The question is to know how evolve extreme wave events due to
modulational instability under wind action. How are modified the amplification and time
duration of these waves under wind effect? Are these effects similar or different from
those observed in the case of extreme wave events due to the spatio-temporal focusing
discussed previously?

3.1. Wind modelling: The modified Jeffreys’ sheltering theory

In section 2 it was demonstrated experimentally for a wind velocity U = 4m/s that steep
wave events occurring in water wave groups are accompanied by air flow separation.
Furthermore, a careful inspection of Figure 5 suggests that a significant wind effect takes
place when the steep wave event occurs. The focusing stage is almost independent of
the wind velocity. Deviations can be observed only in the vicinity of the focus point
where the waves become steep. This observation reinforces the idea that separation of
the air flow in the lee of the wave crests is responsible for the growth and persistence of
steep waves. The Jeffreys’ sheltering mechanism which was introduced by Jeffreys (1925)
could be used as wind modelling. Since air flow separation occurs only over steep waves,
the Jeffreys’ sheltering mechanism has to be applied locally in time and space and not
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Figure 20. The wind stress − < u′w′ > as a function of the altitude z above the mean surface
elevation for U = 4m/s: (✷) over the focusing group and (•) without focusing group.

Figure 21. Schematic representation of the air flow separation probe

permanently over the whole wave field. It is well known that this mechanism cannot be
applied continuously over water waves. This mechanism is working only when air flow
separation occurs over steep waves (Banner & Melville (1976); Kawai (1982)).
Previous works on rogue wave have not considered the direct effect of wind on their
dynamics. It was assumed that they occur independently of wind action, that is, far
away from storm areas where wind wave fields are formed. Herein the Jeffreys’ theory
(see Jeffreys (1925)) is invoked for the modelling of the pressure, pa. Jeffreys proposed a
plausible mechanism to explain the phase shift of the atmospheric pressure, pa, needed for
an energy transfer from wind to the water waves. He suggested that the energy transfer
was due to the form drag associated with the flow separation occurring on the leeward
side of the crests. The air flow separation would cause a pressure asymmetry with respect
to the wave crest resulting in a wave growth. This mechanism can be invoked only if the
waves are sufficiently steep to produce air flow separation. Banner & Melville (1976) have
shown that separation occurs over breaking waves. For weak or moderate steepness of the
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Figure 22. Wave surface elevation (solid line), AFS probe elevation (dotted line), cold wire
ouput (thick dashed line) and hot wire output (thin dashed line) as a function of time for
U = 4m/s (top). Local longitudinal wave slope (dashed line) and wave surface elevation as a
function of time for U = 4m/s (bottom).

waves this phenomenon cannot apply and the Jeffreys’ sheltering mechanism becomes
irrelevant.
Following Jeffreys (1925), the pressure at the interface z = η(x, t) is related to the local
wave slope according to the following expression

pa = ρas(U − c)2
∂η

∂x
. (3.1)

where the constant, s is termed the sheltering coefficient, U is the wind speed, c is the
wave phase velocity and ρa is atmospheric density. The sheltering coefficient, s = 0.5, has
been calculated from experimental data. In order to apply the relation (3.1) for only steep
waves we introduce a threshold value for the slope (∂η/∂x)c. When the local slope of
the waves becomes larger than this critical value, the pressure is given by equation (3.1)
otherwise the pressure at the interface is taken equal to a constant which is chosen equal to
zero without loss of generality. This means that wind forcing is applied locally in time and
space. According to the experiments, the critical value of the slope, (∂η/∂x)c, is chosen
close to 0.35, in the range (0.30-0.40) for the spatio-temporal focusing. For the nonlinear
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Figure 23. Pressure at the interface given in 10−1HPa (dashed line) and surface elevation
given in m (solid line) as a function of x .

focusing due to modulational instability we used higher values to avoid a rapid evolution
towards breaking. When the critical value is low, the transfer of energy from the wind to
the waves yields to wave breaking and when it is too high this transfer becomes negligible
to influence the wave dynamics. The choice of the value of the sheltering coefficient is also
of importance. This coefficient has been computed experimentally. We have not perform
a systematic study on the influence of (∂η/∂x)c and s on the wind-wave coupling. Our
main purpose is to show that the application of the modified Jeffreys mechanism could
explain simply some features of the interaction between wind and strongly modulated
water wave groups.
Figure 23 shows the pressure distribution at the interface in the vicinity of the crest,
given by equation (3.1), for a threshold value close to the slope corresponding to the
Stokes’ corner.

3.2. Basic equations

We consider two-dimensional propagating nonlinear gravity wave trains on the surface
of an inviscid and incompressible fluid. Under the assumption that the motion is ir-
rotational, the governing equations are the Laplace equation and nonlinear boundary
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conditions

∆φ = 0, for z < η(x, t), (3.2)

lim
z→−∞

∇φ = 0 (3.3)

∂η

∂t
+

∂η

∂x

∂φ

∂x
−

∂φ

∂z
= 0, z = η(x, t), (3.4)

∂φ

∂t
+

1

2
∇φ · ∇φ + gη = −

pa

ρw
, z = η(x, t), (3.5)

where φ(x, z, t) is the velocity potential, z = η(x, t) is the equation of the surface, g is
the acceleration due to gravity, pa is the atmospheric pressure, x and z are the horizontal
and vertical coordinates respectively and t is the time.

3.3. The spatio-temporal focusing

Herein we considered a numerical wave tank simulating the experimental water wave
tank described in the previous section. The gravity wave train is generated by a piston-
type wavemaker. An absorbing beach located at the end of the wave tank dissipates the
incident wave energy.

The Laplace equation (3.2) is solved within a domain bounded by the water surface and
solid boundaries of the numerical wave tank. The condition on the solid boundary writes

∇φ · n = v · n, on ∂ΩS, (3.6)

where ∂ΩS corresponds to solid boundaries, v is the velocity of the solid boundaries, set
equal to zero on the horizontal bottom and downstream wall of the wave tank and equal
to the velocity of the piston at any point of the wavemaker, and n is the unit normal
vector to the boundaries.

A Lagrangian description of the water surface is used

Dη

Dt
=

∂φ

∂z
, (3.7)

Dx

Dt
=

∂φ

∂x
, (3.8)

where x is the abscissa of the water surface and D/Dt = ∂/∂t + ∇φ · ∇.

Equation (3.7) is an alternative form of equation (3.4). The kinematic boundary condition
writes as well

DS

Dt
= 0. (3.9)

where S(x, z, t) = η(x, t) − z = 0 is the water surface equation.

The dynamic boundary condition (3.5) is rewritten as follows

Dφ

Dt
=

1

2
(∇φ)2 − gη −

pa

ρw
, (3.10)

where the pressure, pa(x, t), at the water surface is given by equation (3.1), i.e. the Jef-
freys’ theory presented in section 4 is used for modelling wind effect on the extreme
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waves. Over waves presenting slopes less than a threshold value, the atmospheric pres-
sure is uniform, set equal to zero without loss of generality.

The system of equations to solve is (3.2), (3.6), (3.7), (3.8), and (3.10). The method to
integrate numerically this system is a boundary integral equation method (BIEM) with
a mixed Euler-Lagrange (MEL) time marching scheme. The numerical method is based
on the Green’s second identity. For more details see the paper by Touboul et al. (2006).

A focusing wave train is generated by the piston wave maker, leading during the focusing
stage to the generation of a extreme wave followed by a defocusing stage. The water
surface and the solid boundaries (downstream wall, bottom and wave maker) are discre-
tised by 2000 and 1000 meshes respectively, uniformly distributed. The time integration
is performed using a RK4 scheme, with a constant time step of 0.01 s. To avoid numerical
instability the grid spacing ∆x and time increment ∆t have been chosen to the satisfy
the following Courant criterion derived from the linearized surface conditions

(∆t)2 6
8∆x

πg
(3.11)

Figure 24 displays the experimental and computed surface elevation η(t) at fetch
x = 1m while Figure 25 shows the surface elevation at several fetches, measured exper-
imentally and computed numerically. The origin of the surface elevation corresponding
to fetches x = 18m and x = 21m are located at 0.05 and 0.1 respectively. The data at
fetch x = 1m are in excellent agreement while discrepancies observed for steep waves
at fetches x = 11m, 18m and 21m are possibly due to local breaking. Nevertheless the
phases of the numerical and experimental wave trains are the same demonstrating the
efficiency of the numerical code to reproduce correctly the nonlinear evolution of water
wave groups during the focusing-defocusing cycle.

In the first series of experiments described in section 2, spilling breaking events were
observed, resulting in energy dissipation and in saturation in the growth of amplitude.
The present model which is based on the assumption of inviscid fluid cannot describe
energy dissipation. In our model, the transfer of energy from the wind to the water waves
depends on the wind velocity and threshold wave slope value. If the latter value is low
the energy transferred becomes high and breaking occurs.
To avoid breaking waves a third series of experiments and numerical simulations have
been performed with an initial group of waves of weaker amplitude. For these experiments
and simulations the period during which water waves are emitted is increased so that the
initial group contains a greater number of waves. This explains why the amplification
factor is greater for this case as it can be seen in Figure 26. The frequency of the wave-
maker is varied linearly from fmax = 1.85Hz to fmin = 0.8Hz during ∆T = 23.5s. The
focusing mechanism is investigated with and without wind as well. A series of numerical
simulations has been run for two values of the wind velocity: U = 0m/s and 6 m/s.
Using equation (2.8), Figure 26 describes the spatial evolution of the amplification factor
computed numerically. For (∂η/∂x)c = 0.3 a blow-up of the numerical simulation occurs
due to the onset of breaking. This threshold value is too low and the transfer of energy
from the wind to the steep waves yields to wave breaking. The threshold value of the
slope beyond which the wind forcing is applied has been increased and is (∂η/∂x)c = 0.4.
This value corresponds to a wave close to the limiting form for which the modified Jef-
freys’ theory applies. It can be observed that the numerical curves behave similarly to
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Figure 24. Surface elevation (m) as a function of time (s) at fetch x = 1m: Experiments
(solid line) and numerical simulation (dotted line) within the framework of the spatio-temporal
focusing.

those plotted in Figure 5 and thus emphasize the asymmetry found in the experiments.
The observed asymmetry between the focusing and defocusing regimes can be explained
as follows. Without wind the amplitude of the extreme wave is decreasing during de-
focusing. In presence of wind, the modified Jeffreys’ mechanism which is acting locally
in time and space amplifies only the highest waves and hence delays their amplitude
decrease during the very beginning of the defocusing stage. The competition between the
dispersive nature of the water waves and the local transfer of energy from the wind to the
extreme wave event leads to a balance of these effects at the maximum of modulation.
This asymmetry results in an increase of the life time of the steep wave event which
increases with the wind velocity. Hence the duration of the wind effect is relatively short
to increase the amplification of the extreme wave event significantly. However a weak
increase of the amplification factor is observed in presence of wind. The main effect of
Jeffreys’ sheltering mechanism is to sustain the coherence of the short group involving
the steep wave event.
Figure 27 shows the experimental amplification factor and numerical amplification factor
as a function of the normalized fetch x/xf where xf is the abscissa of the point of focus
without wind. We can observe an excellent agreement between the experimental and nu-
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Figure 25. Surface elevation (m) as a function of time (s) at fetches x = 21m (top), x = 18m
(middle) and x = 11m (bottom): Experiments (solid line) and numerical simulation (dotted
line) within the framework of the spatio-temporal focusing.

merical results. The experimental and numerical values of the abscissa of the focus point,
xf , and amplification factor, A, are almost the same.
In presence of wind of velocity U = 6m/s Figure 28(a) demonstrates that the numerical
and experimental amplification factors disagree beyond the focus point. For the value
(∂η/∂x)c = 0.4, the Jeffreys’ sheltering mechanism is not effective enough in the present
case while a reduction of the threshold value to 0.30 produces the onset of breaking at
the focus point.
Wind waves are generally propagating in presence of current. Figure 28(b) corresponds
to the spatio-temporal focusing in presence of wind and current with (∂η/∂x)c = 0.3.
The wind velocity is U = 6m/s and a uniform following current corresponding to 2%
of U has been introduced to have the numerical value of the focus point equal to the
experimental value. Generally, the current induced by wind is taken equal to 3% of the
wind velocity. More information about the introduction of a current in the model can
be found in the paper by Touboul et al. (2007) who considered the formation of rogue
waves from transient wave trains propagating on current. The introduction of the follow-
ing current prevents the onset of breaking. During extreme wave events the wind-driven
current may play a significant role in the wind-wave interaction. The combined action of
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Figure 26. Numerical amplification factor A(X, U) as a function of the distance (in m) for two
values of the wind velocity within the framework of the spatio-temporal focusing: U = 0m/s
(solid line), U = 6m/s and (∂η/∂x)c = 0.4 (dotted line), U = 6m/s and (∂η/∂x)c = 0.3 (dashed
line)

the Jeffreys’ sheltering mechanism and wind-driven current may sustain longer extreme
wave events. We can observe a quite good agreement between the numerical simulation
and experiment. The steep wave event is propagating over a longer distance (or period
of time) in the numerical simulation and experiments as well.

To summarize we can claim that within the framework of the spatio-temporal focusing
both experimental and numerical results are in qualitative good agreement even if some
quantitative difference have been observed, namely when the wind-induced current is
ignored. The importance of a following current on the evolution of the wave group has
been emphasized as well.

3.4. Focusing due to modulational instability

Beside the focusing due to dispersion of a chirped wave group, another mechanism, the
modulational instability or Benjamin-Feir instability (see the paper by Benjamin & Feir
(1967)) of uniform wave trains, can generate extreme wave events. This periodic phe-
nomenon is investigated numerically using a high-order spectral method (HOSM) with-
out experimental counterpart. The question is to know how evolve extreme wave events
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Figure 27. Numerical (solid line) and experimental (circle) amplification factor A(X/Xf , U) as
a function of the normalized distance without wind within the framework of the spatio-temporal
focusing

due to modulational instability under wind action. How are modified their amplification
and time duration under wind effect? Are these effects similar or different from those
observed in the case of extreme wave due to dispersive focusing?
Using the fully nonlinear equations Henderson et al. (1999) and Dyachenko & Zakharov
(2005) investigated numerically the onset of extreme wave events due to modulational
instability but without considering wind influence.

Introducing the potential velocity at the free surface φs(x, t) = φ(x, η(x, t), t), equations
(3.4) and (3.5) writes

∂φs

∂t
= −η −

1

2
∇φs · ∇φs +

1

2
W 2[1 + (∇η)2] − pa. (3.12)

∂η

∂t
= −∇φs · ∇η + W [1 + (∇η)2]. (3.13)

where

W =
∂φ

∂z
(x, y, η(x, y, t), t). (3.14)
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Figure 28. (a) Numerical (solid and dashed lines) and experimental (circle) amplification factor
A(X/Xf , U) as a function of the normalized distance with wind (U = 6m/s) for (∂η/∂x)c = 0.3
(solid line) and (∂η/∂x)c = 0.4 (dashed line) within the framework of the spatio-temporal
focusing. (b) Numerical (solid and dashed lines) and experimental (circle) amplification factor
A(X/Xf , U) as a function of the normalized distance in presence of wind (U = 6m/s) and
following current for (∂η/∂x)c = 0.3 (solid line) and (∂η/∂x)c = 0.4 (dashed line) within the
framework of the spatio-temporal focusing.

Equations (3.12) and (3.13) are given in dimensionless form. Reference length, reference

velocity and reference pressure are, 1/k0,
√

g/k0 and ρwg/k0 respectively.

The numerical method used to solve the evolution equations is based on a pseudo-spectral
treatment with a fourth-order Runge-Kutta integrator with constant time step, similar
to the method developed by Dommermuth & Yue (1987). For more details see the paper
by Skandrani et al. (1996).

It is well known that uniformly-traveling wave train of Stokes’ waves are unstable to
the Benjamin-Feir instability (or modulational instability) which results from a quartet
resonance, that is, a resonance interaction between four components of the wave field.
This instability corresponds to a quartet interaction between the fundamental component
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(the carrier) k0 = k0(1, 0) counted twice and two satellites k1 = k0(1 + p, q) and k2 =
k0(1−p,−q) where p and q are the longitudinal wavenumber and transversal wavenumber
respectively of the modulation. Instability occurs when the following resonance conditions
are fulfilled.

k1 + k2 = 2k0. (3.15)

ω1 + ω2 = 2ω0. (3.16)

where ωi with i = 0, 1, 2 are frequencies of the carrier and satellites.
A presentation of the different classes of instability of Stokes waves is given in the review
paper by Dias & Kharif (1999).

The procedure used to calculate the linear stability of Stokes waves is similar to the
method described by Kharif & Ramamonjiarisoa (1988). Let η = η̄ + η′ and φ = φ̄ + φ′

be the perturbed elevation and perturbed velocity potential where (η̄, φ̄) and (η′, φ′)
correspond respectively to the unperturbed Stokes wave and infinitesimal perturbative
motion (η′ << η̄, φ′ << φ̄). Following Longuet-Higgins (1985), the Stokes wave of ampli-
tude a0 and wavenumber k0 is computed iteratively. Substituting these decomposition in
the boundary conditions linearized about the unperturbed motion and using the following
forms for a two-dimensional flow:

η′ = exp(λt + ipx)

∞
∑

−∞

aj exp(ijx). (3.17)

φ′ = exp(λt + ipx)

∞
∑

−∞

bj exp(ijx + γjz)). (3.18)

where λ, aj and bj are complex numbers and γj =| p + j |.

Equations (3.17) and (3.18) correspond to an eigenvalue problem for λ with eigenvector
u = (aj , bj)

t:

(A − λB)u = 0 (3.19)

where A and B are complex matrices depending on the unperturbed wave steepness of
the basic wave, ǫ = a0k0, and the arbitrary real number p. The eigenvalue, λ, satisfies

det(λB − A) = 0. (3.20)

The physical disturbances are obtained from the real part of the complex expressions η′

and φ′ at t = 0.
McLean et al. (1981) and McLean (1982) showed that the dominant instability of a
uniformly-traveling train of Stokes’ waves in deep water is the two-dimensional modula-
tional instability (class I) provided its steepness is less than ǫ = 0.30. For higher values
of the wave steepness three-dimensional instabilities (class II) become dominant, phase
locked to the unperturbed wave. Herein we shall focus on the two-dimensional nonlinear
evolution of a Stokes’ wave train suffering modulational instability with and without
wind action. Two series of numerical simulations have been performed corresponding to
two wave trains of five and nine waves respectively.

3.4.1. Numerical simulations without wind action:

First, we consider the case of wave trains of five waves. The initial condition is a
Stokes wave of steepness ǫ = 0.11, disturbed by its most unstable perturbation which
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corresponds to p ≈ 0.20 = 1/5. The fundamental wavenumber of the Stokes wave is
chosen so that integral numbers of the sidebands perturbation (satellites) can be fitted
into the computational domain. For p = 1/5 the fundamental wave harmonic of the Stokes
wave is k0 = 5 and the dominant sidebands are k1 = 4 and k2 = 6 for subharmonic and
superharmonic part of the perturbation respectively. The wave parameters have been
re-scaled to have the wavelength of the perturbation equal to 2π. There exists higher
harmonics present in the interactions which are not presented here. The normalized
amplitude of the perturbation relative to Stokes wave amplitude is initially taken equal to
10−3. The order of nonlinearity is M = 6, the number of mesh points is N > (M +1)kmax

where kmax is the highest harmonic taken into account in the simulation. The latter
criterion concerning N is introduced to avoid aliasing errors. The definition of the integer
M can be found in Dommermuth & Yue (1987). To compute the long time evolution of
the wave train the time step ∆t is chosen equal to T/100 where T is the fundamental
period of the basic wave. This temporal discretisation satisfies the CFL condition.

For the case without wind, the time histories of the normalized amplitude of the car-
rier, lower sideband and upper sideband of the most unstable perturbation are plotted
in Figure 29(a). Another perturbation which was initially linearly stable becomes unsta-
ble in the vicinity of maximum of modulation resulting in the growth of the sidebands
k3 = 3 and k4 = 7. The nonlinear evolution of the two-dimensional wave train exhibits
the Fermi-Pasta-Ulam recurrence phenomenon. This phenomenon is characterized by a
series of modulation-demodulation cycles in which initially uniform wave trains become
modulated and then demodulated until they are again uniform. Herein one cycle is re-
ported. At t ≈ 360T the initial condition is more or less recovered. At the maximum of
modulation t = 260T , one can observe a temporary frequency (and wavenumber) down-
shifting since the subharmonic mode k1 = 4 is dominant. At this stage a very steep wave
occurs in the group as it can be seen in Figure 30(a). Notice that the solid line represents
the free surface without wind effect while the dotted line corresponds to the case with
wind effect that be discussed below. Figures 30(b), 30(c) and 30(d) show the free sur-
face profiles at several instants of time. The solid lines corresponds to the case without
wind action. We can emphasize that no breaking occurs during the numerical simulation.
Dold & Peregrine (1986) have studied numerically the nonlinear evolution of different
modulating wave trains towards breaking or recurrence. For a given number of waves
in the wave trains breaking always occurs above a critical initial steepness, and below
a recurrence towards the initial wave group is observed. This problem was revisited by
Banner & Tian (1998) who however did not considered the excitation at the maximum
of modulation of the perturbation corresponding to p = 2/5.

A second numerical simulation corresponding to the case of wave trains of nine waves
is now considered. The initial condition is a Stokes wave of steepness ǫ = 0.13, disturbed
by its most unstable perturbation which corresponds to p ≈ 2/9. The unstable sidebands
perturbation corresponding to p = 1/9 is introduced as well. Hence, we consider the
nonlinear evolution of the wave train when now two unstable modulations are present
while in the previous case only one unstable modulation was introduced. For p = 2/9 the
fundamental wave harmonic of the Stokes wave is now k0 = 9 and the dominant sidebands
are k1 = 7 and k2 = 11 for subharmonic and superharmonic part of the perturbation
respectively while the satellites k3 = 8 and k4 = 10 are the sidebands of the unstable
perturbation corresponding to p = 1/9. The time histories of the normalized amplitude
of the carrier, lower sideband and upper sideband of the two unstable perturbations are
plotted in Figure 29(b). A kind of Fermi-Pasta-Ulam recurrence can be observed which is
stopped at t ≈ 500T by the onset of breaking. Herein the onset of breaking is delayed by
the presence of two unstable perturbations. This result is in agreement with those of Dold
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Figure 29. (a) Time histories of the amplitude of the fundamental mode, k0 = 5 (solid line),
subharmonic mode, k1 = 4 (dashed line), and superharmonic mode, k2 = 6 (dotted line), for an
evolving perturbed Stokes wave of initial wave steepness ǫ = 0.11 and fundamental wave period
T , without wind action. The two lowest curves (dot-dot-dashed and dot-dashed lines) correspond
to the modes k3 = 3 and k4 = 7. (b) Time histories of the amplitude of the fundamental mode,
k0 = 9 (solid line), subharmonic modes, k1 = 7 (dashed line) and k3 = 8 (dot-dashed line),
and superharmonic modes, k2 = 11 (dotted line) and k4 = 10 (dot-dot-dashed line), for an
evolving perturbed Stokes wave of initial wave steepness ǫ = 0.13 and fundamental wave period
T , without wind action.

& Peregrine (1986) and Banner & Tian (1998). At t = 192T , t = 360T and t = 445T
which correspond to the first, second and third maxima of modulation without wind, a
extreme wave event occurs as shown in Figures 31(a) (solid line), 31(e) and 31(f). The
subharmonic sideband, k1 = 7, is dominant and a temporary frequency downshifting is
observed. Figures 31(b), 31(c) and 31(d) give the profiles of the wave train at t = 195T ,
t = 200T and t = 210T respectively.
Due to a mode competition between the satellites of the two unstable disturbances it is
now the subharmonic sideband, k3 = 8, of the initially less unstable perturbation which
is dominant at the second maximum of modulation.
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Figure 30. Surface wave profile at (a) t = 260T , (b) t = 265T , (c) t = 270T , (d) t = 275T :
without wind (solid line) and with wind (dotted line).
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Figure 31. Surface wave profile at (a) t = 192T , (b) t = 195T , (c) t = 200T , (d) t = 210T , (e)
t = 360T , (f) t = 445T : without wind (solid line) and with wind (dotted line).
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Figure 32. (a) Time histories of the amplitude of the fundamental mode, k0 = 5 (solid line),
subharmonic mode, k1 = 4 (dashed line), and superharmonic mode, k2 = 6 (dotted line), for
an evolving perturbed Stokes wave of initial wave steepness ǫ = 0.11 and fundamental wave
period T , with wind action (U = 1.75c). The two lowest curves (dot-dot-dashed and dot-dashed
lines) correspond to the modes k3 = 3 and k4 = 7. (b) Time histories of the amplitude of the
fundamental mode, k0 = 9 (solid line), subharmonic modes, k1 = 7 (dashed line) and k3 = 8
(dot-dashed line), and superharmonic modes, k2 = 11 (dotted line) and k4 = 10 (dot-dot-dashed
line), for an evolving perturbed Stokes wave of initial wave steepness ǫ = 0.13 and fundamental
wave period T , with wind action.

3.4.2. Numerical simulations with wind action:

Figures 32(a) and 32(b) are similar to Figures 29(a) and 29(b) respectively, except
that now water waves evolve under wind action. Wind forcing is applied over crests of
the group of five waves of slopes larger than (∂η/∂x)c = 0.405 while for the group of
nine waves it is applied over crests of slope steeper than 0.5125. These conditions are
satisfied for 256T < t < 270T for the first wave train and for 187T < t < 200T and
237T < t < 240T for the second, that is during the maximum of modulation which
corresponds to the formation of the extreme wave event. When the values of the wind
velocity are too high numerical simulations fail during the formation of the extreme wave
event, due to breaking. During breaking wave process the slope of the surface becomes
infinite, leading numerically to a spread of energy into high wavenumbers. This local
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Figure 33. (a) Numerical amplification factor as a function of time for a wave train of five waves
without wind (solid line) and with wind (dotted line) for U = 1.75c. (b) Numerical amplification
factor as a function of time for a wave train of nine waves without wind (solid line) and with
wind (dashed line) for U = 1.75c.

steepening is characterized by a numerical blow-up (for methods dealing with an Eulerian
description of the flow). To avoid a too early breaking wave, the wind velocity U is fixed
close to 1.75c. Owing to the weak effect of the wind on the kinematics of the crests on
which it acts, the phase velocity, c, is computed without wind. The effect of the wind
reduces significantly the demodulation cycle and thus sustains the extreme wave event.
This feature is clearly shown in Figures 33(a) and 33(b) corresponding to wave trains of
five and nine waves respectively. The amplification factor is stronger in presence of wind
and the rogue wave criterion given by equation (1.1), A > 2.2, is satisfied during a longer
period of time. In presence of wind forcing extreme waves evolve into breaking waves at
t ≈ 330T and t ≈ 240T for wave trains of five and nine waves respectively. For the case
of a wave train of five waves, Figures 30(a), 30(b), 30(c) and 30(d) display water wave
profiles at different instant of time in the vicinity of the maximum of modulation with
and without wind. The solid lines corresponds to waves propagating without wind while
the dotted lines represent the wave profiles under wind action. These Figures show that
the wind does not modify the phase velocity of the very steep waves while it increases
their height and their duration. A similar behaviour is shown in Figures 31(a), 31(b),
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31(c) and 31(d) corresponding to the group of nine waves. We can conclude that extreme
waves occurring under wind action in both wave trains present the same features.

To summarize the results of this section, we can claim that extreme wave events gen-
erated by modulational instability in presence of wind behaves similarly to those due to
dispersive spatio-temporal focusing discussed in the previous section 2 and subsection
3.3. It is found that extreme wave events generated by two different mechanisms exhibit
the same behaviour in presence of wind. Furthermore, in presence of local wind forcing,
extreme waves evolve to breaking waves for initial wave trains of steepness ǫ = 0.11 and
ǫ = 0.13 considered herein. In another context, Banner & Song (2002) have investigated
numerically the onset and strength of breaking for deep water waves under wind forcing
and surface shear. In their study wind modelling is based on the Miles theory which is
different from the Jeffreys’ sheltering mechanism used in this paper.

4. Conclusions

A series of experiments on the formation of extreme waves through the spatio-temporal
focusing mechanism has been conducted in the large wind-wave tank of IRPHE and cor-
responding numerical simulations have been run as well. Furthermore, a second mech-
anism due to modulational instability and yielding to the generation of these extreme
wave events has been considered numerically.
Experiments have shown that in presence of wind the kinematics and dynamics of the
wave group are modified, namely the focus point is shifted downstream, the height and
duration of the extreme waves are increased. A more careful and detailed analysis of
the wind-wave interaction during the wave focusing emphasized the strong coupling be-
tween the wave group and the turbulent boundary layer when the extreme wave event
occurs. Hence, it has been shown that air-sea fluxes are strongly enhanced in presence of
strongly modulated wave groups. This strong correlation between the very steep waves
of the group and the wind suggests that the Jeffreys’ sheltering mechanism could be a
suitable model. Indeed in presence of wind, it is shown experimentally that the occur-
rence of extreme wave events is accompanied by a reverse flow. Note that this mechanism
which is applied only over very steep water waves works locally in space and time. For the
smallest wind velocity, U = 4m/s, considered herein, it has been shown experimentally
that the wind has a sufficient aerodynamic influence to maintain extreme wave events.
Nevertheless from our experiments, it is not possible to provide the value of the criti-
cal velocity for which aerodynamic influence becomes appreciable, that is, when air flow
separation occurs. For U < 4m/s, a new series of experiments is needed to determine the
critical wind velocity for which air flow separation is observed. This phenomenon depends
strongly on wind velocity and local wave slope as well. Numerical simulations based on
two-phase flow Navier-Stokes equations and experiments are planned to investigate the
occurrence of reverse air flow events as a function of both wind velocity and local wave
slope.
Similar numerical simulations have been performed, corresponding to the spatio-temporal
focusing studied experimentally and the wave focusing due to modulational instability as
well. For the spatio-temporal focusing, a numerical wave tank has been used to generate
the water waves while the Jeffreys’ theory has been applied for the wind modelling to
reproduce the experimental configuration. The numerical results are in qualitative good
agreement with those obtained experimentally. The generation of extreme wave events
due to modulational instability has concerned two numerical simulations of wave trains of
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five waves and nine waves respectively, using a pseudo-spectral method. It was found that
in presence of wind, extreme wave events due to modulational instability behave similarly
to those due to spatio-temporal focusing. For both cases considered in the present study,
namely modulating wave trains of five and nine waves, it was found that steep waves
evolve to breaking waves under local wind forcing. The role of the wind-driven current
has been emphasized during extreme wave events. Following Banner & Song (2002), it
should be interesting to introduce wind forcing with surface shear instead of the uniform
current used in the present investigation. Another issue is to find an indicator for the
onset of rogue waves.

The present study has demonstrated that under specific conditions the modified Jef-
freys’sheltering mechanism can be physically relevant to influence the dynamics of ex-
treme wave events. The wave breaking or/and limited length of the numerical wind-wave
tank do not allow this information to be readily determined and require more attention.
Nevertheless, from Figure 26 one can get an estimate for U = 6m/s and (∂η/∂x)c = 0.4:
The duration of the extreme wave event is roughly multiplied by 1.75. For (∂η/∂x)c = 0.3
we observe a blow up of the numerical simulation that corresponds to breaking. On the
other hand when a co-flowing current is introduced no breaking occurs and the extreme
wave event is sustained longer. In our numerical experiments, the normalized amplitude
does not become less than 2.2 beyond the maximum of modulation (see Figure 28-b).
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