
1

Influence Spreading Path and its Application to
the Time Constrained Social Influence

Maximization Problem and Beyond
Bo Liu, Gao Cong, Yifeng Zeng, Dong Xu,and Yeow Meng Chee

Abstract—Influence maximization is a fundamental research problem in social networks. Viral marketing, one of its applications, is to
get a small number of users to adopt a product, which subsequently triggers a large cascade of further adoptions by utilizing “Word-of-
Mouth” effect in social networks. Time plays an important role in the influence spread from one user to another and the time needed for
a user to influence another varies. In this paper, we propose the time constrained influence maximization problem. We show that the
problem is NP-hard, and prove the monotonicity and submodularity of the time constrained influence spread function. Based on this, we
develop a greedy algorithm. To improve the algorithm scalability, we propose the concept of Influence Spreading Path in social networks
and develop a set of new algorithms for the time constrained influence maximization problem. We further parallelize the algorithms for
achieving more time savings. Additionally, we generalize the proposed algorithms for the conventional influence maximization problem
without time constraints. All of the algorithms are evaluated over four public available datasets. The experimental results demonstrate
the efficiency and effectiveness of the algorithms for both conventional influence maximization problem and its time constrained version.

Index Terms—Influence Spreading Path, Influence Maximization, Social Network, Large Scale, Time Constrained.

�

1 INTRODUCTION

The influence maximization problem has been exten-
sively studied (e.g., [1]–[7], [9]). It aims to find a set of
K influential nodes such that the expected number of
nodes reached by influence spreading from the selected
node set is maximized. Among others, a motivating
application of influence maximization is viral marketing
in social networks (e.g., Facebook), which has become
a common ground for businesses to target potential
customers. Viral marketing aims to select a small number
of influential users to adopt a product, and subsequently
trigger a large cascade of further adoptions by utilizing
the “Word-of-Mouth” effect in social networks [10], [11].
For example, a pop vocal concert marketer may select a
small number of influential users from a social network,
and offer each of them a free ticket, such that the concert
is widely known throughout the entire social network.

Recent research reveals that time plays an important
role in the influence spread from one user to another [12]
and the time needed for a user to influence another
varies. Indeed, influence propagation time is considered
in the recent work [12]–[16] on building the underlying
influence propagation graph from real world log data.

• Bo Liu is with Facebook, Menlo Park, CA. E-mail: bol@fb.com
• Gao Cong and Dong Xu are with School of Computer Engineer-

ing, Nanyang Technological University, Singapore. E-mail: {gaocong,
dongxu}@ntu.edu.sg

• Yifeng Zeng is with School of Computing, Teesside University, UK. E-
mail:Y.Zeng@tees.ac.uk

• Yeow Meng Chee is with School of Physical and Mathemati-
cal Sciences, Nanyang Technological University, Singapore. E-mail:
{ymchee}@ntu.edu.sg

On the other hand, in many real world viral marketing
applications, people only care about how widely the
influence is spread before a fixed time. For example,
to market a pop vocal concert to be held on Sep 1st
2012, the marketer would want to maximize the number
of users influenced before Sep 1st 2012. A conventional
influence maximization model does not consider that
influence among users may depend on the time. For
example, some users may only pass the information
to others after a rather long period. Consequently, the
selected influential users may not spread the influence
within a limited time. Indeed, users influenced after the
concert would not bring any profit to the marketer. The
conventional influence maximization solutions become
invalid since the time is not considered in the influence
propagation.

This calls for the problem of considering the influence
maximization under the time constraint. We proceed
to illustrate the idea of incorporating time factor in
influence maximization using an example in Figure 1. In
this example, five users are connected by five edges, each
of which indicates a user may influence over another
user. Numbers over each edge give the corresponding
influencing probabilities, and the distribution of influ-
encing delays. For example, user v2 will influence v5
with a probability of 0.7, and the influencing delay is
distributed over the first two time units (e.g., day) with
probability 5/7 and 2/7 respectively. This means that
user v2 would influence v5 within the first time unit
(resp. the second time unit) at a probability 0.7 ∗ 5/7
(resp. 0.7 ∗ 2/7), and v2 cannot influence v5 after the
first two time units. Suppose we are asked to find a

2

V1

V5

V4

V2

V3

 0.35 (4/7;2/7;1/7)

0.
6
(1
/2
;1
/3
;1
/6
) 0.7 (5/7;2/7)

0.
5
(4
/5
;1
/5
)

0.7
 (4/
7;2
/7;1
/7)

Fig. 1. An example illustrating the time constrained influence
maximization.

single seed user to maximize the expected number of
influenced users. Without any time constraint, user v1
will be returned as the result. Intuitively, it is expected
to influence the maximal number of users among all
users. However, if we aim to find a single seed user
that influences the maximal number of users within 1
time unit, user v2 will become the new result. Intuitively,
this is because v1 can at most influence v2 and v3 in 1
time unit while v2 influences v4 and v5 with a higher
probability as given in Figure 1 (the algorithms for
calculating the result will be presented in later sections).

In this paper, we define the time constrained in-
fluence maximization problem, which is based on the
Latency Aware Independent Cascade influence propaga-
tion model, and which is shown to be NP-hard. We pro-
pose an algorithm that considers time factor in the pro-
cess of Monte Carlo simulation to estimate the influence
spread for a given seed set. This enables us to employ a
greedy algorithm to solve the time constrained influence
maximization problem. However, the greedy algorithm
is computationally expensive particularly for solving a
large scale of social networks. To facilitate the solutions,
we propose the concept of Influence Spreading Path,
based on which two methods for the time constrained
influence maximization problem are designed. We fur-
ther parallelize the algorithms for more efficiency im-
provement by exploiting the algorithmic independency.
In addition, we generalize the proposed algorithms to
solve the conventional influence maximization problem.

The contributions of this paper are summarized as
follows.

• We define the time constrained influence maxi-
mization problem in social networks. We study the
monotonicity and submodularity of the correspond-
ing time constrained influence spread function. We
propose a time step based simulation algorithm
for estimating the time constrained influence. These
lead to a simulation based approximate algorithm.

• We develop the logically augmented social networks
and define an Influence Spreading Path for the
time constrained influence maximization problem.
Accordingly, we propose a set of more efficient
algorithms that can be scaled to handle social net-
works of large scales. We design a parallel version of
the proposed algorithms and show significant time
savings.

• We generalize the Influence Spreading Path to solve
the conventional influence maximization problem.
The generalized algorithms perform better than the
techniques for solving the conventional influence
maximization problem.

• We demonstrate the algorithm performance over
four public available datasets. The extensive ex-
periments show that the Influence Spreading Path
based algorithms outperform state-of-art techniques
on solving both time and conventional influence
maximization problems.

The remainder of this paper is organized as follows.
The related work is reviewed in the next section. Sec-
tion 3 presents a latency aware independent cascade
model and the definition of time constrained influence
maximization problem. In Section 4, we give a greedy
algorithm for the time constrained influence maximiza-
tion problem, and then propose a simulation and two
Influence Spreading Path based solutions. In Section 5
we show that Influence Spreading Path can be used to
solve conventional influence maximization problem. Sec-
tion 6 presents the experimental study. Finally, Section 7
concludes this paper.

2 RELATED WORK

The problem of building the underlying influence prop-
agation graph has been studied recently. Saito et al. [15]
propose an asynchronous model to extend the tradi-
tional Independent Cascade Models by incorporating
influence spreading delay information. The proposed
asynchronous model is employed to facilitate model
parameter learning of the influence graph. Other efforts
of learning parameters of the influence graph from his-
tory data include the work [12], [14]. The problem of
building an influence graph is orthogonal to influence
maximization problem, which assumes that the influence
graph is known.

Richardson et al. [1], [2] are the first to study influence
maximization problem in social networks. They formu-
late the problem with a probabilistic framework and em-
ploy Markov Random Field to solve it. Kempe et al. [3]
formulate the problem as a discrete optimization prob-
lem, which is widely adopted by subsequent studies.
They prove the influence maximization problem is NP-
hard, and propose a greedy algorithm to approximately
solve it by repeatedly selecting the node incurring the
largest marginal influence increase to a seed set. To find
the node incurring the largest marginal influence in-
crease at each step, one needs to know influence spreads
induced by different seed sets generated by adding each
individual candidate node into current seed set.

However, the problem of calculating influence spread
induced by a given seed set is very difficult (Chen et
al. [5] prove it to be #P-hard). Kempe et al. [3] propose
to simulate influence spreading process starting from
the given seed set for a large number of times, and
then use the average value of simulation results to

3

approximate it. However, the simulation based method
is computationally expensive and cannot scale well with
large social networks [4]–[6]. To ease this problem,
Leskovec et al. [4] propose a mechanism called Cost-
Effective Lazy Forward (CELF) to reduce the number of
times required to calculate influence spread, which will
be used to optimize our algorithms in the conducted
experiments. Chen et al. propose two fast heuristics
algorithms, DegreeDiscount [5] and PMIA [6], to select
nodes at each step of the greedy algorithm. At each
step, DegreeDiscount adds the node with the largest
degree to a seed set, and then degrees of neighbors
of the selected node are discounted accordingly. PMIA
calculates influence spread by employing local influence
arborescences, which are based on the most probable
influence path between two nodes. As PMIA needs to
maintain arborescence for each node, it consumes a huge
amount of memory, which makes it unscalable to a large
social graph. We compare with DegreeDiscount and
PMIA in our experimental studies. In addition, Wang
et al. [7] solve the problem by exploring the underlying
community structure of social networks. Jiang et al. [8]
employ the Simulated Annealing algorithm to find the
top-k influential nodes from networks whose edges have
the identical activation probability.

In parallel, Chen et al. [17] propose the time-critical
influence maximization problem, in which the influenc-
ing model is a special case of the model proposed in this
paper. In their model influence delays are constrained to
follow the geometric distribution. In contrast, our model
has no such a constraint and our algorithm is applicable
when other distributions are used in the influencing
model. Lee et al. [21] propose a different influence model
where every active node has multiple chances to activate
its neighbors, and the activation processes stop before a
time.

3 TIME CONSTRAINED INFLUENCE MAXIMIZA-
TION PROBLEM

We present the conventional influence maximization
problem and the Independent Cascade (IC) model in Sec-
tion 3.1. Then, we present the proposed Latency Aware
Independent Cascade (LAIC) model. Subsequently, we
define the time constrained influence maximization
problem in Section 3.2. Notations used in this paper are
summarized in Table 1.

3.1 Conventional Influence Maximization
A conventional influence maximization problem aims

to select K nodes so that the expected number of nodes
influenced by K nodes will be maximized.

Definition 1 (Influence Maximization Problem). Given
a social network P = }∪,G| , a positive integer K < \∪\,
activating probability T uv � (0, 1] for each (u, v) � G, find a
seed set S →∪ of K nodes, such that the expected number of
nodes influenced by S, σT (S), is maximized.

TABLE 1
Notation Table

Notation Definition
G = {V, E} Social Network
n |V|
m |E|
K Number of seed nodes
S Seed set
N(u) Neighbor set of u
Puv Probability u activates v

Plat
u Distribution of influence propagation latency of u

σT (S) Expected number of nodes influenced by S within
T time units

σ(S) Expected number of nodes influenced by S without
time constraint

AP(t)(u, S) Probability u is first activated by S at time t
APT (u, S) Probability u is activated within time T by S
ISP (S) All influence spreading paths
ISP (u, S) All influence spreading paths ending with u
θ A positive influence threshold value
ISPθ,T (S) Influence spreading paths with length no larger

than T , probability no less than θ
ISPθ,T (u, S) Influence spreading paths with length no larger than

T , probability no less than θ and ending with u
nθT max|S|≤K{|ISPθ,T (S)|}

A popular model describing how influence spreads in
social networks is Independent Cascade (IC) Model [18],
which is widely adopted by the existing influence max-
imization algorithms [3]–[7], [9]. In the IC model, each
node is either active (e.g., buying a product) or inactive
in a social network. A node is allowed to switch from
inactive to active state, but not vice versa. Given a set
of seed nodes S, the IC model propagates influence in
inductive steps. Let At be the set of nodes activated at
step t, and A0 = S. At step t+1, every node u � At has
a single chance to activate each of its currently inactive
neighbors v, i.e., v /� { t

i=0Ai. The probability that u
activates v is given by the activating probability T uv

associated with edge (u, v). The influence propagation
process terminates at step t, if and only if At = A. In the
IC model, once a node u is activated, it either activates
its currently inactive neighbor v in the immediate next
step, or does not activate v at all.

As mentioned in Section 1, influence propagation de-
lay exists in a real-world social network, which is not
captured by the IC model. We proceed to present the La-
tency Aware Independent Cascade (LAIC) model, which
encodes the influence propagation latency information
into the IC model.

3.2 Time Constrained Influence Maximization
The LAIC model considers the delayed influence prop-
agation by encoding the time into the activation proba-
bility of edges in a social network. In the LAIC model,
when a node u is first activated at step t, it activates its
currently inactive neighbor v in step t+δt with probability
T uvT

lat
u (δt), where δt is the influencing delay and is

randomly drawn from the delay distribution T lat
u . Note

that a node can be activated at most once. If a node has
been influenced by multiple neighbors, it is activated at

4

the earliest activation time while the rest activations are
ignored. The influence propagation process terminates at
step t, iff there is no node activated after t.

Based on the proposed LAIC model, we present the
time constrained influence maximization problem in
Eq. 2.

Definition 2 (Time Constrained Influence Maximiza-
tion). Given a social network P = }∪,G| , time bound T ,
positive integer K < \∪\, activating probability T uv � (0, 1]
for each (u, v) � G, and latency distribution T lat

u for each
u � ∪, find a seed set S → ∪ of K nodes, such that the
expected number of nodes influenced by S within T time,
σT (S), is maximized under the LAIC model.

Analogous to the conventional influence maximization
problem, the time constrained version is NP-hard, which
is shown in Theorem 1. Due to the limited space, we
remove the proof and refer readers for details in [19].

Theorem 1. The time constrained influence maximization
problem is NP-hard.

4 INFLUENCE SPREADING PATH BASED SO-
LUTION

We present a greedy algorithm to calculate the expected
influence spread in Section 4.1. To alleviate the computa-
tional complexity of the greedy algorithm, we propose a
simulation based algorithm in Section 4.2, and define the
Influence Spreading Path in Section 4.3. Subsequently,
we develop an Influence Spreading Path based algorithm
in Section 4.4. Furthermore, we improve the algorithm by
employing faster marginal influence spread estimation in
Section 4.5. In Section 4.6, we provide a parallelization
version of the set of algorithms.

4.1 Monotonicity, Submodularity and Greedy Algo-
rithm
Let σT (S) be the expected number of nodes influenced
by S within T time units. By replacing σ(S) with σT (S),
we adapt the greedy algorithm [3] to approximately
solve the time constrained influence maximization prob-
lem, which is given in Algorithm 1.

Algorithm 1: Greedy Algorithm Framework

Input: G, T , K, Puv and P lat
u

Output: S
1 initialize S = ∅
2 for i← 1 to K do
3 u← argmaxv σT (S ∪ {v})− σT (S)
4 S ← S ∪ {u}
5 return S

The greedy algorithm repeatedly adds the node incur-
ring the largest marginal influence increase to the seed
set S, until \S\= K. The time complexity of Algorithm 1
is O(KnV (σT (S))), where n is the number of nodes
in P and V (σT (S)) the running time for calculating

σT (S { }v|). As Theorem 2 shows the influence function
σT (S) is monotonous and submodular [19], and thus
the greedy algorithm approximates the optimal solution
with a lower bound ratio of 1 1/e, where e is the base
of the natural logarithm [20].

Theorem 2. With the LAIC model, the influence function
σT (S) is monotonous and submodular.

The main difficulty in applying the greedy algorithm
lies in calculating the expected influence spread for a
given set of seeds (Line 3 of Algorithm 1), whose special
case has been shown to be #P-hard [6]. In the following
sections, we propose a set of approximate algorithms in-
cluding a simulation based algorithm and two Influence
Spreading Path based algorithms.

4.2 Simulation based Algorithm for σT (S)

We propose Algorithm 2 to simulate the time constrained
influence spreading process based on time steps. Note
that Algorithm 2 differs from the simulation algorithm
for conventional influence maximization problem [3],
which is based on Breadth-first Search (BFS) and does
not consider time factor.

Algorithm 2: σT (S) based on Simulation

Input: G, T , S, Puv and P lat
u

Output: σT (S)
1 v.status← inactive, v.actT ime← +∞ for v ∈ V \ S
2 v.status← active, v.actT ime← 0 for v ∈ S
3 A0 ← S
4 t← 1
5 do
6 for u ∈ At−1 do
7 for (u, v) ∈ E and v.status �= active do
8 draw flag from Bernoulli(Puv)
9 if flag = 1 then

10 draw δt from P lat
u

11 if v.status = inactive then
12 if t+ δt ≤ T then
13 v.status← latent active
14 v.actT ime← t+ δt
15 else if t+ δt < v.actT ime then
16 v.actT ime← t+ δt
17 At ← {u|u.actT ime = t ∩ u.status = latent active}
18 u.status← active for u ∈ At−1

19 t← t+ 1
20 while |{u|u.status = latent active}| �= 0 or At �= ∅;
21 return

∑t
j=0 |Aj |

In Algorithm 2, we simulate the influence propagation
process starting from S. In the beginning, all nodes in
S are set to be active, while all other nodes are set to
be inactive (Lines 1-2 of Algorithm 2). The set of nodes
activated at time t are denoted by At. Nodes in S are
treated as being activated at time 0 (Line 3). At time
t > 0, each node u � At−1 intends to activate each
of its inactive or latent active (to be explained) outgoing
neighbors v � Nout(u) with the probability Puv . If u
successfully activates v (Lines 9-20), an activating latency
δt (δt = 0, 1, 2...) is drawn from the discrete distribution

5

T lat
u associated with node u. If v is in inactive state and

t+δt ≈ T , v switches to latent active state with activating
time t + δt, which specifies when v will switch from
latent active to active. If v is already in latent active state,
v updates its activating time with the minimum of t+ δt
and its current activating time. All latent active nodes
with activating time t automatically switch to active state
at time step t (Line 23-24). The process terminates if
and only if there are no more latent active nodes and
newly activated nodes. When the process terminates, the
number of activated nodes is returned (Line 27).
Time and space complexities Let n (resp. m) be the
number of nodes (resp. edges) in social network P. The
first four lines of Algorithm 2 take O(n) time. For the
entire while loop, the dominant cost is on exploring the
graph starting from S along edges. In the worst case, the
algorithm needs to explore all nodes and edges in the
graph. Thus the running time is O(n +m) for the while
loop, which is also the time complexity of Algorithm 2.
In addition to the input social graph, Algorithm 2 only
needs to store status and actT ime for each node, the
space needed by which is O(n). Thus the space com-
plexity of Algorithm 2 is O(n+m), which is dominated
by the input of social network.

To approximate the expected influence spread within
T time units, we may repeat Algorithm 2 for a large
number (R) of times and average the returned numbers.
Consequently the total running time of the combination
of Algorithm 1 and 2 is O(KnR(n+m)). By following [3],
[5], [6], R = 20, 000 simulations are employed to calculate
the expected influence spread for a given seed set.

4.3 Influence Spreading Path based Activation Prob-
ability Calculation
Due to the computational curse, the simulation based
algorithm is not suitable to large social networks. We
proceed to describe how a social network is augmented
by incorporating influence delay information into the
graph structure, based on which the definition of in-
fluence spreading path is given. Then we propose an
algorithm for calculating the activation probability of a
node given a seed set.

4.3.1 Augmenting Social Network with Influencing Delay
Information
In the LAIC model, when a node u is first activated at
time t, it tries to activate each of its outgoing neighbors
v at a later time t+ δt with a probability of T uvT

lat
u (δt).

To incorporate influence propagation delay information
into the social network structure, we logically augment
the original social network P = (∪,G) into a directed
multigraph GT = (V,E), where V = ∪. For each
(u, v) � G, we put T edges, e1uv, e2uv,×××, eTuv , from u to
v in G. Each edge etuv(� E) is guarded with two values,
i.e., length(etuv) = t and prob(etuv) = T uvT

lat
u (t).

Figure 2 gives the multigraph augmented from the
example of social network in Figure 1 under the case of

V1

V5

V4

V2

V3

0.2 t=1

0.
3
 t
=1

0.5 t=1

0.
4
 t
=1

0.4
 t=
1

0.2 t=2

0.1 t=2

0.
2
 t
=2

0.2
 t=
2 0.

1
 t=
2

Fig. 2. The logically augmented multigraph with T = 2.

T = 2. We note that this augmentation is done logically.
All algorithms proposed in this paper are able to infer
the augmented graph from an original graph on the fly.

4.3.2 Constrained Influence Spreading Path
Given a seed set S, the expected influence spread within
time T , σT (S), is the expected number of nodes acti-
vated no later than time T , denoted by

∑
u∈V E T T (u, S),

where E T T (u, S) is the probability that S activates u
within T . It is easy to find out that E T T (u, S) = 0, if
there is no path from S to u in the augmented directed
multigraph GT = (V,E). Thus in what follows, we
ignore those nodes not reachable from S.

To estimate E T T (u, S) for each node u, we define
Influence Spreading Path in the augmented graph below.

Definition 3 (Influence Spreading Path). Given a seed
set S and a directed multigraph G = (V,E), a simple path
p = (u1

e1∈ u2
e2∈ u3 . . .

ek−1
∈ uk) in graph G is an

Influence Spreading Path, if and only if u1 � S and ui /� S
for i ∅= 1, where k > 1. For an influence spreading path p,
the length of p is

∑i=k−1
i=1 length(ei), while the probability of

p is
∏i=k−1

i=1 prob(ei).

From Definition 3, we notice that an Influence Spread-
ing Path cannot contain duplicate nodes, as a node
cannot be activated more than once. Furthermore, except
the starting point, an influence spreading path cannot
contain any of other nodes belonging to S, which resides
in the fact that seed nodes are already in active state at
the very beginning and cannot be activated at a later
step. Note that the proposed algorithms do not need the
detailed path information, and we only need to store
length, probability and the ending node of each Influence
Spreading Path.

We observe that each Influence Spreading Path p
ending with u gives a possible way for S to activate u.
The activating time taken by following p to activate u is
length(p), while the activating probability of this path is
prob(p). For a given seed set S, we denote ISP(u, S) to
be all possible influence spreading paths ending with u.
Note that \ISP(u, S)\grows exponentially as the number
of nodes increases. To reduce the number of paths in
ISP(u, S), we apply two restrictions to filter out some
Influence Spreading Paths which are not or less related
to our problem. First, we prune paths with length larger
than T , which are not related to influence spread within

6

time T . Furthermore, we filter out paths with probability
less than a small threshhold θ, as Influence Spreading
Paths with small probabilities have limited impact on the
influence spread estimation. The resulting constrained
Influence Spreading Paths are denoted by ISPθ,T (u, S).

4.3.3 Activation Probability Calculation based on Influ-
ence Spreading Paths
By assuming all Influence Spreading Paths ending at
u (ISPθ,T (u, S)) are independent with each other, we
are able to calculate the probability u gets activated
by S within time T (E T T (u, S)) from ISPθ,T (u, S). The
computation is outlined in Function AP . The function
iterates over all possible time steps from 1 to T , calcu-
lates the probability that u is first activated at time t
(E T (t)(u, S)) (Line 3), and adds it to E T T (u, S) at Line 4.
At Line 3, 1 E T T (u, S) is the probability u has not been
activated before t, and 1

∏
p∈ISPθ,T (u,S),length(p)=t(1

prob(p)) is the probability u is activated at time t. At the
end of each iteration t, E T T (u, S) is updated to store the
probability u is activated before t + 1. The loop results
in the probability E T T (u, S) that u is activated within
time T .
Time and space complexities For the running time,
the dominant part of Function AP is the for loop in
which every Influence Spreading Path in ISPθ,T (u, S) is
checked exactly once. Thus the running time of Function
AP is O(\ISPθ,T (u, S)\). Note that the space complexity
of Function AP is also O(\ISPθ,T (u, S)\).

Function AP
Input: ISPθ,T (u, S), T
Output: APT (u, S)

1 APT (u, S)← 0
2 for t← 1 to T do

3 AP(t)(u, S)← (1−APT (u, S))(1−∏
p∈ISPθ,T (u,S),length(p)=t(1− prob(p))

4 APT (u, S)← APT (u, S) +AP(t)(u, S)
5 return APT (u, S)

4.4 Influence Spreading Path based Algorithm for
σT (S)

Algorithm 3 computes the expected influence spread
within time T for a given seed set (σT (S)). First, Algo-
rithm 3 gets all constrained Influence Spreading Paths
starting from S by a Depth-First Search (DFS) (Line 2),
which are then divided into disjoint sets based on their
ending nodes (Line 3). For each node u with at least one
constrained Influence Spreading Path, i.e., ISPθ,T (u, S) ∅=
A, Function AP is applied to calculate the probability
E T T (u, S) that u is activated by S within time T (Line 5).
Finally, activation probabilities of all nodes are summed
together and returned as the expected influence spread
of S.

Similar to Algorithm 2, Algorithm 3 is embedded in
Algorithm 1 (calculating σT (S)) to find a seed set of K
nodes.

Algorithm 3: σT (S) based on Influence Spreading
Path

Input: G, θ, T , S
Output: σT (S)

1 σT (S)← 0
2 get all Influence Spreading Paths with length no larger

than T and probability no less than θ by DFS.
3 divide them into different ISPθ,T (u, S).
4 for every u with non-empty ISPθ,T (u, S) do
5 σT (S)← σT (S) +AP (ISPθ,T (u, S), T)

6 return σT (S)

Time and space complexities Let nθT =
max|S|≤K}\ISPθ,T (S)\| , where \ISPθ,T (S)\ be the
number of Influence Spreading Paths starting from
S with length no less than T and probability no less
than θ. The second line of Algorithm 3 can be done
using DFS algorithm in O(nθT) time, which is also
the time needed for the third line. As calculating
E T T (u, S) by Function AP takes O(\ISPθ,T (u, S)\)
time and

∑
u∈V \ISPθ,T (u, S)\ = \ISPθ,T (S)\ ≈ nθT ,

the for loop also takes O(nθT) time. Thus the total
running time of Algorithm 3 is O(nθT). Note that the
Influence Spreading Path based solution (combination
of Algorithms 1 and 3) takes O(KnnθT) time, which
is much less than the time needed by the simulation
based solution (combination of Algorithms 1 and 2)
O(KnR(n + m)). It is obvious to see that the space
complexity of Algorithm 3 is O(n+m+nθT), where the
n + m is the size of social graph, and nθT for storing
ISPθ,T (S).

4.5 Faster Marginal Influence Spread Estimation

In the greedy Algorithm 1, when trying to add one more
node into the currently selected seed set S, we need
to calculate the marginal influence increase brought by
adding each u � V S. Instead of calculating σT (S { }u|)
from scratch in Algorithm 3, we propose to employ a
faster marginal influence spread estimation.

Suppose the currently selected seed set is S, we want
to calculate the marginal influence spread increase if
node v is added to S, i.e., σT (S { }v|) σT (S), which is
obviously no larger than σT (}v|). As σT (}v|) is already
known in the computation for selecting the first seed
node, we propose to approximate σT (S { }v|) σT (S)
by making a discount of σT (}v|) in Equation 1.

σT (S{ }v|) σT (S) ⊂ σT (}v|)

∑
(v,w)∈E T vw(1 T Sw)σT (}w|)

∑
(v,w)∈E T vwσT (}w|)

(1)
where T Sw = 1

∏
(u,w)∈E,u∈S(1 T uw) if w � N(S);

otherwise, T Sw = 0. In other words, T Sw is the prob-
ability w gets immediately activated by seed nodes.
The rationality behind Equation 1 is that the marginal
influence increase is a discount of σT (}v|). The higher
probability v’s neighbors are already activated by S,
the larger discount should be applied to σT (}v|). With

7

this marginal influence spread increase approximation,
we propose Algorithm 4 to solve the time constrained
influence maximization problem.

Algorithm 4: Marginal Discount of Influence Spread
Path

Input: G, T , K, Puv , P lat
u , θ

Output: S
1 for every u ∈ V do
2 calculate σT ({u}) by Algorithm 3.
3 u← argmaxv σT ({v})
4 S ← {u}
5 PSw ← Puw for w ∈ Nout(u)
6 PSw ← 0 for w /∈ Nout(u)
7 for k ← 1 to K − 1 do

8 u← argmaxv σT ({v})
∑

(v,w)∈E Pvw(1−PSw)σT ({w})
∑

(v,w)∈E PvwσT ({w})
9 S ← S ∪ {u}

10 update PSw for every w ∈ Nout(S).
11 return S

Algorithm 4 calculates time constrained influence
spread based on influence spreading paths for each sin-
gle node (Lines 1-3). Seed nodes are selected by picking
the node with the largest discounted marginal influence
one by one (Lines 8-12).
Time and space complexities As Algorithm 3 takes
O(nθT) time, the first for loop of Algorithm 4 takes
O(nnθT) time. Line 9 takes O(nemax) time while line
11 takes O(Kemax) time, where emax is the largest de-
gree among all nodes. Thus the second for loop takes
O((K 1)nemax) time, and the total running time of
Algorithm 4 is O(n(nθT + (K 1)emax)). Note that
Algorithm 4 itself solves the time constrained influence
maximization problem, and does not need to be com-
bined with Algorithm 1. By comparing Algorithm 4
and the combination of Algorithms 1 and 3, whose
running time is O(KnnθT), we find that they have the
same running time when K = 1, and Algorithm 4
runs faster when K > 1. This observation is consistent
with the experimental results that will be presented in
the experimental section. The memory space needed by
Algorithm 4 is dominated by running Algorithm 3 at line
2, and thus the space complexity for Algorithm 4 is the
same as that for Algorithm 3, which is O(n+m+ nθT).

4.6 Parallelized Algorithm
The running time of Algorithm 4 (resp. the combination
of Algorithms 1 and 3) is mostly dominated by applying
Algorithm 3 to calculate σ(}v|) for each v � ∪ in Line 1-
3 of Algorithm 4 (resp. Line 3 of Algorithms 1). Different
from local arborescences based methods [6], [17], Algo-
rithm 3 is based on Influence Spreading Path, in which
there exists no inter-dependency between calculating
σ(}v|) for different node v � ∪. Therefore, the most time
consuming parts of Algorithm 4 (resp. the combination
of Algorithms 1 and 3) can be easily parallelized on a
multi-core or distributed system with a multi-threaded
Queue or distributed Queue.

V1

Vn

V3
V2

...

Node Queue

...
Host 1 Host 2

...

Fig. 3. The Parallelization Architecture.

As depicted in Figure 3, all nodes ∪ are put into the
Queue, every thread repeatedly fetches node v from the
Queue and applies Algorithm 3 to calculate σ(v). Let
c be the total number of cores on a single machine or
in a distributed system, parallelized Influence Spread-
ing Path based methods can run up to c times faster.
The effectiveness of this parallelization strategy will be
demonstrated in the experimental study.

5 APPLYING INFLUENCE SPREADING PATH
TO CONVENTIONAL INFLUENCE MAXIMIZATION
PROBLEM

The conventional influence maximization problem based
on IC Model [18] can be regarded as a special case of
the time constrained influence maximization problem.
The proposed Influence Spreading Path based meth-
ods can be applied to the conventional influence maxi-
mization problem with slight modifications on Function
E T T (u, S) and Algorithm 1,3,4. In what follows we brief
the modifications.

Function E T T (u, S) is modified into E T (u, S), which
is presented below. It takes as input the Influence
Spreading Paths starting from S and ending with u
without considering time constraint T ; it returns the
probability u gets influenced by seed set S, which can
be computed under the same assumption made for
time constrained problem previously. With the assump-
tion that all Influence Spreading Paths starting from S
and ending with u are independent, we can calculate
E T (u, S) by iterating over all p � ISPθ(u, S) as de-
scribed in Lines 2-4 of Function AP . E T (u, S) at the right
hand side of Line 3 is the probability u gets influenced
by following the paths which has been checked by the
for loop before current iteration. (1 E T (u, S))prob(p) is
the probability u is not influenced by previously checked
paths and influenced by current path p.

Time and space complexities For the running time, the
dominant part of Function AP is the for loop in which
every Influence Spreading Path in ISPθ(u, S) is checked
exactly once. Thus the time complexity of Function AP
is O(\ISPθ(u, S)\). The space complexity of Function AP
is also O(\ISPθ(u, S)\).

Algorithm 1 is modified into Algorithm 5, where σ(S)
is computed by Algorithm 6.

8

Function AP (For Conventional Influence Maximiza-
tion Problem)

Input: ISPθ(u, S)
Output: AP(u, S)

1 AP(u, S)← 0
2 for p ∈ ISPθ(u, S) do
3 AP(u, S)← AP(u, S) + (1−AP(u, S))prob(p)
4 return AP(u, S)

Algorithm 5: Greedy Algorithm Framework (For
Conventional Influence Maximization Problem)

Input: G, K and Puv

Output: S
1 initialize S = ∅
2 for i← 1 to K do
3 u← argmaxv σ(S ∪ {v})− σ(S)
4 S ← S ∪ {u}
5 return S

Algorithm 6 is modified from Algorithm 3 by filtering
Influence Spreading Path by θ only at Line 2, and calling
the modified E T (u, S) at Line 5.

Time and space complexities Let nθ =
max|S|≤K}\ISPθ(S)\| , where \ISPθ(S)\ is the number
of Influence Spreading Paths starting from S with
probability no less than θ. Following a similar analysis
of Algorithm 3, we find that the time complexity
of Algorithm 6 is O(nθ). Thus the combination of
Algorithm 5 and 6 takes O(Knnθ) time. It is evident
that the space complexity of Algorithm 6 is O(n+m+nθ),
where n+m comes from the input social graph, and nθ

is for storing ISPθ(S).

Algorithm 6: σ(S) based on Influence Spreading Path
(For Conventional Influence Maximization Problem)

Input: G, θ and S
Output: σ(S)

1 σ(S)← 0
2 get all Influence Spreading Paths with probability no less

than θ by DFS.
3 divide them into different ISPθ(u, S).
4 for every u with non-empty ISPθ(u, S) do
5 σ(S)← σ(S) +AP (ISPθ(u, S))

6 return σ(S)

To modify Algorithm 4 to cope with the conventional
influence maximization problem, we replace all σT (S)
with σ(S), which can be computed by Algorithm 6.

We note that the parallelization strategy in Section 4.6
is also applicable to Influence Spreading Path based
methods for conventional influence maximization prob-
lem.

6 EXPERIMENTS

6.1 Experimental Setup

Datasets Four public real-world social networks 1 are
used in the experiments, which are also widely used
in previous work on influence maximization. The basic
statistics of these networks are summarized in Table 2.
The first one (Wiki) is a Wikipedia voting network where
nodes represent wikipedia users and an edge from node
i to j represents that user i voted on user j. The second
one (Epinions) is a who-trust-whom social network of
a general consumer review site Epinions.com. The third
one (Slashdot) is a social network extracted from the user
community of Slashdot.org. The last one (LiveJournal) is
a large social network formed by LiveJournal commu-
nity.

TABLE 2
Statistics of Four Social Networks

Networks Wiki Epinions Slashdot LiveJournal
Node Number 7, 115 75K 82K 4.8M
Edge Number 103K 508K 948K 68.9M

Clustering Coefficient 0.2089 0.2283 0.0617 0.3123

Evaluated Methods The experimental study is to
demonstrate the capability of Influence Spreading Path
based methods for solving both conventional and time
constrained influence maximization problems. We note
that all methods proposed in this paper are based on
the greedy algorithm framework. The difference lies in
the way of calculating the marginal influence increase,
i.e., Line 3 of Algorithm 1. The following methods are
evaluated.

• Monte Carlo (MC). For time constrained influence
maximization problem, MC calculates both σT (S {
}v|) and σT (S) by simulations (combination of
Algorithms 1 and 2). For conventional influence
maximization, MC is the simulation based greedy
algorithm proposed in [3]. 20, 000 simulations are
employed for each seed set by following [3], [5], [6].

• Influence Spreading Path (ISP). Calculate both
σT (S{ }v|) and σT (S) by using Influence Spreading
Paths (combination of Algorithms 1 and 3). The
Influence Spreading Paths starting from each seed
set are calculated from scratch by DFS.

• Marginal Discount of Influence Spread Path (MISP).
Calculate influence spread σT (u) for each single
node u with Influence Spreading Paths starting
from u, then select a seed node with the largest
discounted marginal influence spread one by one
(Algorithm 4).

• Random. Randomly select K nodes as seeds, which
acts as the baseline method.

• Degree Discount (DC). The degree discount heuris-
tic proposed by [5].

• Prefix excluding Maximum Influence Arborescence
(PMIA). PMIA [6] is a state-of-the-art solution for

1. http://snap.stanford.edu/data

9

conventional influence maximization problems.
• Maximum Influence Arborescence for IC-M

(MIAM) and Maximum Influence Arborescence
with Converted propagation probabilities
(MIAC) [17]. MIAM and MIAC are proposed for
time constrained influence maximization problem
based on PMIA algorithm. They only apply to
the scenario of geometric influencing delay (to be
further explained in the next subsection).

The implementations of DC, PMIA, MIAM and MIAC
are provided by their authors. Note that all evaluated
methods are enhanced by CELF [4] optimization if ap-
plicable.

We apply the aforementioned algorithms to the time
constrained influence maximization problem, and all
except MIAM and MIAC to the conventional influence
maximization problem, for which MIAM and MIAC
reduce to PMIA.
Parameter Setting The activating probability T uv of each
edge (u, v) is set by the “Weighted Cascade” policy,
which is widely adopted by the existing conventional
influence maximization techniques [3], [5], [6]. With
“Weighted Cascade” policy, T uv is set to be 1

Nin(v)
, where

Nin(v) is the indegree of v.
In time constrained influence maximization problems,

we consider two types of distributions for the influenc-
ing delays (T lat

u), namely Poisson Delay Distribution or
Geometric Delay Distribution. For each node u � ∪, the
parameter for its Poisson distribution (expected number
of occurrences in a given interval) is randomly selected
from the set }1, 2, 3, ..., 20| ; the parameter for its Geomet-
ric distribution is generated by 5/(dout(u)+5), which fol-
lows the same way as [17]. We note that the distributions
of both activating probability and influencing delay are
orthogonal to the proposed methods.

The threshold parameters for PMIA, MIAM and MIAC
are set to 1

320 suggested by [6], [17]. We ran them with
other threshold values, which resulted in less influence
spread.

Parameter θ controls the number of Influence Spread-
ing Paths for MISP and ISP. Intuitively, a smaller value of
θ results in a larger number of Influence Spreading Paths
used by MISP and ISP, and thus should achieve larger
influence spread. However, on the other hand, a smaller
value of θ incurs a larger amount of running time. Thus
there exists a tradeoff between influence spread and
running time, which is tunable by θ.

To investigate the tradeoff and select an optimal value
of θ, we ran MISP and ISP with different values of θ for
both conventional and time constrained problems. The
running time and influence spread for different θ on Wiki
dataset with T = 10 (for time constrained problem only),
K = 50 are depicted in Figures 4 and 5. Note that results
for other datasets and/or different values of T and K
are similar, which are not included in this paper due to
the limited space. Not surprisingly, Figures 4 and 5 show
that a smaller value of θ achieves larger influence spread
but consumes more running time for both MISP and

θ θ

(a) Poisson Delay Distribution

θ θ

(b) Geometric Delay Distribution

Fig. 4. Running time and influence spread on Wiki for different
θ (T = 10,K = 50, Time Constrained Version).

θ θ

Fig. 5. Running time and influence spread on Wiki for different
θ (K = 50, Conventional Version).

ISP methods. As both MISP and ISP achieve relatively
large influence spread and short running time for time
constrained (resp. conventional) influence maximization
problem with θ = 10−5 (θ = 1

320), θ is set to 10−5 (1
320)

for time constrained (resp. conventional) problem in the
rest of the experimentations.
Measurement For the time constrained social influence
maximization problem, a critical performance metric is
the number of nodes influenced by the selected seed set
within a given time. As the time constrained influence
maximization problem is NP-hard, we are not able to
get the result in polynomial time. Thus we apply 20, 000
Monte Carlo simulations with seed set selected by each
evaluated method, and the average influenced node
number is used as the influence spread of the seed set.
We also measure the running time and memory needed
for each method. Furthermore, we will analyze the im-
pact of different values of T on the time constrained
influence maximization problem.

For the conventional influence maximization problem,
we measure the number of nodes influenced by the
selected seed set, which is calculated by applying 20, 000
Monte Carlo simulations as done by the previous work.
Similarly we also measure the running time and memory
needed for each method.

10

Poisson Delay Distribution

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

3500

4000

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC

0 10 20 30 40 50
0

500

1000

1500

2000

2500

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
MISP
ISP

Geometric Delay Distribution

0 10 20 30 40 50
0

20

40

60

80

100

120

140

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC
MIAM
MIAC

(a) Wiki

0 10 20 30 40 50
0

200

400

600

800

1000

1200

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC
MIAM
MIAC

(b) Epinions

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

450

500

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC
MIAM
MIAC

(c) Slashdot

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

1800

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
MISP
ISP

(d) LiveJournal

Fig. 6. Influence spread on four real world social networks for different values of K (T = 10, Time Constrained Version).

0 10 20 30 40 50
0

100

200

300

400

500

600

700

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC

(a) Wiki

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

12000

14000

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC

(b) Epinions

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

12000

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC

(c) Slashdot

0 10 20 30 40 50
0

1

2

3

4

5

6

7
x 104

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
MISP
ISP

(d) LiveJournal

Fig. 7. Influence spread on four real world social networks for different values of K (Conventional Version).

All algorithms are implemented in C++ language, and
compiled by gcc 4.4.3 on a Linux server with an 8-core
Intel Xeon 3.0 GHz CPU and 12 GB memory.

6.2 Experimental Results

In this section, we present the experimental results of the
proposed methods on four real world social networks.

6.2.1 Influence Spread
Time constrained influence maximization problem
MIAM and MIAC are only applicable to Geometric
influence delay distribution. All the other six methods
outlined in Section 6.1 are evaluated over datasets Wiki,
Epinions, and Slashdot for both Geometric and Poisson
distributions. However, PMIA, MIAM and MIAC are
not evaluated on the LiveJournal dataset as the memory
needed for these methods exceeds 12GB, which is the to-
tal amount of available memory in the experiments. We
cannot obtain the result for MC method on LiveJournal
dataset after running it for two days.

Figure 6 shows the results of influence spread over
the four datasets with T = 10 for different K values.
It shows that both ISP and MISP methods achieve sim-
ilar influence spread as the computationally expensive

greedy algorithm MC, which verifies the effectiveness
of Influence Spreading Path based methods.

As to MIAC and MIAM, which are developed for
the time constrained problem with Geometric influence
delay distribution, MIAC achieves less influence spread
than ISP and MISP. Though MIAM is able to achieve
similar influence spread as ISP and MISP, it cannot run
with LiveJournal due to a huge memory consumption.
As expected, a larger number of seed nodes achieve
larger influence spread for all evaluated methods, and
the randomly selected seed set result in very poor per-
formance.

Among the algorithms originally designed for conven-
tional influence maximization problem, PMIA performs
the best, but it achieves considerably lower influence
spread than do MISP, ISP and MC, which demonstrates
that methods for conventional influence maximization
problem do not work for the time constrained version.
Conventional influence maximization problem Figure 7
depicts the influence spread generated by different meth-
ods for conventional influence maximization problems.
Again, MC and PMIA cannot run with LiveJournal due
to either long running time or huge memory consump-
tion. From Figure 7, we can see that ISP and MISP
achieve similar influence spread as computationally ex-

11

Poisson Delay Distribution

Geometric Delay Distribution

(a) Wiki (b) Epinions (c) Slashdot (d) LiveJournal

Fig. 8. Running time on four real world social networks for different values of K (T = 10, Time Constrained Version).

pensive MC. Random and DC generate low influence
spread. PMIA is able to achieve similar influence spread
as ISP and MISP, but the huge memory consumption
limits its applicability to large datasets such as LiveJour-
nal.

6.2.2 Running Time and Memory Usage

Time constrained influence maximization problem Fig-
ure 8 shows the running time of different methods for
each dataset with T = 10. As the running time for
Random and DC is trivial, we do not include them to
make the figure more distinguishable. When K = 1, ISP
and MISP have similar running time, which is about
two orders of magnitude faster than MC. The running
time of ISP and MC increases as K increases, while
the running time of MISP almost remains constant for
different values of K. The results are mainly due to the
fact that MISP follows the same way as ISP to select
the first seed node (by Influence Spreading Path), but
employs a faster marginal influence spread estimation
mechanism to select the rest seed nodes. The time
needed by MISP is dominated by selecting the first seed
node, and thus the total running time of MISP is almost
constant for different values of K. We note that MISP is
nearly three orders of magnitude faster than MC when
K = 50. For small values of K, PMIA runs faster than
all other methods except DC and Random, which are
not depicted, on the three datasets where PMIA can
return results. However, for a large K (K > 10 for
Wiki and Epinions, K > 20 for Slashdot), MISP is faster
than PMIA. MIAM runs slower than MISP for almost
all settings except K = 1 with Wiki. Though MIAC runs
faster than MISP, it achieves lower influence spread as
indicated in Figure 6, and cannot run with LiveJournal
due to a huge memory consumption.

Table 3 shows the number of the Influence spreading

paths at different lengths. Together with Figure 8, we can
see that the runtime on datasets with a larger number of
Influence Spreading Paths is consistently larger.
Conventional influence maximization problem Figure 9
shows the running time for different methods. Again,
PMIA cannot run with LiveJournal, MC cannot finish
over Epinions with K > 20, and Slashdot with K > 10
in two days, which is the reason why we do not have
the corresponding data points in Figure 9. We observe
that MISP consistently runs faster than other methods.
Again, the running time of methods other than MISP
increases as K increases, while that of MISP almost
remains constant.
Memory Usage Tables 4, 5 and 6 show the peak memory
usage of each method for different datasets with T = 10
for conventional and time constrained influence maxi-
mization problems, respectively. We find that Random,
MISP and MC always need the same amount of memory,
which is mainly occupied by the social network data.
For the two Influence Spreading Path based methods,
the memory consumption of ISP grows as K increases,
while the memory needed by MISP remains constant.
PMIA, MIAM and MIAC consume the largest amount
of memory, which renders them inapplicable to social
networks of large scales (e.g., LiveJournal).

6.2.3 Effect of Different Values of T

To investigate the impact of T on the algorithm perfor-
mance, we run MC with Wiki, Slashdot and Epinions
datasets for T � }1, 2, ..., 10| (as indicated in the previous
sections, we cannot run MC with LiveJournal). Tables 7
and 8 depict the overlaps of seed sets returned by MC
for different values of T with K = 50 for Poisson and
Geometric distributions repectively. For example, value
34 at row T = 1 and column T = 4 in Table 7 (Wiki)
is the number of common nodes for the two T values.

12

TABLE 3
Numbers of ISP Lengths over Four Datasets

Length 1 2 3 4 5 6 7 8 9 10
Wiki 36,440 55,953 90,045 122,547 146,233 155,476 148,632 135,682 118,437 97,992

Epinions 181,777 409,483 774,760 1,190,460 1,587,003 1,896,070 2,092,568 2,188,456 2,175,690 2,072,851
Slashdot 299,875 712,727 1,377,842 2,093,187 2,701,194 3,101,107 3,250,077 3,210,867 3,005,332 2,689,608

LiveJournal 24,595,582 53,644,066 100,115,927 151,621,610 198,504,194 233,224,950 251,705,564 255,912,939 247,828,529 229,682,326

0 10 20 30 40 50
10−1

100

101

102

103

104

105

Seed Number (K)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

PMIA
MISP
ISP
MC

(a) Wiki

0 10 20 30 40 50
100

101

102

103

104

105

106

Seed Number (K)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

PMIA
MISP
ISP
MC

(b) Epinions

0 10 20 30 40 50
101

102

103

104

105

Seed Number (K)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

PMIA
MISP
ISP
MC

(c) Slashdot

0 10 20 30 40 50
1140

1160

1180

1200

1220

1240

1260

1280

1300

1320

Seed Number (K)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

MISP
ISP

(d) LiveJournal

Fig. 9. Running time on four real world social networks for different values of K (Conventional Version).

TABLE 4
Memory Usage in MB (Conventional Version)

K 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50
Wiki Epinions Slashdot LiveJournal

Random 12 12 12 12 12 12 50 50 50 50 50 50 84 84 84 84 84 84 5785 5785 5785 5785 5785 5785
DC 15 15 15 15 15 15 74 74 74 74 74 74 119 119 119 119 119 119 8358 8358 8358 8358 8358 8358

PMIA 19 19 19 19 19 19 145 145 146 147 147 148 186 186 187 188 189 189 N.A N.A N.A N.A N.A N.A
MISP 12 12 12 12 12 12 50 50 50 50 50 50 84 84 84 84 84 84 5785 5785 5785 5785 5785 5785
ISP 12 12 12 12 12 12 50 50 50 50 50 50 84 84 84 84 84 84 5785 5785 5785 5785 5785 5785
MC 12 12 12 12 12 12 50 50 50 N.A N.A N.A 84 84 N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A

TABLE 5
Memory Usage in MB (T = 10, Poisson Delay Distribution)

K 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50
Wiki Epinions Slashdot LiveJournal

Random 13 13 13 13 13 13 51 51 51 51 51 51 85 85 85 85 85 85 5785 5785 5785 5785 5785 5785
DC 19 19 19 19 19 19 74 74 74 74 74 74 119 119 119 119 119 119 8358 8358 8358 8358 8358 8358

PMIA 19 19 19 20 20 20 145 146 147 147 148 149 186 187 188 188 189 190 N.A N.A N.A N.A N.A N.A
MISP 13 13 13 13 13 13 51 51 51 51 51 51 85 85 85 85 85 85 5785 5785 5785 5785 5785 5785
ISP 13 19 20 21 21 21 51 57 74 78 82 83 85 99 106 138 142 147 5785 5785 5785 5785 5785 5785
MC 13 13 13 13 13 13 51 51 51 51 51 51 85 85 85 85 85 85 N.A N.A N.A N.A N.A N.A

Poisson Delay Distribution

1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

Time Constraint T

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC

1 2 3 4 5 6 7 8 9 10
10−1

100

101

102

103

104

105

Time Constraint T

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

PMIA
MISP
ISP
MC

Geometric Delay Distribution

1 2 3 4 5 6 7 8 9 10
50

60

70

80

90

100

110

120

130

140

Time Constraint T

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC
MIAM
MIAC

(a) Influence Spread

1 2 3 4 5 6 7 8 9 10
10−1

100

101

102

103

104

Time Constraint T

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

PMIA
MISP
ISP
MC
MIAM
MIAC

(b) Running Time

Fig. 10. Results on Wiki with different T (K = 50).

We find that seed sets maximizing influence spread with
different time constraints differ significantly. We argue
that time constraint plays an important role in influence

maximization problem, and the set of nodes maximizing
influence spread before a given time do not necessarily
maximize that for a different time constraint.

To investigate how the value of T affects the running
time needed and influence spread achieved by differ-
ent methods, we show the running time and influence
spread for different T on Wiki dataset with K = 50 in
Figure 10. Note that results for other datasets and/or
different values of K are similar, which are not included
in this paper due to the limited space. As the running
time for Random and DC is trivial, to make the figure
more distinguishable, Random and DC methods are
excluded from these figures. We find that the running
time of MISP, ISP, MIAM and MC increases as T in-
creases, while that of PMIA and MIAC remains constant.
MISP achieves much less running time than MC and
ISP. MIAC runs faster than all other methods, but it
achieves less influence spread and consumes a huge
amount of memory. Again, MC needs the largest amount
of running time among all methods. We also find that all
methods achieve more influence spread as T increases.
This is due to the fact that a larger value of T poses less
restriction on time slots during which influence spread
is counted. Again, MC, ISP, MISP and MIAM achieve

13

TABLE 6
Memory Usage in MB (T = 10, Geometric Delay Distribution)

K 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50
Wiki Epinions Slashdot LiveJournal

Random 12 12 12 12 12 12 50 50 50 50 50 50 84 84 84 84 84 84 5787 5787 5787 5787 5787 5787
DC 15 15 15 15 15 15 74 74 74 74 74 74 119 119 119 119 119 119 8360 8360 8360 8360 8360 8360

PMIA 19 19 19 19 19 19 145 145 146 147 147 148 186 186 187 188 189 189 N.A N.A N.A N.A N.A N.A
MISP 12 12 12 12 12 12 50 50 50 50 50 50 84 84 84 84 84 84 5787 5787 5787 5787 5787 5787
ISP 12 12 12 12 12 13 50 50 50 50 50 56 84 84 84 84 84 84 5787 5787 5787 5787 5787 5787
MC 12 12 12 12 12 12 50 50 50 50 50 50 84 84 84 84 84 86 N.A N.A N.A N.A N.A N.A

MIAC 21 21 21 21 21 21 106 106 106 106 106 106 144 144 144 144 144 144 N.A N.A N.A N.A N.A N.A
MIAM 295 334 360 398 456 521 934 1224 2004 2524 2768 3157 1031 1258 1587 2133 2531 2672 N.A N.A N.A N.A N.A N.A

TABLE 7
The Overlaps of Seed Sets Returned by MC with different T (K = 50, Poisson Delay Distribution)

T 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Wiki Epinions Slashdot

1 50 43 36 34 32 30 28 24 23 22 50 44 34 28 22 18 18 18 18 17 50 42 36 28 23 19 15 13 12 11
2 50 41 39 37 35 33 29 27 26 50 40 34 28 23 22 22 21 20 50 44 36 31 27 23 20 20 16
3 50 46 44 42 39 33 31 28 50 43 37 31 30 30 29 27 50 42 37 31 25 22 22 18
4 50 48 46 42 36 34 31 50 44 38 36 36 34 32 50 45 39 33 30 30 26
5 50 47 43 37 35 32 50 44 40 39 37 35 50 43 36 33 33 29
6 50 46 40 38 35 50 45 43 41 39 50 43 40 39 35
7 50 44 42 39 50 48 46 44 50 47 46 42
8 50 48 45 50 48 46 50 48 45
9 50 46 50 48 50 46

10 50 50 50

TABLE 8
The Overlaps of Seed Sets Returned by MC with different T (K = 50, Geometric Delay Distribution)

T 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Wiki Epinions Slashdot

1 50 37 36 33 25 12 7 4 1 1 50 40 32 25 22 22 19 16 16 15 50 40 31 26 23 18 15 14 13 12
2 50 46 41 35 24 16 13 8 8 50 40 34 30 27 25 21 20 19 50 40 34 30 23 16 15 14 13
3 50 43 37 26 18 15 11 11 50 39 35 33 30 27 26 24 50 41 35 28 21 20 19 18
4 50 41 28 24 21 17 17 50 46 43 41 37 35 33 50 42 37 30 28 27 25
5 50 34 30 28 22 22 50 46 45 41 39 37 50 41 36 33 32 31
6 50 37 37 29 30 50 46 43 42 40 50 42 38 38 35
7 50 39 31 34 50 45 43 41 50 44 45 40
8 50 39 39 50 47 46 50 43 40
9 50 42 50 47 50 42

10 50 50 50

1 2 3 4 5 6 7 8
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Number of Threads

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

MISP
ISP

(a) Poisson Delay Distribu-
tion, T = 10)

1 2 3 4 5 6 7 8
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Number of Threads

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

MISP
ISP

(b) Geometric Delay Distribu-
tion, T=10)

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

Number of Threads

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

MISP
ISP

(c) Conventional Version

Fig. 11. Running time on Livejournal with different number of threads (K = 50).

similar influence spread, which is much more than that
of other methods.

6.2.4 Effect of Parallelized Processing
Parallelized algorithms are tested in the same environ-
ment as described in Section 6.1. Figure 11 shows the
running time needed by ISP and MISP over LiveJournal
with different number of threads running on different
CPU cores. As expected, the running time decreases as
more threads are added. This demonstrates that the par-
allelism of ISP and MISP further speeds up the solutions.

6.3 Summary and Discussion

From the experimental results, we find that time con-
straint plays an important role in influence maximization
problem. Straightforward methods, like Random and
DC, are not suitable for the time constrained influence

maximization problem thereby leading to poor influence
spread. PMIA, a state-of-the-art solution for the conven-
tional influence maximization problem, achieves much
less time constrained influence spread than do MC,
ISP and MISP. Another drawback of applying PMIA to
maximize time constrained influence is its large memory
consumption, which makes it unsuitable for large social
networks. MIAM is able to achieve similar influence
spread as ISP and MISP, while MIAC performs worse
in terms of influence spread when Geometric delay
distribution is employed. MIAM and MIAC suffer from
the same problem as PMIA on large networks, i.e.,
huge memory consumption. By investigating the effect
of different values of T , we find that the set of nodes
maximizing influence spread before a given time do not
necessarily maximize that for a different time constraint,
which shows that time constraint plays an important role
in influence maximization problem. Influence Spreading

14

Path based methods (ISP and MISP) run much faster
than other methods and can be easily parallelized.

Influence Spreading Path based method ISP and MISP
can be successfully used to solve conventional influence
maximization problem. Moreover, MISP runs faster than
the state-of-the-art method PMIA, achieves similar influ-
ence spread, and needs much less memory.

One limitation of Influence Spreading Path based
methods is that parameter θ needs to be manually tuned
to make a good tradeoff between influence spread and
running time.

7 CONCLUSION

In this paper, we define a new problem of the time
constrained influence maximization in social networks
based on a Latency Aware Independent Cascade model.
We develop a simulation based greedy algorithm with
performance guarantees to solve the problem. However,
the simulation based implementation of the greedy al-
gorithm is rather expensive, and is not scalable for large
social networks. We propose to use Influence Spreading
Paths to quickly and effectively approximate the time
constrained influence spread for a given seed set, which
is the expensive part of the greedy algorithm. Further, by
employing faster marginal influence spread calculating
methods, we propose MISP to improve the speed of
ISP. Experimental results show that MISP is the fastest
and multiple orders of magnitude faster than simulation
based greedy algorithm MC while achieving similar
time constrained influence spread. Other nice properties
of MISP include that its running time almost remains
constant as K increases, and can be easily parallelized.

Influence Spreading Path based methods are also suc-
cessfully applied to conventional influence maximization
problem. Experimental results show that MISP outper-
forms the state-of-the-art method PMIA in terms of run-
ning time and memory consumption, while achieving
similar amount of influence spread.

REFERENCES

[1] P. Domingos and M. Richardson, “Mining the network value of
customers,” in KDD, pp. 57–66, 2001.

[2] M. Richardson and P. Domingos, “Mining knowledge-sharing
sites for viral marketing,” in KDD, pp. 61–70, 2002.

[3] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread
of influence through a social network,” in KDD, pp. 137–146,
2003.

[4] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. Glance, “Cost-effective outbreak detection in networks,”
in KDD, pp. 420–429, 2007.

[5] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization
in social networks,” in KDD, pp. 199–208, 2009.

[6] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization
for prevalent viral marketing in large-scale social networks,” in
KDD, pp. 1029–1038, 2010.

[7] Y. Wang, G. Cong, G. Song, and K. Xie, “Community-based
greedy algorithm for mining top-K influential nodes in mobile
social networks,” in KDD, pp. 1039–1048, 2010.

[8] Q. Jiang, G. Song, G. Cong, Y. Wang, W. Si, and K. Xie,
“Simulated Annealing Based Influence Maximization in Social
Networks,” in AAAI, pp. 127–132, 2012.

[9] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “A data-based
approach to social influence maximization,” in PVLDB, vol. 5,
pp. 73–84, 2011.

[10] F. Bass, “A new product growth model for consumer durables,”
in Management Science, vol. 15, pp. 215–227, 1969.

[11] V. Mahajan, E. Muller, and F. M. Bass, “New Product Diffusion
Models in Marketing: A Review and Directions for Research,” in
The Journal of Marketing, vol. 54, no. 1, pp. 1–26, 1990.

[12] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “Learning influence
probabilities in social networks,” in WSDM, pp. 241–250, 2010.

[13] M. G. Rodriguez, J. Leskovec, and A. Krause, “Inferring networks
of diffusion and influence,” in KDD, pp. 1019–1028, 2010.

[14] M. G. Rodriguez, D. Balduzzi, and B. Schölkopf, “Uncovering
the Temporal Dynamics of Diffusion Networks,” in ICML, pp.
561–568, 2011.

[15] K. Saito, M. Kimura, K. Ohara, and H. Motoda, “Selecting
Information Diffusion Models over Social Networks for
Behavioral Analysis,” in PKDD, pp. 180–195, 2010.

[16] K. Saito, K. Ohara, Y. Yamagishi, M. Kimura, and H. Motoda,
“Learning diffusion probability based on node attributes in social
networks,” in ISMIS, pp. 153–162, 2011.

[17] W. Chen, W. Lu, and N. Zhang, “Time-critical influence
maximization in social networks with time-delayed diffusion
process,” in AAAI, pp. 1–5, 2012.

[18] J. Goldenberg, B. Libai, and E. Muller, “Talk of the Network:
A Complex Systems Look at the Underlying Process of
Word-of-Mouth,” in Marketing Letters, pp. 211–223, 2001.

[19] B. Liu, G. Cong, D. Xu and Y. Zeng, “Time Constrained Influence
Maximization in Social Networks,” in ICDM, pp. 439–448, 2012.

[20] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis
of approximations for maximizing submodular set functions,” in
Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.

[21] W. Lee, J. Kim, and H. Yu, “CT-IC: Continuously Activated
and Time-Restricted Independent Cascade Model for Viral
Marketing,” in ICDM, pp.960-965, 2012.

Bo Liu is working with Facebook Inc. He received his PhD in 2009
from Huazhong University of Science and Technology, China. Before
he joined Facebook, Dr. Liu was a lecturer in Huazhong University of
Science and Technology and research fellow in Nanyang Technological
University, Singapore. His current research interests are on social
networks.

Gao Cong is an assistant professor at Nanyang Technological Univer-
sity, Singapore. He received his PhD degree from the National University
of Singapore in 2004. Before he relocated to Singapore, he worked
at Aalborg University, Microsoft Research Asia, and the University
of Edinburgh. His current research interests include geo-textual data
management and data mining.

Yifeng Zeng is a Reader at School of Computing in Teesside University.
He received his PhD in 2006 from National University of Singapore,
Singapore. Before he moved to Teesside University, Dr. Zeng was an
assistant professor and an associate professor during 2006 - 2012
in Aalborg University, Denmark. His current research interests include
intelligent agents, decision making, social networks, and computer
games.

Dong Xu is currently an associate professor at Nanyang Technological
University in Singapore. He received the B.Eng. and PhD degrees from
University of Science and Technology of China, in 2001 and 2005,
respectively. He also worked at Columbia University for one year as a
postdoctoral research scientist. His research interests include computer
vision and machine learning.

Yeow Meng Chee is an associate professor at Nanyang Technological
University, Singapore. He received the B.Math. degree in computer
science and combinatorics and optimization and the M.Math. and Ph.D.
degrees in computer science, from the University of Waterloo, in 1988,
1989, and 1996, respectively. He was Program Director of Interactive
Digital Media R&D in the Media Development Authority of Singapore.
His research interest lies in the interplay between combinatorics and
computer science/engineering, particularly combinatorial design theory,
coding theory, extremal set systems, and electronic design automation.

15

APPENDIX
A. Experiments on Weighted Networks To further con-
firm the performance of all comparative methods, we
conduct an extra set of experiments on a weighted net-
work of coauthor-ships (Cond) 2. The weighted network
represents relations between scientists posting preprints
on the Condensed Matter E-Print Archive between Jan 1,
1995 and December 31, 1999. Cond has 16,264 nodes and
47,594 edges. Figure 12 repeats the performance trend of
MISP and ISP methods compared to other methods (both
DP and RatioDP methods will be explained in the next
section) in both time constraint and conventional ver-
sions. As expected, MISP outperforms other methods
in terms of a trade-off between influence spread and
running times. Table 9 shows the numbers of Influence
Spreading Paths with different lengths, which verifies
the reasonable running time compared to that occurring
in the aforementioned networks.

Tables 10–12 show the memory usage of different
methods on dataset Cond. These results are consistent
with those on the unweighted networks.

Poisson Delay Distribution

Geometric Delay Distribution

Conventional Version

(a) Influence Spread (b) Running Time

Fig. 12. Results in the Cond for both time constrained and
conventional versions.

B. Dynamic Programming Method One alternative so-
lution is a dynamic programming based algorithm to
calculate σT (S)

3. Let Pi,t denote the probability node

2. http://www-personal.umich.edu/∼mejn/netdata/
3. Thanks an reviewer for suggesting the dynamic programming

method

TABLE 9
Numbers of ISP Lengths for Cond

Length 1 2 3 4 5

Cond 47,594 249,456 1,086,901 3,032,341 5,882,947
6 7 8 9 10

8,376,949 9,129,711 7,807,479 5,280,272 2,805,913

TABLE 10
Memory Usage in MB (Conventional Version)

K 1 10 20 30 40 50

Cond

Random 8 8 8 8 8 8
DC 11 11 11 11 11 11

PMIA 15 15 15 15 15 15
MISP 8 8 8 8 8 8
ISP 8 8 8 8 8 8
MC 8 8 8 8 8 8

TABLE 11
Memory Usage in MB (T = 10, Poisson Delay Distribution)

K 1 10 20 30 40 50

Cond

Random 9 9 9 9 9 9
DC 12 12 12 12 12 12

PMIA 16 16 16 16 16 16
MISP 7 7 7 7 7 7
ISP 7 8 8 9 9 9
MC 7 7 7 7 7 7

TABLE 12
Memory Usage in MB (T = 10, Geometric Delay Distribution)

K 1 10 20 30 40 50

Cond

Random 11 11 11 11 11 11
DC 14 14 14 14 14 14

PMIA 17 17 18 18 18 18
MISP 11 11 11 11 11 11
ISP 11 16 21 22 30 31
MC 11 11 11 11 11 11

MIAC 20 20 20 20 20 20
MIAM 299 305 312 317 323 330

i is not infected after t time-stamps, we have σT (S) =∑
i∈V 1 Pi,T . By denoting the probability that node i

is exactly infected at time t with Qi,t, we have Pi,t =
1

∑t
j=1 Qi,j . Thus Pi,t can be recursively calculated as

Pi,t = Pi,t−1 Qi,t. For Qi,t, we can approximate it by
Qi,t ⊂ Pi,t−1 ≤(1

∏
j∈Nin(i)

∏t−1
g=1(1 Zj,i,g ≤Qj,t−g)).

where Zj,i,g is the probability j directly infect i with g
time. By combining Algorithm 1 with the method for
computing σT (S) described above, we get a solution for
the Time Constrained Influence Maximization problem,
which is denoted by DP in this paper. By following
a similar way to extend ISP to MISP, we extend DP
to RatioDP by employing a faster marginal influence
spread estimation as indicated by Equation 1.

Due to the large complexity of the DP based meth-
ods, they can only solve the influence maximization
problem in two small networks: Wiki and Cond net-
works. We show their performance in Figures 13 and 14.
Figures 13(a) and 14(a) demonstrate that the ISP still
achieves similar influence spread as that of the DP while
the MISP outperforms the RatioDP. In Figures 13(b)
and 14(b), compared to other methods, both the DP and
RatioDP methods take significantly larger amount of
running time on the two networks. Their consumption is
even approaching that of MC, which is considered as the
most time consuming algorithm in many experiments.

Tables 13 and 14 report the memory usage of all

16

Poisson Delay Distribution

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC
DP
RatioDP

0 10 20 30 40 50
100

101

102

103

104

105

Seed Number (K)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

PMIA
MISP
ISP
MC
DP
RatioDP

Geometric Delay Distribution

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

450

500

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC
MIAM
MIAC
DP
RatioDP

(a) Influence Spread

0 10 20 30 40 50
100

101

102

103

104

Seed Number (K)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

PMIA
MISP
ISP
MC
MIAM
MIAC
DP
RatioDP

(b) Running Time

Fig. 13. Results of the DP methods in the Wiki for the time
constrained version.

Poisson Delay Distribution

0 10 20 30 40 50
0

50

100

150

200

250

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC
DP
RatioDP

0 10 20 30 40 50
100

101

102

103

104

Seed Number (K)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

PMIA
MISP
ISP
MC
DP
RatioDP

Geometric Delay Distribution

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

450

500

Seed Number (K)

In
flu

en
ce

 S
pr

ea
d

Random
DC
PMIA
MISP
ISP
MC
MIAM
MIAC
DP
RatioDP

(a) Influence Spread

0 10 20 30 40 50
100

101

102

103

104

Seed Number (K)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

PMIA
MISP
ISP
MC
MIAM
MIAC
DP
RatioDP

(b) Running Time

Fig. 14. Results in the Cond for the time constrained version.

TABLE 13
Memory Usage in MB (T = 10, Poisson Delay Distribution)

K 1 10 20 30 40 50
Wiki

Random 13 13 13 13 13 13
DC 19 19 19 19 19 19

PMIA 19 19 19 20 20 20
MISP 13 13 13 13 13 13
ISP 13 19 20 21 21 21
MC 13 13 13 13 13 13
DP 15 15 15 15 15 15

RatioDP 15 15 15 15 15 15
Cond

Random 9 9 9 9 9 9
DC 12 12 12 12 12 12

PMIA 16 16 16 16 16 16
MISP 7 7 7 7 7 7
ISP 7 8 8 9 9 9
MC 7 7 7 7 7 7
DP 10 10 10 10 10 10

RatioDP 10 10 10 10 10 10

TABLE 14
Memory Usage in MB (T = 10, Geometric Delay Distribution)

K 1 10 20 30 40 50
Wiki

Random 12 12 12 12 12 12
DC 15 15 15 15 15 15

PMIA 19 19 19 19 19 19
MISP 12 12 12 12 12 12
ISP 12 12 12 12 12 13
MC 12 12 12 12 12 12

MIAC 21 21 21 21 21 21
MIAM 295 334 360 398 456 521

DP 15 15 15 15 15 15
RatioDP 15 15 15 15 15 15

Cond
Random 11 11 11 11 11 11

DC 14 14 14 14 14 14
PMIA 17 17 18 18 18 18
MISP 11 11 11 11 11 11
ISP 11 16 21 22 30 31
MC 11 11 11 11 11 11

MIAC 20 20 20 20 20 20
MIAM 299 305 312 317 323 330

DP 14 14 14 14 14 14
RatioDP 14 14 14 14 14 14

methods with T=10 in Wiki and Cond networks. The
results show that both DP and RatioDP methods require
more memory space than that needed by MISP. The
extra usage is necessary since the DP methods need to
backup all candidate paths in order to compute the path
probabilities in a recursive way.

In summary, the DP methods are able to achieve sim-
ilar influence spread in comparison to the ISP and MISP
methods. However, they are deemed to be inefficient
because they need to consume much more running time
and memory space.

