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Abstract

Multilateral relations between entities lose their seman-
tics when represented as simple graphs. Instead hyper-
graphs can naturally represent the said relations, which
are common in social tagging systems. An important
issue is the effect of the structural properties of a hyper-
graph on influence propagation. In the current work, an
empirical study is undertaken to compare the effect of
degree, k-shell and eigenvector centrality under the SIS,
and SIR models of infection. The results on the Movie-
Lens, Delicious and LastFM social networks indicate
that k-shell centrality is a more accurate predictor of
the influence of a node than degree centrality, and that
eigenvector centrality is closely correlated with k-shell
centrality.

Introduction

A graph is perhaps the most popular representation of a so-
cial network. It represents dyadic relations between actors,
where the edges stand for those relations and the nodes for
the actors. However, there are many cases in which triadic
or even multilateral relations need to be represented. For
instance, a seller, a buyer and a broker participating in a
business transaction; or a person seeing a movie, rating it,
and annotating it with tags. Mapping triadic to dyadic re-
lations leads to loss of information, for instance imagine
two users (ul, u2) annotating with different tags (t1, t2) the
same movie (m). With dyadic relations, we could capture the
user—movie, and the movie—tag relations, but we could not
attribute tags to users (see Fig. 1)

Such and similar cases are best represented as a hyper-
graph. In a hyper-graph the edges, named hyper-edges com-
prise two, three or more nodes of potentially different type.
An important issue is to discover the most important nodes
in such a network; important nodes are of high network
value and can be influential in the of information. For in-
stance, in a folksonomy that is comprised of items, tags and
users, a tag might be used often by many users to annotate
different resources, and thus it might rise in prominence de-
termining the influence of a new concept (consider for in-
stance the use of the word google as a tag). Similar argu-
ments can be drawn for influential users.
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Figure 1: Triadic Relations and Hypergraphs
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This work aims to study influence propagation in hyper-
graphs and in particular to characterise the structural proper-
ties of influential nodes. In infection propagation models we
focus on the Susceptible—Infected—Susceptible (SIS), and
on the Susceptible—Infected—Recovered (SIR) (Hethcote
2000). In the first model all nodes are initially in the suscep-
tible state, then they can pass to an infected state, ending up
in the susceptible state. In the SIR model, a node once in-
fected can pass to the recovered state, where it can no longer
be infected.

Intuitively, in single partite networks, the nodes at the core
of the network are expected to be more influential than the
ones at the periphery of the network. The k-shell decompo-
sition maps the nodes of the network to cores of different
values (or k values). The value of a core (or shell) denotes
the level of cohesion among the nodes that belong to that
core; thus nodes that belong to a k-core have at least k paths
between them. The concept of cores was proposed in (Sei-
dman 1983). The computational complexity of k-shell de-
composition is linear to the size of a graph.

The current work employs the concept of k-shell decom-
position to hyper-graphs, to assign k-shell values to nodes
in order to discover whether the k-shell value is a more ac-
curate predictor of the influence of a node as compared to
degree centrality; we also consider the role of eigen vector
centrality. Influence is measured as information propagation
under the SIS and SIR models of infection.



Literature Review

The areas that are relevant to our research include the k-shell
centrality, influence studies based on that measure, as well
as centrality measures on hyper-graphs. Next, we report on
those areas as related to this paper.

The definition of a k-shell (the term core is also in use)
in simple graphs is as follows: A subgraph C' of a graph
G = (V, E), where V and F represent the vertices and edges
respectively, is a k-shell iff Vo € V(C) : degreeg(v) > k
and C is the maximum subraph with this property. cores
were introduced in (Seidman 1983) as a measure of the co-
hesiveness of a network. An equivalent definition is that k-
shell is a maximal subset of vertices such that each is reach-
able from each of the others by at least k& vertex indepen-
dent paths. Two paths are defined as vertex independent if
they share none of the same vertices, with the exception of
the start and the end vertex (Newman 2010, Sect.7.8.2). The
computational complexity of the k-shell decomposition is
O(n + e), for a graph of n nodes, and e edges; this is an
advantage of the k-shell centrality as compared to other cen-
trality measures. The computation of the shell value for each
vertex, i.e. the k-shell decomposition, starts with £ = 1 and
proceeds incrementally until all nodes have been assigned to
a core.

Identifying the structural properties of influential nodes
in a network has been studied in the case of undirected
graphs under the SIS and SIR models of infection (Kitsak
et al. 2010), with a constant probability of infection be-
tween neighbouring nodes. The following structural prop-
erties were studied: k-shell value, degree centrality, and be-
tweeness centrality. It was discovered, on various real world
networks, that infections originating from a single node of
high k-shell value tend to spread the furthest compared to
nodes of high centrality under the other measures.

The concept of k-shell has been extended to weighted
graphs, by defining the weighted &’ degree of a node as k} =

k; Zf’ w;; and using it to derive weighted cores (Garas,

Schwitzer, and Havlin 2012). Infection has been modeled
according SIR, but the probability of a node to infect a
neighbour is proportional to the weight of their connection.
It was discovered, that an infection can be more widespread
in weighted than in unweighted networks.

A more general approach aims to separate the core from
the periphery of the network by allowing the discovery of
cores of different sizes and shapes (Rombach et al. 2012),
which extends earlier work (Borgatti and Everett 1999). In
particular, for each node ¢ the so named aggregate core value
cs is computed as follows, cs(i) = 3 C;(7) x R(7), where
C;(7y) expresses the local core quality of node i, R(7) ex-
presses the global core quality, and v is a parameter vector
that defines the size and the shape of the core. The core qual-
ity is defined as R(y) = >, ; Aif(Cy,Cj,7), where A is
the adjacency matrix, and f is a function that can be defined
accordingly. The point was to maximise the aggregate core
value, which was performed with simulated annealing.

The concept of k-shell has also been introduced to graphs
that evolve over time, with the aim to study the spread of
an infection (Miorandi and Pellegrini 2010). In particular,

two models have been proposed: the flat and the rich one. In
the former, two nodes ¢ and j are considered linked if they
are connected for any time interval; in the latter model the
duration of the connection plays an important role. Based
on experimental evidence, it was discovered that if the con-
tact duration of nodes follows a heavy-tail distribution then
the k-shell value, as defined by the rich model, is an accu-
rate predictor of the spread of infection compared to the flat
model and compared to degree centrality. Relevant research
has been carried out in the detection of k-shells in evolv-
ing graphs, without considering spread of infections; incre-
mental algorithms have proposed by (Li and Yu 2012) with
quadratic complexity, and in (Sariyuce et al. 2013) with lin-
ear complexity.

Hyper-graphs have been used to represent metabolic net-
works, food-webs, as well as in other domains. In hyper-
graphs an edge, also known as hyper-edge, might comprise
more than two nodes. The representation of hyper-graphs as
simple networks is also possible, but some of the semantics
are lost, which has as consequence that the degree central-
ity of nodes in a hyper-graph is potentially different from
that of a simple graph, which in our case would affect the
extraction of cores. In a study of human collaboration in pa-
per authoring, it was discovered that the degree centrality
of certain nodes depends on the representation form, thus a
simple graph and a hyper-graph render different centralities
to nodes (Estrada and Rodriguez-Velazquez 2005). A hyper-
graph can also be represented as a bi-partite graph, where
we introduce nodes to represent hyper-edges, this however
increases the complexity of the graph by increasing the num-
ber of nodes.

A multipartite network is essentially a hyper-graph, that
includes nodes of more than one type. The degree of a node
is defined as the number of hyper-edges in which the node
participates in. Such a graph can be represented with an in-
cidence matrix, where rows represent hyper-edges, and the
columns nodes. For instance Figure 2 represents a hyper-
graph with edges appearing as curves, the corresponding in-
cidence matrix appears in Table 1; in particular this is an ex-
ample of a tri-partite network that might represent a social
tagging system.

In hyper-graphs, the concept of node influence or cen-
trality has been addressed by an extension of eigen vector
centrality (Bonanich, Holdren, and Johnston 2004). Let E,
be the incidence matrix of a hyper-graph. Then the solution
to the following eigenvector problem computes centrality
scores x for the hyper-edges: EETx = A2z, here the cen-
trality scores ¥ for the nodes is computed as: ETEy = \%y.

Folkrank (Hotho et al. 2006) is measure that ranks the
nodes in a folksonomy that typically comprises users, tags
and resources. Folkrank, is an extension of pagerank (Brin
and Page 1998), which is based on concept of eigenvector
centrality. The centrality of nodes denoted by  is defined
as W = dAW + (1 — d)p, where A is the adjacency matrix,
d € (0,1) is constant, and p'is set to be a vector of all aces.
Usually, the previous equation is repeated many times until
the final value of J is obtained.

The previous two measures, i.e. eigenvector and folkrank
centrality, model conservative diffusion process, which



means that a quantity is preserved with the passage of time;
this is closely related to the random walker model. On the
other hand the initial quantity in a non-conservative process
can increase or decrease. Current empirical evidence sug-
gests that the diffusion of information is best described as a
non-conservative process (Ghosh and Lerman 2010).

k-shell Decomposition for Hyper-graphs

Let V denote the set of vertices and E denote the set
of hyper-edges, where each edge is a subset of V. Then
G(V,E) is a hypegraph. A vertex v is incident to an edge
e, if v € e. The degree d of vertex v can be defined as the
number of edges that this vertex belongs to, same as in sim-
ple graphs. In particular, if the number of types of nodes
is [, and each hyper-edge comprises [ different nodes, the
corresponding hyper-graph is named as a uniform [-partite
graph or an < [, > graph for short. An edge e, being a
set of nodes, is maximal if there is not another one that is
a superset of it, that is /3¢’ : e C €’. An edge sequence
P = (ey,e9,...¢) is named a path, provided that (Wang
and Lee 1998):

fOI'i?éj, ei#eja
Vi, Giﬂ€i+17é®,
fori#j, (e;Neit1) \ (eiNeir1) # 0,

A k-shell contains all the nodes that have at least k ver-
tex independent paths between them. In hyper-graphs, shells
can be obtained much like as in simple graphs. That is first,
all the nodes of degree one are removed, they are assigned
to shell 1. Then edges with less than two nodes are removed,
and the degree of the remaining nodes is modified accord-
ingly. In the next step, nodes will be assigned to shell 2;
and so on, until all nodes have been assigned to a shell (see
also Algorithm 1). For instance, a k-shell decomposition,
in two shells, of the graph in Figure 2 is depicted in Fig-
ure 3. The concept of discovering hyper-shells has also been
addressed in computational biology in (Ramadan, Tarafdar,
and Pothen 2004). In that work, in process of k-shell decom-
position, edges which are not maximal are discarded. In our
case, as we compute the shells, we do not discard non max-
imal edges, for they represent essentially extra connections
that are used to spread information. Furthermore, in the pro-
cess of k-shell decomposition we remove hyper-edges that
contain only one node.

Let us now define the direct neighbours of a node u as
all the nodes that belong to the same hyper-edge as u. This
definition allows us to extend breadth first in hyper-graphs,
which will in turn be used to implement infection models.
In Figure 4 a breadth first traversal is depicted, of the hyper-
graph, that is represented in Figure 2 and Table 1. In that,
we start from node w1, the direct neighbours of u; are the
t1, 1, T2, t4; the neighbours of the neighbours of u; are the
ug, and tg, t5, us.

Experiments

In the empirical evaluation we aimed to discover which of
the degree, shell, or eigen centrality is the most accurate pre-

Table 1: Incidence matrix representation of a hyper-graph

edge | user tag resource
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Figure 3: Shell decomposition of a hypergraph. All nodes
are in shell-1, and the nodes in dark background are also in
shell-2




dictor of a node’s capability to infect, under the SIS and SIR
models.

In the experiments we used three data sets that were
released as part of the HetRec workshop (Cantador,
Brusilovsky, and Kuflik 2011); in particular the movie lens,
delicious and lastFM sets. ! Movie lens comprises: 2,113
users, 10,197 movies, 13,222 tags, 47,957 hyper-edges;
LastFM comprises 1,892 users, 17,632 artists, 11,946 tags,
186,479 hyper-edges; and delicious comprises 1,867 users,
69,223 urls, 40,879 tags, 437,593 hyper-edges. All three data
sets are uniform tri-partite networks, where the hyper-edges
denote the assignment of a tag to a resource by a user.

First, we used the largest component in each of the tri-
partite graphs. Second, we discovered the degree centrality,
k-shell centrality and eigen centrality for each node in the
tri-partite graphs. The results of k-shell decomposition ap-
pear in Table 2, where the maximum degrees and the number
of shells are depicted. Moreover, it was discovered that low
degree nodes almost coincide with nodes in outer k-shells as
depicted in Figures 5,6 and 7. The y-axis denotes the per-
centage of nodes with identical k-shell, and degree.

Then we performed infections according to the SIS and
SIR models having as starting point one node only. This was
repeated for all nodes. The probability of a node infecting
a neighbouring node, 8 was set to 5%. The SIS and SIR
models appear in Algorithms 2, and 3 respectively. Infection
emanates in discrete time steps in a synchronous way, for a
maximum number of time steps maxSteps, which was set to
7. Second, each node once infected, remains infected for a
certain time period in fec;, which was set to 2. After this,
the node passes to the susceptible state in the SIS, or to the
recovered state in the SIR models.

As a measure of comparison we used a loss function, that
considers the extend to which high k-shell, degree or eigen
centrality accounts for the most infectious cells. Next, p rep-
resents the percentage of the top p cells according to a cen-
trality measure; ey, €4, €eig are the loss functions for k-
shell, degree and eigen centralities. In the following equa-
tion, the denominator denotes the top p% most infectious
nodes irrespective of the centrality, whereas the nominator
denotes the contagion capability of the top p% with respect
to their centrality:

M,
er(p) = 1= 1= (1)
e
M
calp) =1 - 31 @
My,
eeigen(p) =1- ﬁ (3)

Each experiment was repeated 10 times, for p € [0.1 :
0.01 : 0.05] (in matlab notation). The results are depicted
in Figures 8—13. The k-shell loss function is depicted as a
solid line, degree loss function as a dash line, and the eigen
loss function as a dot line. On the figures the error bars rep-
resent standard deviations across the 10 experiments. As it

' All data sets are hosted in the group lens site http: //www.
grouplens.org/node/462

Table 2: Decomposition Analysis of Tri-partite graphs
Movie Lens Delicious Last FM

degrees cores || degrees cores || degrees cores
5430 640 5550 180 7503 421

can be seen the k-shell loss function for different values of p,
is a better predictor of the spreading capacity of a node; and
it is correlated with the eigen loss function. This is an inter-
esting result given that eigen vector centrality is more suited
to conservative processes as discussed in the the literature
review.

Furthermore, in the case of movie lens, especially un-
der the SIS model all three centrality measures performed
poorly in detecting the majority of the most influential
nodes. Without any further investigation we might speculate
that another centrality measure, such the the in-betweeness
centrality (Freeman 1977), might have a higher perfor-
mance. Indeed, if the graph is made of multiple cores that
are weakly connected, then a seed node inside a core might
not take the infection very far.

In some experiments, not included in this report, we in-
creased the value of infect;, gradually up to maxSteps.
The result was that the loss functions remained well sep-
arated for both the degree and the k-shell centrality in the
SIS, and SIR experiments; but the loss functions have higher
values. This is caused by older nodes, which retain the capa-
bility to infect. Moreover, in another series of experiments
we increase the value of maxSteps up to 3 times the value
we set in the current experiments. The result is that the
loss function for degree centrality tends to become indistin-
guishable from the k-shell function. Finally, beyond a certain
threshold of the infection probability (i.e. around 20%), the
three infection methods under both the SIS, and SIR produce
almost identical results.

Algorithm 1: Hypergraph k-shell decomposition

1 V: hypergraph nodes;

2 E: hypergraph edges;

31— 1;

4 while V # {} do

5 while 3u € V with degree(u) = i do

6 remove 1 ;

7 if Jde € FE, with one node only, then
8 | remove e;

9 1 — 1

Conclusions and Future work

The experimental study on three hyper-graphs that represent
social networks confirms that the k-shell centrality in is a
more accurate predictor of influence than degree centrality
under the SIS, and SIR model. Thus we extend similar stud-
ies on simple graphs. The eigen vector centrality seems to be
similar, in predicting influential nodes, to k-shell centrality.



Algorithm 2: SIS Infection in hyper-graphs

1 I < {} :infected nodes ;

2 V :graph nodes;

3 s € V: Starting node of infection;
4 I+ TU{s};

5 for i=1 to maxSteps do

I+ TUT;
Vv € I, vlife < v.life—1;
10 Vo € I, where v.life= 0, I + I — {v};

o e 9

Vv € I infect their direct neighbours with probability 3;
let T be the infected neighbours, Vu € T, set u.li fe = infecty;

Algorithm 3: SIR Infection in hyper-graphs

I + {} :infected nodes ;

R «+ {} :recovered nodes;

V' :graph nodes;

s € V: Starting node of infection;
I+ TU{s};

for i=1 to maxSteps do

o XN R W N -

I=1UT;
Yov € I, vlife< v.life—1;

-
]

Vv € I, where v.life= 0,1 < I — {v} and R + RU {v}

Vv € I infect their direct neighbours who are not in R with probability 5;
let T be the infected neighbours, Vu € T, set u.life = in fecty;

We should also note, that k-shell as a centrality measure can
be computed in time linear to size of hyper-graph, whereas
other measures are computationally more demanding. For
instance the folkrank measure, requires time linear to the
size of the graph for each iteration.

Moreover, in the future we intend to study the role of cores
in influence propagation in evolving hyper-graphs. On line
social networks evolve by the addition or deletion of nodes
and edges. There has been some work on assigning core val-
ues to each node in evolving graphs (see (Miorandi and Pel-
legrini 2010), (Li and Yu 2012), (Sariyuce et al. 2013)); this
will be extended to hyper-graphs and then influence propa-
gation can be studied.

Finally, in the current study, we computed centralities and
studied influence irrespective of the types of nodes. We can
advance beyond that, by redefining centrality measures to
account for multiple node types (see for instance the work
in (Becker 2013)), and based on that to reconsider influence
modeling.
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Figure 8: MovieLens SIS, Infection
prob.=5%

MovicLens SIR: Eigen (dotted), Degree (dash), Core (solid)
065

0.6

0.55

0.5

o
= 'S
= &

Loss function

o
=

o
Yy
—

o
i

o
)

2 3 4
Percentage of Top Nodes

Figure 11: MovieLens SIR, Infection
prob.=5%
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Figure 6: Delicious: Degree and Shell
Correlation
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Figure 9: Delicious Infection
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Figure 7: Last FM: Degree and
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