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Abstract— Given a set of objects and a query q, a point p is
called the reverse k nearest neighbor (RkNN) of q if q is one of
the k closest objects of p. In this paper, we introduce the concept
of influence zone which is the area such that every point inside
this area is the RkNN of q and every point outside this area is not
the RkNN. The influence zone has several applications in location
based services, marketing and decision support systems. It can
also be used to efficiently process RkNN queries. First, we present
efficient algorithm to compute the influence zone. Then, based
on the influence zone, we present efficient algorithms to process
RkNN queries that significantly outperform existing best known
techniques for both the snapshot and continuous RkNN queries.
We also present a detailed theoretical analysis to analyse the
area of the influence zone and IO costs of our RkNN processing
algorithms. Our experiments demonstrate the accuracy of our
theoretical analysis.

I. INTRODUCTION

The reverse k nearest neighbors (RkNN) query [1], [2], [3],

[4], [5], [6], [7], [8] has received significant research attention

ever since it was introduced in [1]. A RkNN query finds every

data point for which the query point q is one of its k nearest

neighbors. Since q is close to such data points, q is said to

have high influence on these points. Hence, the set of points

that are the RkNNs of a query is called its influence set [1].

Consider the example of a gas station. The drivers for which

this gas station is one of the k nearest gas stations are its

potential customers. In this paper, the objects that provide a

facility or service (e.g., gas stations) are called facilities and

the objects (e.g., the drivers) that use the facility are called

users. The influence set of a given facility q is then the set of

users for which q is one of its k closest facilities.

In this paper, we first introduce a more generic concept

called influence zone and then we show that the influence

zone can be used to efficiently compute the influence set (i.e.,

RkNNs). Consider a set of facilities F = {f1, f2, · · · , fn}
where fi represents a point in Euclidean space and denotes the

location of the ith facility. Given a query q ∈ F , the influence

zone Zk is the area such that for every point p ∈ Zk, q is one

of its k closest facilities and for every point p′ /∈ Zk, q is not

one of its k closest facilities.

The influence zone has various applications in location

based services, marketing and decision support systems. Con-

sider the example of a coffee shop. Its influence zone may be

used for market analysis as well as targeted marketing. For

instance, the demographics of its influence zone may be used

by the market researchers to analyse its business. The influence

zone can also be used for marketing, e.g., advertising bill

boards or posters may be placed in its influence zone because

the people in this area are more likely to be influenced by the

marketing. Similarly, the people in its influence zone may be

sent SMS advertisements.

Note that the concept of the influence zone is more generic

than the influence set, i.e., the RkNNs of q can be computed

by finding the set of users that are located in its influence zone.

In this paper, we show that our influence zone based RkNN

algorithms significantly outperform existing best known algo-

rithms for both the snapshot and continuous RkNN queries

(formally defined in Section II).

Existing RkNN processing techniques [4], [5], [6], [9], [8]

require a verification phase to answer the queries. Initially, the

space is pruned by using the locations of the facility points.

Then, the users that are located in the unpruned space are

retrieved. These users are the possible RkNNs and are called

candidates. Finally, in the verification phase, a range query is

issued for every candidate to check if it is a RkNN or not.

In contrast to the existing approaches, our influence zone

based algorithm does not require the verification phase. Ini-

tially, we use our algorithm to efficiently compute the influence

zone. Then, every user that is located in the influence zone is

reported as RkNN. This is because a user can be the RkNN

if and only if it is located in the influence zone. Similarly, to

continuously monitor RkNNs, initially the influence zone is

computed. Then, to update the results we only need to monitor

the users that enter or leave the influence zone (i.e., the users

that enter in the influence zone become the RkNNs and the

users that leave the influence zone are no more the RkNNs). To

further improve the performance, we present efficient methods

to check whether a point lies in the influence zone or not.

It is important to note that the influence zone of a query

is the same as the Voronoi cell of the query when k =
1 [7]. For arbitrary value of k, there does not exist an

equivalent representation in literature (i.e., order k Voronoi cell

is different from the influence zone). Nevertheless, we show

that a precomputed order k Voronoi diagram can be used to

compute the influence zone (see Section V-A). However, using

the precomputed Voronoi diagrams is not a good approach to

process spatial queries as mentioned in [10]. For instance, the

value of k is not known in advance and precomputing several

Voronoi diagrams for different values of k is expensive and

incurs high space requirement. In Section V-A, we state several

other limitations of this approach.



Below, we summarize our contributions in this paper.

• We present an efficient algorithm to compute the influ-

ence zone. Based on the influence zone, we present effi-

cient algorithms that outperform best known techniques

for both snapshot and continuous RkNN queries.

• We provide a detailed theoretical analysis to analyse the

IO costs of computing the influence zone and our RkNN

processing algorithms, the area of the influence zone and

the number of RkNNs. Our experiment results show the

accuracy of our theoretical analysis.

• Our extensive experiments on real and synthetic data

demonstrate that our proposed algorithms are several

times faster than the existing best known algorithms.

The rest of the paper is organized as follows. In Section II,

we define the problem and describe the related work. Sec-

tion III presents our technique to efficiently compute the in-

fluence zone. In Section IV, we present efficient techniques to

answer RkNN queries by using the influence zone. Theoretical

analysis is presented in Section V followed by the experiment

results in Section VI. Section VII concludes the paper.

II. PRELIMINARIES

A. Problem Definition

First, we define a few terms and notations. Consider a set

of facilities F = {f1, f2, · · · fn} and a query q ∈ F in a

Euclidean space1. Given a point p, Cp denotes a circle centered

at p with radius equal to dist(p, q) where dist(p, q) is the

distance between p and q. |Cp| denotes the number of facilities

that lie within the circle Cp (i.e., the count of facilities such

that for each facility f , dist(p, f) < dist(p, q)). Please note

that the query q can be one of the k closest facilities of a point

p iff |Cp| < k. Now, we define influence zone and RkNN

queries.

Influence zone Zk. Given a set of facilities F and a query

q ∈ F , the influence zone Zk is the area such that for every

point p ∈ Zk, |Cp| < k and for every point p′ /∈ Zk, |Cp′ | ≥ k.

Now, we define the reverse k nearest neighbor (RkNN)

queries. RkNN queries are classified [1] into bichromatic and

monochromatic RkNN queries. Below, we define both.

Bichromatic RkNN queries. Given a set of facilities F , a set

of users U and a query q ∈ F , a bichromatic RkNN query is

to retrieve every user u ∈ U for which |Cu| < k.

Consider that the supermarkets and the houses in a city

correspond to the set of facilities and users, respectively. A

bichromatic RkNN query may be used to find every house for

which a given supermarket is one of the k closest supermar-

kets.

Monochromatic RkNN queries. Given a set of facilities F
and a query q ∈ F , a monochromatic RkNN query is to

retrieve every facility f ∈ F for which |Cf | < k + 1.

Please note that for every f , Cf contains the facility f .

Hence we have condition |Cf | < k + 1 instead of |Cf | < k.

1Although, like existing techniques [6], [9], the focus of this paper is two
dimensional location data, our techniques can be extended to high-dimensional
data (see Section 3.4 of our technical report [11]).

Consider a set of police stations. For a given police station q,

its monochromatic RkNNs are the police stations for which

q is one of the k nearest police stations. Such police stations

may seek assistance (e.g., extra policemen) from q in case of

an emergency event.

Snapshot vs continuous RkNN queries. In a snapshot query,

the results of the query are computed only once. In contrast, in

a continuous query, the results are to be continuously updated

as the underlying datasets issue location updates. Although

extensions are possible, in this paper, we focus on a special

case of continuous RkNN queries where only the users issue

location updates.

Given a set of facilities F , a query q ∈ F and a set of users

U that issues location updates, a continuous RkNN query is

to continuously update the bichromatic RkNNs of q.

A gas station may want to continuously monitor the vehicles

for which it is one of the k closest gas stations. It may issue

a continuous RkNN query to do so.

Throughout this paper, we use RNN query to refer to the

RkNN query for which k = 1. Table I defines other notations

used throughout this paper.

Notation Definition

q the query point

Cp a circle centered at p with radius dist(p, q)
|Cp| the number of facilities located inside Cp

Bx:q a perpendicular bisector between point x and q
Hx:q a half-plane defined by Bx:q containing point x
Hq:x a half-plane defined by Bx:q containing point q

TABLE I

NOTATIONS

B. Related work

Snapshot RkNN Queries: Korn et al. [1] were first to study

RNN queries. They answer the RNN query by pre-calculating

a circle for each data object p such that the nearest neighbor

of p lies on the perimeter of the circle. RNN of a query q is

every point that contains q in its circle. Techniques to improve

their work were proposed in [2], [3].

Now, we briefly describe the existing techniques that do not

require pre-computation. All these techniques can be easily

extended to answer the bichromatic RkNN queries. These

techniques have three phases namely pruning, containment

and verification. In the pruning phase, the space that cannot

contain any RkNN is pruned by using the set of facilities. In

the containment phase, the users that lie within the unpruned

space are retrieved. These are the possible RkNNs and are

called the candidates. In the verification phase, a range query

is issued for each candidate object to check if q is one of its

k nearest facility or not.

First technique that does not need any pre-computation was

proposed by Stanoi et al. [4]. They solve RNN queries by

partitioning the whole space centred at the query q into six

equal regions of 60◦ each (S1 to S6 in Fig. 1). It can be

proved that the nearest facility to q in each region defines the



area that can be pruned. In other words, assume that f is the

nearest facility to q in a region Si. Then any user that lies in

Si and lies at a distance greater than dist(q, f) from q cannot

be the RNN of q. Fig. 1 shows nearest neighbors of q in each

region and the white area can be pruned. Only the users that

lie in the shaded area can be the RNNs. The RkNN queries

can be solved in a similar way, i.e., in each region, the k-th

nearest facility of q defines the pruned area.

Tao et al. [5] proposed TPL that uses the property of

perpendicular bisectors to prune the search space. Consider

the example of Fig. 2, where a bisector between q and a is

shown as Ba:q which divides the space into two half-spaces.

The half-space that contains a is denoted as Ha:q and the half-

space that contains q is denoted as Hq:a. Any point that lies in

the half-space Ha:q is always closer to a than to q and cannot

be the RNN for this reason. Similarly, any point p that lies in k
such half-spaces cannot be the RkNN. TPL algorithm prunes

the space by the bisectors drawn between q and its neighbors

in the unpruned area. Fig. 2 shows the example where the

bisectors between q and a, b and c are drawn (Ba:q, Bb:q and

Bc:q, respectively). If k = 2, the white area can be pruned

because every point in it lies in at least two half-spaces.
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Fig. 2. TPL and FINCH

In the containment phase, TPL retrieves the users that lie

in the unpruned area by traversing an R-tree that indexes

the locations of the users. Let m be the number of facility

points for which the bisectors are considered. An area that

is the intersection of any combination of k half-spaces can

be pruned. The total pruned area corresponds to the union

of pruned regions by all such possible combinations of k
bisectors (a total of m!/k!(m − k)! combinations). Since the

number of combinations is too large, TPL uses an alternative

approach which has less pruning power but is cheaper. First,

TPL sorts the m facility points by their Hilbert values. Then,

only the combination of k consecutive facility points are

considered to prune the space (total m combinations).

As discussed above, to prune the entries, TPL uses m
combinations of k bisectors which is expensive. To overcome

this issue, Wu et. al [6] proposed an algorithm called FINCH.

Instead of using bisectors to prune the objects, they use a

convex polygon that approximates the unpruned area. Any

object that lies outside the polygon can be pruned. Fig. 2

shows an example where the shaded area is the unpruned

area. FINCH approximates the unpruned area by a polygon

MNOP . Any point that lies outside this polygon can be

pruned. Clearly, the containment checking is easier than TPL

because containment can be done in linear time for convex

polygons. However, please note that the area pruned by FINCH

is smaller than the area that actually can be pruned.

It is worth mentioning that some of the existing work

focus on computing Voronoi cell (or order k Voronoi cell) on

the fly. More specifically, Stanoi et al. [7] compute Voronoi

cell to answer RNN queries. On fly computation of order

k Voronoi cell was presented in [10], [12] to monitor kNN

queries. However, these approaches are not applicable for

RkNN queries.

Continuous RNN Queries: Benetis et al. [13] presented the

first continuous RNN monitoring algorithm. However, they

assume that velocities of the objects are known. First work that

does not assume any knowledge of objects’ motion patterns

was presented by Xia et al. [14]. Their proposed solution is

based on the six 60o regions based approach described earlier

in this section. Kang et al. [8] proposed a continuous monitor-

ing RNN algorithm based on the bisector based (TPL) pruning

approach. Both of these algorithms continuously monitor RNN

queries by monitoring the unpruned area.

Wu et al. [15] propose the first technique to monitor

RkNNs. Their technique is based on the six-regions based

RNN monitoring presented in [14]. More specifically, they

issue k nearest neighbor (kNN) queries in each region instead

of the single nearest neighbor queries. The users that are

closer than the k-th NN in each region are the candidate

objects and they are verified if q is one of their k closest

facilities. To monitor the results, for each candidate object,

they continuously monitor the circle around it that contains k
nearest facilities.

Cheema et al. [9] propose Lazy Updates that is the best

known algorithm to continuously monitor RkNN queries. The

existing approaches call the expensive pruning phase whenever

the query or a candidate object changes the location. Lazy

Updates saves the computation time by reducing the number of

calls to the expensive pruning phase. They assign each moving

object a safe region and propose the pruning techniques to

prune the space based on the safe regions. The pruning phase

is not needed to be called as long as the related objects remain

inside their safe regions.

III. COMPUTING INFLUENCE ZONE

A. Problem Characteristics

Given two facility points a and q, a perpendicular bisector

Ba:q between these two points divides the space into two

halves as shown in Fig 3(a). The half plane that contains

a is denoted as Ha:q and the half plane that contains q is

denoted as Hq:a. The perpendicular bisector has the property

that any point p (depicted by a star in Fig. 3(a)) that lies

in Ha:q is closer to a than q (i.e., dist(p, a) ≤ dist(p, q))
and any point y that lies in Hq:a is closer to q than a (i.e.,

dist(y, q) ≤ dist(y, a)). Hence, q cannot be the closest facility

of any point p that lies in Ha:q, i.e., Cp contains at least one

facility a. We say that the point p is pruned by the bisector

Ba:q if p lies in Ha:q . Alternatively, we say that the point a



prunes the point p. In general, if a point p is pruned by at

least k bisectors then Cp contains at least k facilities (i.e.,

|Cp| ≥ k).

Existing work [5], [6], [9] use this observation to prune the

space that cannot contain any RkNN of q. More specifically,

an area can be pruned if at least k bisectors prune it. In Fig. 3,

five facility points (q, a, b, c and d) are shown. In Fig. 3(a)

the bisectors between q and two facility points a and b are

drawn (see Ba:q and Bb:q). If k is 2, then the white area can

be pruned because it lies in two half-planes (Ha:q and Hb:q)

and |Cp′ | ≥ 2 for any point p′ in it. The area that is not pruned

is called unpruned area and is shown shaded.
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Fig. 3. Computing influence zone Zk (k = 2)

Although it can be guaranteed that for every point p′ in the

pruned area |Cp′ | ≥ k, it cannot be guaranteed that for every

point p in the unpruned area |Cp| < k if we only consider a

subset of the bisectors instead of all bisectors. In other words,

the unpruned area is not the influence zone. For example, in

Fig. 3(a), the point p lies in the unpruned area but |Cp| = 2
(i.e., Cp contains a and c). Hence, the shaded area of Fig. 3(a)

is not the influence zone.

One straight forward approach to compute the influence

zone is to consider the bisectors of q with every facility point

f . If the bisectors of q and all facilities are considered, then

the unpruned area is the area that is pruned by less than

k bisectors. Fig. 3(b) shows the unpruned area (the shaded

polygon) after the bisectors Bc:q and Bd:q are also considered.

It can be verified that the shaded area is the influence zone

(i.e., for every p in the shaded area |Cp| < 2 and for every p′

outside it |Cp′ | ≥ 2).

However, this straight forward approach is too expensive

because it requires computing the bisectors between q and

all facility points. We note that for some facilities, we do not

need to consider their bisectors. In Fig. 3(b), it can be seen that

the bisector Bd:q (shown in broken line) does not affect the

unpruned area (shown shaded). In other words, if the bisectors

of a, b and c are considered then the bisector Bd:q does not

prune more area. Hence, even if Bd:q is ignored, the influence

zone can be computed.

Next, we present some lemmas that help us in identifying

the facilities that can be ignored. Without loss of generality,

we assume that the data universe is bounded by a square.

Since we use bisectors to prune the space, the unpruned area

is always a polygon and is interchangeably called unpruned

polygon hereafter. Below we present several lemmas that not

only guide us to the final lemma but also help us in few other

proofs in the paper.

LEMMA 1 : A facility f can be ignored if for every point p
of the unpruned polygon, the facility f lies outside Cp.

Proof: As described earlier, a point p can be pruned by

the bisector Bf :q iff dist(p, f) < dist(p, q). In other words,

the point p can be pruned iff Cp contains f . Hence, if f lies

outside Cp, it cannot prune p. If f lies outside Cp for every

point p, it cannot prune any point of the unpruned polygon

and can be ignored for this reason.

Checking containment of f in Cp for every point p is not

feasible. In next few lemmas, we simplify the procedure to

check if a facility point can be ignored.
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Fig. 4. Lemma 2 and 3
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Fig. 5. Lemma 4

LEMMA 2 : Let pq be a line segment between two points q
and p. Let p′ be a point on pq. The circle Cp′ is contained by

the circle Cp.

Fig. 4 shows an example where the circle Cp′ (the shaded

circle) is contained by Cp (the large circle). The proof is

straight forward and is omitted. Based on this lemma, we

present our next lemma.

LEMMA 3 : A facility f can be ignored if, for every point p
on the boundary of the unpruned polygon, f lies outside Cp.

Proof: We prove the lemma by showing that we do not

need to check containment of f in Cp′ for any point p′ that

lies within the polygon. Let p′ be a point that lies within the

polygon. We draw a line that passes through q and p′ and cuts

the polygon at a point p (see Fig. 4). From Lemma 2, we know

that Cp contains Cp′ . Hence, if f lies outside Cp, then it also

lies outside Cp′ . Hence, it suffices to check the containment

of f in Cp for every point p on the boundary of the polygon.

The next two lemmas show that we can check if a facility

f can be ignored or not by only checking the containment of

f in Cv for every vertex v of the unpruned polygon.

LEMMA 4 : Given a line segment AB and a point p on AB.

The circle Cp is contained by CA ∪ CB , i.e., every point in

the circle Cp is either contained by CA or by CB (see Fig. 5).



Proof: Fig. 6 shows the line segment AB and the point

p. It suffices to show that the boundary of Cp is contained

by CA ∪ CB . If q lies on AB, the lemma can be proved by

Lemma 2. Otherwise, we identify a point D such that AB is a

segment of the perpendicular bisector between D and q. Then,

we draw a line L that passes through points D and q. First, we

show that the part of the circle Cp that lies on the right side

of L (i.e., the shaded part in Fig. 6(a)) is contained by CB .

Then, we show that the part of the circle Cp that lies on the

left side of L (i.e., the shaded part in Fig. 6(b)) is contained

by CA.
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Fig. 6. Illustration of Lemma 4

We can find the length of qB (denoted as qB) by using the

triangle △qpB and applying the law of cosines (see Fig. 6(a)).

qB =

√

(pB)2 + (pq)2 − 2 · pB · pq(Cos∡Bpq) (1)

For any point X that lies on the boundary of Cp and is on

the right side of L (i.e., the boundary of the shaded circle in

Fig. 6(a)), consider the triangle △ pXB. The length of BX
can be computed using the law of cosines.

BX =

√

(pB)2 + (pX)2 − 2 · pB · pX(Cos∡BpX) (2)

Please note that the triangles △qpB and △DpB are similar

because Dp = qp and DB = qB (any point on a perpendicular

bisector Bu:v is equi-distant from u and v). Due to similarity

of triangles △qpB and △DpB, ∡Bpq = ∡BpD.

It can be shown that BX ≤ qB by comparing Eq. (1) and

Eq. (2). This is because pX = pq and ∡BpX ≤ (∡Bpq =
∡BpD). Since cosine monotonically decreases as the angle

increases from 0◦ to 180◦, BX ≤ qB. This means the point

X lies within the circle CB .

Similarly, for any X that lies on the part of circle Cp that

is on left side of the line L (see Fig. 6(b)) it can be shown

that AX ≤ (AD = Aq). This can be achieved by considering

the triangles △pXA and △pDA and using law of cosines to

obtain AX and AD (the key observation is that ∡XpA ≤
∡DpA).

LEMMA 5 : A facility f can be ignored if, for every vertex

v of the unpruned polygon, the facility f lies outside Cv .

Proof: Let AB be an edge of the polygon. From

Lemma 4, we know that if a facility f lies outside CA and

CB , then it lies outside Cp for every point p on the edge AB.

This implies that if f lies outside Cv for every vertex v of the

polygon then it lies outside Cp for every point p that lies on

the boundary of the polygon. Such facility f can be ignored

as stated in Lemma 3.

Next lemma shows that we only need to check this condition

for convex vertices. First, we define the convex vertices.

DEFINITION 1 : Consider a polygon P where V is the set of

its vertices. Let Hcon be the convex hull of V . The vertices

of Hcon are called convex vertices of the polygon P and the

set of the convex vertices is denoted as Vcon.

Fig. 7 shows an example where a polygon with vertices A
to J is shown in broken lines. Its convex hull is shown in

solid lines which contains the vertices A, C, E, G and I and

these vertices are the convex vertices. Note that Vcon ⊆ V .
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Fig. 7. Convex Polygon

LEMMA 6 : A facility f can be ignored if it lies outside Cv

for every convex vertex v of the unpruned polygon P .

Proof: By definition of a convex hull, the convex hull

Hcon contains the polygon P . If a facility point f does not

prune any point of the convex polygon Hcon, it cannot prune

any point of the polygon P because P ⊆ Hcon. Hence, it

suffices to check if f prunes any point of Hcon or not. From

Lemma 5, we know that f does not prune any point of Hcon

if it lies outside Cv for every vertex v of Hcon. Hence, f can

be ignored if it lies outside every Cv where v is a vertex of

the convex polygon (i.e., v is a convex vertex).

The above lemma identifies a condition for a facility f to

be ignored. Next lemma shows that any facility that does

not satisfy this condition prunes at least one point of the

unpruned area. In other words, next lemma shows that the

above condition is tight.

LEMMA 7 : If a facility f lies in any Cv for any convex

vertex v of the unpruned polygon P then there exists at least

one point p in the polygon P that is pruned by f .

Proof: If f lies in Cv for any v ∈ Vcon, it means that

dist(f, v) < dist(f, q). Hence, f prunes the vertex v. Since

Vcon ⊆ V , the vertex v is a point in the polygon P .



B. Algorithm

Based on the problem characteristics we described earlier

in this section, we propose an algorithm to efficiently compute

the influence zone. We assume that the facilities are indexed by

an R-tree [16]. The main idea is that the facilities are iteratively

retrieved and the space is iteratively pruned by considering

their bisectors with q. The facilities that are close to the query

q are expected to prune larger area and are given priority.

Algorithm 1 presents the details. Initially, the whole data

space is considered as the influence zone and the root of the

R-tree is inserted in a min-heap h. The entries are iteratively

de-heaped from the heap. The entries in the heap may be

rectangles (e.g., intermediate nodes) or points. If a de-heaped

entry e completely lies outside Cv of all convex vertices of the

current influence zone (e.g., the current unpruned area), it can

be ignored. Otherwise, it is considered valid (lines 5 to 7). If

the entry is valid and is an intermediate node or a leaf node, its

children are inserted in the heap (lines 8 to 10). Otherwise, if

the entry e is valid and is a data object (e.g., a facility point),

it is used to prune the space. The current influence zone is

also updated accordingly (line 12). The algorithm stops when

the heap becomes empty.

Algorithm 1 Compute Influence Zone

Input: a set of objects O, a query q ∈ O, k
Output: Influence Zone Zk

1: initialize Zk to the boundary of data universe

2: insert root of R-tree in a min-heap h
3: while h is not empty do

4: deheap an entry e
5: for each convex vertex v of Zk do

6: if mindist(v, e) < dist(v, q) then

7: mark e as valid; break

8: if e is valid then

9: if e is an intermediate node or leaf then

10: insert every child c in h with key mindist(q, c)
11: else if e is an object then

12: update the influence zone Zk using e

The proof of correctness follows from the lemmas presented

in the previous section because only the objects that do not

affect the unpruned area are ignored. It is also important to

note that the entries of R-tree are accessed in ascending order

of their minimum distances to the query. The nearby facility

points are accessed and the unpruned area keeps shrinking

which results in a greater number of upcoming entries being

pruned. Hence, the entries that are far from the query are never

accessed.

Now, we briefly describe how to update the influence

zone when a new facility point f is considered (line 12 of

Algorithm 1). The idea is similar to [6]. The intersection points

between all the bisectors are maintained. Each intersection

point is assigned a counter that denotes the number of bisectors

that prune it. Fig. 8 shows an example (k = 2) where three

bisectors Ba:q , Bb:q and Bc:q have been considered. The

counter of intersection point v11 is 2 because it is pruned by

Bb:q and Bc:q. The counter of v8 is 1 because it is pruned only

by Bc:q. It can be immediately verified that the unpruned area

can be defined by only the intersection points with counters

less than k [6] (see the shaded area of Fig. 8).
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Next issue is to determine the convex vertices of the

unpruned area. One straight forward approach to determine the

convex vertices is to compute the convex hull of all intersection

points that have counters less than k. However, please note that

the number of intersection points may be O(m2) where m is

the number of bisectors considered so far. In [6], the authors

show that the number of vertices can be reduced from O(m2)
to O(m). However, the computation of convex hull on these

O(m) vertices costs O(m log m). The following lemma shows

that we do not need to compute the convex hull (in contrast

to [6]) to shortlist the vertices that are possibly the convex

vertices.

LEMMA 8 : Among the intersection points that do not lie on

the boundary of the data space, only the intersection points

with counters equal to k − 1 can be the convex vertices.

Proof: Any intersection that has a counter greater than

k − 1 is pruned by at least k objects hence cannot be on the

boundary of the influence zone (hence, cannot be a convex

vertex). Now, we show that the intersections that have counters

less than k − 1 cannot be the convex vertices.

Consider the example of Fig. 9 where a vertex V has been

shown which is the intersection point of two bisectors Ba:q

and Bc:q. Suppose that the counter of the vertex V is n. Now,

imagine a point p that lies on the line V N and is infinitely

close to the vertex V . Clearly, the point p is pruned by at most

n+1 bisectors2. This is because it is pruned by n bisectors that

prune V and the bisector Bc:q. Following the similar argument,

we can say that any point e that lies on the line V Z and is

infinitely close to V has a counter at most n + 1. The counter

of any point that lies in the polygon V NY Z (white area) and

is infinitely close to V is at least n + 2 (it is pruned by Bc:q

and Ba:q in addition to all the bisectors that prune V ).

2In this proof, we assume that only two bisectors pass through the
intersection point V . For the special case, when more than two bisectors
pass through a vertex V , we may choose to treat V as a convex vertex. Note
that this does not affect the correctness of the algorithm because checking
containment in a vertex that is not a convex vertex does not affect the
correctness.



If the counter n of the vertex V is less than or equal to

k − 2, then the line V N has at least one point p that has

counter at most k − 1 (i.e., n + 1 as shown above). Hence,

the line V N has at least one point p that lies in the influence

zone. Similarly, the line V Z has at least one point e that lies

in the influence zone. Clearly, the angle eV p is at least 180◦.

By definition of a convex hull, no internal angle of a convex

hull can be greater than 1800. Hence, the vertex V is not a

convex vertex if its counter is less than or equal to k − 2.

In Fig. 8, the vertices v7 and v9 do not lie on the boundary

and have counters less than k − 1 (where k = 2). Hence,

they are not the convex vertices. Among the points that lie on

the boundary points and have counters less than k, only the

two extreme points for each boundary line can be the convex

vertices. For example, in Fig. 8, the lower horizontal boundary

line contains 4 vertices (v3, v4, v5 and v6). The vertex v6

has counter not less than k and can be ignored. Among the

remaining vertices, we consider the extreme vertices (v3 and

v5) as the convex vertices. Following the above strategy, the

convex vertices in Fig. 8 are v3, v2, v8 and v5.

It can be shown that the number of possible vertices with

counters equal to k − 1 are O(m) where m is the number

of bisectors considered so far [6]. Hence, checking whether

an entry of the R-tree is valid or not requires O(m) distance

computations (see lines 5- 7 of Algorithm 1). Next, we present

few observations and show that we can determine the validity

of some entries by a single distance computation.
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LEMMA 9 : Let rmin be the minimum distance of q to the

boundary of the unpruned polygon. Then, an entry e is a valid

entry if mindist(q, e) < 2rmin (Fig. 10 shows rmin).

Proof: To prove that e is a valid entry, we show that

there exists at least one point p in the unpruned polygon such

that Cp contains e. If e lies inside the unpruned polygon

then e is a valid entry because Ce contains e and e is a

point in the unpruned polygon. Now, we prove the lemma for

the case when e lies outside the unpruned polygon. Fig. 10

shows an entry e for which dist(q, e) < 2rmin. We draw a

line that passes through e and q and intersects the boundary

of the unpruned polygon at a point p. Clearly, dist(p, e) =
dist(q, e) − dist(p, q). We know that dist(q, e) < 2rmin and

dist(p, q) ≥ rmin. Hence, dist(p, e) ≤ rmin which implies

that dist(p, e) ≤ dist(p, q). Hence, e lies in Cp.

LEMMA 10 : Let rmax be the distance of q to the furthest

vertex of the unpruned polygon. Then, an entry e of the R-

tree is an invalid entry if mindist(e, q) > 2rmax.

Proof: Fig. 11 shows rmax and a point e such that

dist(e, q) > 2rmax. Consider a point p on the boundary of

the unpruned polygon. By the definition of rmax, dist(p, q) ≤
rmax. Clearly, dist(p, q)+ dist(p, e) ≥ dist(q, e) (this covers

both the cases when p lies on the line qe and when △qpe is a

triangle). Since, dist(p, q) ≤ rmax and dist(e, q) > 2rmax,

dist(p, e) must be greater than rmax. Hence, dist(p, e) >
dist(p, q) which means e lies outside Cp. This holds true

for every point p on the boundary of the unpruned polygon.

Hence, e can be ignored (i.e., e is invalid).

If an entry of the R-tree satisfies one of the above two

lemmas, we can determine its validity without computing its

distances from the convex vertices. Note that rmax and rmin

can be computed in linear time to the number of edges of the

unpruned polygon and are only computed when the influence

zone is updated at line 12 of Algorithm 1.

C. Checking containment in the influence zone

The applications that use influence zone may require to

frequently check if a point or a shape lies within the influence

zone or not. Although the suitability of a method to check

the containment depends on the nature of the application, we

briefly describe few approaches.

One simple approach is to record all the objects that were

accessed during the construction of the influence zone (the

objects for which the bisectors were considered). If a shape

is pruned by less than k of these bisectors then the shape

lies inside the influence zone otherwise it lies outside the

influence zone. This approach takes linear time in number

of the accessed objects. Moreover, checking whether a point

is pruned by a bisector Ba:q is easy (e.g., if dist(p, a) <
dist(p, q) then the point p is pruned otherwise not). Hence, a

point containment check requires O(m) distance computations

where m is the number of the accessed objects.

Before we show that the point containment can be done

in logarithmic time, we define a star-shaped polygon [17]. A

polygon is a star-shaped polygon if there exists a point z in it

such that for each point p in the polygon the segment zp lies

entirely in the polygon. The point z is called a kernel point.

The polygon shown in Fig. 10 is a star-shaped polygon and q
is its kernel point. Fig. 12 shows a polygon that is not star-

shaped (the segment qp does not lie entirely in the polygon).

Let n be the number of vertices of a star-shaped polygon. After

a linear time pre-processing, every point containment check

can be done in O(log n) if a kernel point of the polygon is

known [17]. Please see [17] for more details.

LEMMA 11 : The influence zone is always a star-shaped

polygon and q is its kernel point.

Proof: We prove this by contradiction. Assume that there

is a point p in the influence zone such that the segment pq does

not lie completely within the influence zone. Fig. 12 shows an



example, where a point p′ lies on the segment pq but does not

lie within the influence zone. From Lemma 2, we know that

Cp contains Cp′ . Since p is a point inside the influence zone,

|Cp| < k. As Cp′ is contained by Cp, |Cp′ | must also be less

than k. Hence, p′ cannot be a point outside the influence zone.

Following similar argument as in [6], it can be shown that

the number of vertices of the influence zone is O(m) where m
is the number of the objects accessed during the construction

of the influence zone. Hence, the point containment check can

be done in O(log m).

Although we showed that the point containment in influence

zone can be checked in logarithmic time, we present two

simple checks to reduce the cost of containment check in

certain cases by using rmax and rmin we introduced earlier.

Let rmin and rmax be as defined in Lemma 9 and 10,

respectively. Then the circle centered at q with radius rmax

(the big circle in Fig. 10) completely contains the influence

zone. Similarly, the circle centered at q with radius rmin

(the shaded circle in Fig. 10) is completely contained by the

influence zone. Hence, any point p that has a distance greater

than rmax from q is not contained by the influence zone and

any point p′ that lies within distance rmin of q is contained

by the influence zone.

For the applications that allow relatively expensive pre-

processing, the influence zone can be indexed (e.g., by a

grid or a quad-tree) to efficiently check the containment. For

example, for the continuous monitoring of RkNN queries, we

use a grid to index the influence zone. The details are presented

in next section.

IV. APPLICATIONS IN RKNN PROCESSING

A. Snapshot Bichromatic RkNN Queries

Our algorithm consists of two phases namely pruning phase

and containment phase.

Pruning Phase. In this phase, the influence zone Zk is

computed using the given set of facilities.

Containment Phase. By the definition of influence zone Zk, a

user u can be the bichromatic RkNN if and only if it lies within

the influence zone Zk. We assume that the set of users are

indexed by an R-tree. The R-tree is traversed and the entries

that lie outside the influence zone are pruned. The objects that

lie in the influence zone are RkNNs.

B. Snapshot Monochromatic RkNN Queries

By definition of a monochromatic RkNN query (see Sec-

tion II-A), a facility f is the RkNN iff |Cf | < k + 1. Hence,

a facility that lies in Zk+1 is the monochromatic RkNN of q
where Zk+1 is the influence zone computed by setting k to

k + 1. Below, we highlight our technique.

Pruning Phase. In this phase, we compute the influence zone

Zk+1 using the given set of facilities F . We also record the

facility points that are accessed during the construction of the

influence zone and call them the candidate objects.

Containment Phase. Please note that every facility point that

is contained in the influence zone Zk+1 will be accessed dur-

ing the pruning phase. This is because every facility that lies in

the influence zone cannot be ignored during the construction

of the influence zone (inferred from Lemma 1). Hence, the set

of candidate object contains all possible RkNNs. For each of

the candidate object, we report it as RkNN if it lies within the

influence zone Zk+1.

C. Continuous monitoring of RkNNs

In this section, we present our technique to continuously

monitor bichromatic RkNN queries (see the problem definition

in Section II-A). The basic idea is to index the influence zone

by a grid. Then, the RkNNs can be monitored by tracking the

users that enter or leave the influence zone.
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Initially, the influence zone Zk of a query q is computed

by using the set of facility points. We use a grid based data

structure to index the influence zone. More specifically, a cell

c of the grid is marked as an interior cell if it is completely

contained by the influence zone. A cell c′ is marked as a

border cell if it overlaps with the boundary of the influence

zone. Fig. 13 shows an example where the influence zone is

the polygon ABCDFEGHI , interior cells are shown in dark

shade and the border cells are the light shaded cells.

For each border cell, we record the edges of the polygon

that intersect it. For example, in c1, we record the edge AI
and in c2 we record the edges AI and HI . If a user u ∈ U is

in an interior cell, we report it as RkNN of the query. If a user

lies in a border cell, we check if it lies outside the polygon by

checking the edges stored in this cell. For example, if a user

lies in c1 and it lies inside AI , we report it as RkNN.

V. THEORETICAL ANALYSIS

We assume that the facilities and the users are uniformly

distributed in a unit space. The number of facilities is |F |.
For bichromatic queries, the number of users is |U |.

A. Area of Influence Zone

Before we analyse the area of the influence zone, we show

the relationship between an order k Voronoi cell and the

influence zone. We utilize this relationship to analyse the area

of the influence zone.

Relationship with order k Voronoi cell: An order k Voronoi

diagram divides the space into cells and we refer to each cell



as a k-Voronoi cell. Each k-Voronoi cell is related to a set of k
facility points (denoted as Fk) such that for any point p in this

cell the k closest facilities are Fk. Fig. 14 shows an order 2
Voronoi diagram computed on the facility points a to i. Each

cell c is related to two facility points (shown as {fi, fj} in

Fig. 14) and these are the two closest facilities for any point p
in c. For example, for any point p in the cell marked as {a, e}
the two closest facilities are a and e.

Clearly, when k = 1 the k-Voronoi cell related to q is

exactly same as the influence zone. For k > 1, the influence

zone corresponds to the union of all k-Voronoi cells that are

related to q (i.e., have q in their Fk). For example, in Fig. 14,

the influence zone of the facility a is shown in bold boundary

and it corresponds to the union of the cells that are related to

a.
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Now, we analyse the area of the influence zone.

Consider the influence zones of all the facilities in the data

set. Every point in the unit space lies in a cell that is related

to k facilities. This implies that every point lies in exactly k
influence zones (e.g., in Fig. 14, every point in the cell marked

as {a, f} lies in the influence zone of a as well as the influence

zone of f ). Hence, the sum of the areas of all the influence

zones is k. Since the total number of facility points is |F |, the

expected area of a randomly chosen facility point is k/|F |.
Remark: The above discussion shows that the influence zone

can be computed by using a pre-computed order k Voronoi

diagram. However, as mentioned in [10], a technique that

uses a pre-computed order k Voronoi diagram may not be

practical for the following reasons : i) the value of k may not

be known in advance; ii) even if k is known in advance, order

k Voronoi diagrams are very expensive to compute and incur

high space requirement; iii) spatial indexes are useful for all

query types and pre-computed Voronoi diagrams may not be

used for all queries. In contrast, R-tree based indexes used by

our algorithm are used for many important queries.

B. Number of RkNNs

First, we evaluate the number of bichromatic RkNNs. We

assume that the users are uniformly distributed in the space.

The number of users that lie in the influence zone is the num-

ber of bichromatic RkNNs. Hence, the number of bichromatic

RkNNs is |U |.k/|F |.

The area of the influence zone Zk+1 for a monochromatic

RkNN query is (k + 1)/|F |. The number of facilities in this

area is (k + 1) which includes the query. Hence the expected

number of monochromatic RkNNs is k.

C. IO cost of our algorithms

Before we analyse the IO costs of our proposed algorithms,

we analyse the cost of a circular range query. Then, we

analyse the costs of our algorithms by using the IO cost of

the circular range queries.

IO cost of a circular range query: A circular range

query [18] finds the objects that lie within distance r of the

query location. We assume that the objects are indexed by

an R-tree and analyse the number of nodes that lie within

the range of the query. Fig. 15 shows a circular range query

where the search area is the circle centered at q with radius

r (the shaded circle). The approach to analyse the IO cost of

the circular range query is similar to the IO cost analysis of

window queries presented in [19]. Let Rl be the number of

rectangles at level l of the R-tree. Let sl be the side length of

each rectangle at level l (the rectangles of a good R-tree have

similar sizes [20]). We assume that the centers of rectangles at

each level follow a uniform distribution. Let dl be the diagonal

length of each rectangle at level l. As shown in Fig. 15, any

rectangle that has its center c at a distance greater than r+dl/2
cannot intersect the range query and should not be be accessed.

Hence, the number of rectangles (nodes) accessed at level l is

π(r + dl/2)2Rl which is the number of center points c that

lie in the circle of radius r+dl/2 (the large circle in Fig. 15).

Now, we need to compute dl and Rl for each level l. Let

S be the number of objects indexed by the R-tree. Let f be

the fanout of the tree. The number of rectangles Rl at level

l of the R-tree is S/f l (e.g., leaf nodes are at level 1 and

the number of leaf level rectangles is S/f ). Since we assume

uniform distribution of points, each rectangle at level l contains

f l points. In other words, the area of each rectangle is f l/S.

Assuming that the both sides of a rectangle are of same size,

the side length sl is
√

f l/S. Given sl, half of the diagonal

length dl/2 can be computed easily which is
√

f l/2S.

The total IO cost (the total number of nodes accessed) is

obtained by applying the formula for each level l. The total

number of levels excluding the root is ⌊log
f
S⌋. The root is

accessed anyway, so one is added to this cost. Hence, the total

IO cost is obtained by the following equation.

Range query cost = 1 +

⌊logf S⌋
∑

l=1

π(r +
√

f l/2S)2S/f l (3)

Based on this, first we analyse the cost of computing the

influence zone and then we analyse the costs of our RkNN

algorithms.

IO cost of computing the influence zone: We approximate

the influence zone to a circular shape having the same area

(we noted that as k gets larger the shape of influence zone

has more resemblance with a circle). Since the area of the

influence zone Zk is k/|F |, the radius of the circle can be



computed as rk =
√

k
π|F | . From Lemma 5, an object can

be ignored if it lies at a distance greater than dist(q, v) from

every vertex v of the unpruned area. Since we assume that each

vertex is at same distance rk from the query (i.e., influence

zone is a circle), an object can be ignored if it lies at a distance

greater than 2rk from q. Hence, the objects within the range

2rk of the query are accessed during the computation of the

influence zone. The IO cost can be found by replacing r in

Eq. (3) with 2rk = 2
√

k
π|F | and S with |F | (the number of

the facility points).

IO cost of a monochromatic RkNN query: The IO cost for

monochromatic RkNN query is same as computing the IO

cost of the influence zone Zk+1. This is because the R-tree

is traversed only during the construction of the influence zone

(i.e., the containment phase does not access R-tree). Hence,

IO cost can be found by replacing r in Eq. (3) with 2rk+1 =

2
√

k+1

π|F | and S with |F |.

IO cost of a bichromatic RkNN query: The cost of the

pruning phase is same as the cost of computing the influence

zone Zk which we have computed earlier. The cost of the

containment phase is the cost of accessing the users that

lie within the influence zone which can be computed in a

similar way. More specifically, only the users that lie within

distance rk (the radius of the influence zone) of q are accessed.

Hence, the cost of the containment phase can be computed by

replacing r in Eq. (3) with rk =
√

k
π|F | and S with |U | where

|U | is the number of users indexed by the R-tree.

VI. EXPERIMENTS

In Section VI-A, we evaluate the performance of our

algorithms for snapshot RkNN queries. Since computation

of the influence zone is a sub-task of the snapshot RkNN

queries, we evaluate the cost of computing influence zone

while evaluating the performance of RkNN algorithms. In

Section VI-B, we evaluate the performance of our algorithm

for continuous monitoring of RkNN queries.

A. Snapshot RkNN queries

For monochromatic and bichromatic RkNN queries, we

compare our algorithm with the best known existing algorithm

called FINCH [6]. We use both synthetic and real datasets.

Each synthetic dataset consists of 50000, 100000, 150000 or

200000 points following either Uniform or Normal distribu-

tion. The real dataset consists of 175, 812 extracted locations

in North America3 and we randomly divide these points into

two sets of almost equal sizes. One of the sets corresponds to

the set of facilities and the other to the set of users. Following

the experiment settings used in [6] for FINCH, the page size is

set to 4096 bytes and the buffer size is set to 10 pages which

uses random eviction strategy. We use the two real datasets

to evaluate the performance unless mentioned otherwise. We

vary k from 1 to 16 and the default value is 8. From the

set of facilities, we randomly choose 500 points as the query

3http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm

points. The experiment results correspond to the total cost of

processing these 500 queries.

As stated in Section II-B, FINCH has three phases namely

pruning, containment and verification. Our algorithm has only

pruning and containment phases. We show the CPU and IO

cost of each phase for the both algorithms. Experiment results

demonstrate that our algorithm outperforms FINCH in terms

of both CPU time and the number of nodes accessed. FINCH

is denoted as FN in the experiment figures.

1) Monochromatic RkNN queries: In Fig. 16, we vary

the value of k and study the effect on the both algorithms.

The cost of containment phase is negligible for both of the

algorithms. Note that the pruning phase corresponds to the cost

of computing the influence zone for our algorithm. The cost of

computing the influence zone is even smaller than the pruning

cost of FINCH which prunes less area than our algorithm.

CPU cost of our algorithm is lower mainly because we use

efficient checks to prune the entries of the R-tree and because

we do not need to compute the convex hull (in contrast to

FINCH that computes a convex polygon to approximate the

unpruned area).
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Fig. 16. Effect of k (monochromatic RkNN)

Although we access more facility points to prune the space,

the IO cost of computing the influence zone is slightly lower

than the pruning cost of FINCH. This is mainly because these

facility points are usually found in 1 or 2 leaf nodes which

are accessed by FINCH anyway because they are too close to

the query. The unpruned area of our algorithm is smaller as

compared to FINCH which results in pruning more nodes of

the R-tree.
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Fig. 17. Effect of k (bichromatic RkNN)

2) Bichromatic RkNN queries: Fig. 17 studies the effect

of k on the cost of bichromatic RkNN queries. The CPU

time taken by containment phase of our algorithm is much

smaller as compared to FINCH. This is mainly because i)

the unpruned area of our algorithm is smaller and ii) we use

efficient containment checking to prune the entries and the

objects. IO cost of the containment phase is also smaller for

our algorithm because the unpruned area of our algorithm is



smaller. Our algorithm does not require the verification. On

the other hand, FINCH consumes significant amount of CPU

time and IOs in the verification phase.
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Fig. 18. Effect of number of users

Fig. 18 studies the effect of the number of the users on

both of algorithms. The set of facilities corresponds to the

real dataset and the locations of the users follow normal

distribution. Our algorithm scales much better. On the other

hand, the cost of FINCH degrades with the increase in the

number of users because a larger number of users are within

the unpruned area and require verification.

In Fig. 19, we study the effect of the number of the facilities.

The set of the users correspond to the real dataset and the

locations of the facilities follow normal distribution. Both of

the algorithms are not significantly affected by the increase

in the number of the facilities and our algorithm performs

significantly better than FINCH.
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Fig. 20 studies the effect of the data distribution on both

of the algorithms. The data distributions of the facilities

and the users are shown in the form (Dist1,Dist2) where

Dist1 and Dist2 correspond to the data distribution of the

facilities and the users, respectively. U, R and N correspond

to Uniform, Real and Normal distributions, respectively. For

example, (U,R) corresponds to the case where the facilities

follow uniform distribution and the users correspond to the

real dataset. Each dataset contains around 88, 000 objects. Our

algorithm outperforms FINCH both in terms of CPU time and

the number of nodes accessed for all of the data distributions.

Fig. 21 studies the effect of the buffer size on both of the

algorithms. As the pruning and the containment phases do

not visit a node twice, our algorithm is not affected by the

buffer size. FINCH issues multiple range queries to verify the

candidate objects. For this reason, the cost of its verification

phase depends on the buffer size. Note that FINCH performs

worse than our algorithm even when it uses large buffer size.

Number of nodes accessed by FINCH is around 194, 000 and

61, 000 when the buffer size is 2 and 5, respectively.
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3) Verification of theoretical analysis: In Fig. 22 and

Fig. 23, we vary k and verify the theoretical analysis presented

in Section V. In all three experiments, we run bichromatic

RkNN queries on uniform datasets consisting of 100, 000
facilities and the same number of users.

In Fig. 22, we compare the experimental value of total

number of nodes accessed with the theoretical value. Recall

that the pruning phase of our algorithm corresponds to the

computation of the influence zone. Fig. 22 shows the accuracy

of our theoretical analysis of the IO cost of computing the

influence zone and the total cost of our RkNN algorithm.
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Fig. 23. Theoretical Analysis

In Fig. 23(a) and Fig. 23(b), we vary k and verify our

theoretical analysis of the area of the influence zone and

the number of RkNNs, respectively. It can be seen that the

theoretical results are close to the experimental results and

follow the trend.

B. Continuous Monitoring of RkNN

As mentioned earlier, the problem addressed by the influ-

ence zone based algorithm is a special case of the continuous

RkNN queries. Hence, it is not fair to use the existing best

known algorithms without making any obvious changes that

improve the performance. As stated earlier in Section II-B,

Lazy Updates [9] is the best known algorithm for continuous

monitoring of RkNN queries (even for this special case,

we find that it outperforms other algorithms after necessary

changes are made to all the existing algorithms). Hence, we

compare our algorithm with Lazy Updates.

To conduct a fair evaluation, we set the size of the safe

region for the Lazy Updates algorithm to zero. This is because

the facilities do not move and the safe regions will not be

useful in this case. We tested different possible sizes of the

safe region and confirmed that this is the best possible setting

for Lazy Updates for this special case of the continuous RkNN

query.

Our experiment settings are similar to the settings used

in [9] by Lazy Updates. More specifically, we use Brinkhoff

generator [21] to generate the users moving on the road map



Parameter Range

Number of users (×1000) 40, 60, 80, 100, 120

Number of facilities (×1000) 40, 60, 80, 100, 120

Number of queries 100, 300, 500, 700, 1000

k 1, 2, 4, 8, 16

Speed of objects (users) in km/hr 40, 60, 80, 100, 120

Mobility of objects (users) in % 5, 20, 40, 60, 80, 100

TABLE II

SYSTEM PARAMETERS

of Texas (data universe is approximately 1000Km×1000Km).

The facilities are randomly generated points in the same

data universe. Table II shows the parameters used in our

experiments and the default values are shown in bold.
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The locations of the users are reported to the server after

every one second (i.e., timestamp length is one second).

The mobility of the objects refers to the percentage of the

objects that report location updates at a given timestamp.

In accordance with [9], the grid cardinality of both of the

algorithms is set to 64 × 64. Each query is monitored for 5
minutes (300 timestamps) and the total time taken by all the

queries is reported.
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In Fig. 24, 25, 26, 27 and 28, we study the effect of k,

the data mobility, the number of the queries, the number

of the users and the number of the facilities, respectively.

Influence zone based algorithm is shown as InfZone. Clearly,

the influence zone based algorithm outperforms Lazy Updates

for all the settings and scales better. In Fig. 28, both of the

algorithms perform better as the number of facilities increases.

This is because the unpruned area becomes smaller when the

number of facilities is large. Hence, a smaller area is to be

monitored by both the algorithms and it results in lower cost.

VII. CONCLUSION

In this paper, we introduce the concept of an influence zone

which does not only have applications in target marketing and

market analysis but can also be used to answer snapshot and
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continuous RkNN queries. We present a detailed theoretical

analysis to study different aspects of the problem. Extensive

experiment results verify the theoretical analysis and demon-

strate that influence zone based algorithm outperforms existing

algorithms.
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