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Abstract

Few studies have quantified regional variation in tree mortality, or explored whether species compositional changes or
within-species variation are responsible for regional patterns, despite the fact that mortality has direct effects on the
dynamics of woody biomass, species composition, stand structure, wood production and forest response to climate change.
Using Bayesian analysis of over 430,000 tree records from a large eastern US forest database we characterised tree mortality
as a function of climate, soils, species and size (stem diameter). We found (1) mortality is U-shaped vs. stem diameter for all
21 species examined; (2) mortality is hump-shaped vs. plot basal area for most species; (3) geographical variation in
mortality is substantial, and correlated with several environmental factors; and (4) individual species vary substantially from
the combined average in the nature and magnitude of their mortality responses to environmental variation. Regional
variation in mortality is therefore the product of variation in species composition combined with highly varied mortality-
environment correlations within species. The results imply that variation in mortality is a crucial part of variation in the forest
carbon cycle, such that including this variation in models of the global carbon cycle could significantly narrow uncertainty in
climate change predictions.
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Introduction

An understanding of tree mortality is central to any predictive

understanding of forest dynamics. The long-term dynamics of

woody biomass are regulated by the difference between gains

through individual growth and losses through mortality. This

makes tree mortality a crucial determinant of the forest carbon

cycle, the future of which is a major source of uncertainty in Earth

System Model predictions of future climate [1]. Moreover,

differences in mortality rates among species appear to be major

determinants of ecological succession [2,3], the geographical

ranges of species [4,5], stand structure (e.g. stem size distributions:

[6,7]), and responses of forests to climate change and disease [8,9].

However, we currently have little quantitative information about

the nature, magnitude or causes of geographical variation in tree

mortality.

The simplest approach to making predictions about mortality in a

changing world would be to correlate stand-level mortality obtained

from permanent plot data with climatic variables, and use these

relationships to predict changes under future climate scenarios. The

problem with this approach is that it neglects the effects of species,

individual size and competition, factors that individually have been

shown to strongly affect mortality at the scale of the individual tree,

with potentially serious consequences for landscape-level predic-

tions. In order to predict the impacts of changing climate on forest-

level mortality, it is therefore important to isolate the effects of these

factors because they are likely to show complex, semi-independent

changes in the future. For example, in much of the temperate zone,

many forest stands are successional and regenerating, undergoing

directional change in species composition independent of any

changes in the environment [10,11]. Additionally, species are

unlikely to disperse rapidly enough to track their optimal climatic

conditions under rapid anthropogenic climate change, leading to

combinations of species composition and environment that do not

occur currently [12,13]. Tree-level mortality patterns can also be

confounded by external actions: harvesting can create various novel

combinations of basal area, size distributions and species compo-

sition (e.g. [14,15]), and pests and pathogens are often highly

species-specific (e.g. sudden oak death: [16,17]). To estimate the

individual effects of each factor, it is necessary to study factors

simultaneously, in order to tease apart their individual effects,

otherwise the apparent effect of one is likely to be confounded by the

others (e.g. apparent differences in species’ average mortality rates

might reflect differences in the average environments occupied by

those species: [18]).

Here we use the Eastern USA Forest Inventory and Analysis

(FIA) dataset to parameterise, for each of 21 common US tree

species, a logistic regression model that assigns an annual

probability of mortality to an individual tree given its size, species

identity, competitive environment (plot basal area) and physical

environment. We estimate the nature and relative magnitude of

the different factors affecting tree mortality and parameterise a

model that could be useful in predicting potential responses of US

forest carbon stocks to climate change (e.g. [19]). Here we report:
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(1) how each factor affects the mortality rate of individual trees; (2)

whether, and how, species differ in their underlying mortality rates

and responses to size, competition and the environment; and (3)

differences in the environmental dependency of forest stand-level

vs. species-level mortality, which determine the level of model

complexity required to accurately predict forest mortality in a

changing environment.

Materials and Methods

Forest Inventory data
We used the pre-1999 USA Department of Agriculture Forest

Inventory and Analysis (USDA FIA) dataset containing tree-level

data for 182 species from a network of plots distributed across the

Eastern USA [20]. The data comes from forest inventory plots

which were surveyed in the 1980s and again in the 1990s, although

the interval between surveys differs between states between 1 and 21

years (93% of survey intervals were between 6 and 15 years).

Surveys were taken using a two-phase sampling procedure known as

double sampling for stratification. In the first phase random points

were chosen on aerial photographs and classified by land cover and

forest type, and in the second a random subsample of each class

were selected and established as field plots. Five or more points were

chosen within each plot, around which several sub-plots were

established and sampled using variable radius sampling, whereby

the effective subplot size differs according to tree size (for more

details see [21]). Species, size (diameter breast height, dbh) and

status (alive, dead from harvesting, dead from natural causes) were

recorded for each tree sampled, along with plot basal area

(m2 ha21). The FIA survey was designed specifically to allow

accurate estimates of average forest characteristics such as species

composition and average tree size through scaling from the tree,

through the stand, to the regional level [20,21].

Before analysis began, the dataset was filtered to include only

those dead trees that we could be certain were not removed by

human activity, and to remove various kinds of errors in the data

(e.g. false mortality events corresponding to subplots that were

measured in the first, but not the second, survey). The model was

parameterised for 21 of the most common species, using 438,401

individual tree records in total, accounting for around 60% of all

trees in the reduced dataset. Due to the high number of possible

predictors being considered, only species with over 10,000

individuals in the data set were used for parameterising the model.

Of these, two species (Ulmus americana and Abies balsamea) were

known to have suffered severely from disease and pests during the

survey period. Other species are likely also to suffer a variety of

impacts from diseases which are part of the mortality patterns

studied here. However, the disease impacts on Ulmus americana and

Abies balsamea are known to be so severe, episodic, and localised, that

in our opinion it was better to exclude both species from the

analysis. Since these factors were not included as predictors of

mortality in our model we did not include these species in the model

fitting. We also did not consider the effects of other disturbances,

both natural (e.g. fire and hurricanes) and human, on the observed

mortality in the dataset. Such disturbances are likely to have had an

marked effect on current species composition [22–24] and

demographic rates [25], but are likely to be complex and interacting

and, combined with a lack of a detailed land-use history, the

quantification of such disturbances and evaluation of their effects

may be unachievable in many areas [26].

Environmental data
Since little is known about the geographical variation in tree

mortality we had little information to judge which climatic factors

might correlate with mortality. However, there have been many

studies linking growth with a wide variety of climatic variables; for

example, solar radiation, [27,28], precipitation and drought [29–

31], temperature [32], severe frost [33] and wind speed [34]. Since

many studies link individual rates of mortality within a species as a

function of growth (e.g. [2,35–37]) there is reason to believe that

mortality also varies with many different climatic variables. Our

approach was therefore to assess which of these variables were

most closely correlated with observed mortality patterns, rather

than to attempt to generate hypotheses, in order to determine

which were most important within our data.

We assigned environmental factors to each tree using two

sources of environmental data, both available on a 0.5u60.5u

degree. The first source was the CRU05 climatology product

(Climatic Research Unit, University of East Anglia: [38]) which

provides monthly averages for many climate variables including

temperature, precipitation, frost frequency, vapour pressure, cloud

cover and wind speed (monthly average refers to the average over

the period 1961–1990). We took the mean of each climate variable

rather than climate observed over the survey period associated

with each tree (which differs from tree to tree). From the CRU05

data we calculated the additional metrics of minimum tempera-

ture, degree days and average warm season (as opposed to annual)

precipitation. The second source of environmental data was the

Vegetation/Ecosystem Modelling and Analysis Project (VEMAP)

[39], a multi-institutional project to develop a database of climate,

soils and vegetation on a 0.5u latitude/longitude grid across the

United States for use with ecosystem physiology models. From this

source, we took only the data on US soil, which included over 20

different metrics including soil depth, and measures of soil texture.

In addition the FIA provided data on soil texture for each

inventory plot, divided into five classifications from xeric (normally

low or deficient in available moisture), through mesic (normally

moderate but adequate available moisture) to hydric (normally

abundant or overabundant moisture all year) [40]. The classifi-

cation of each FIA site into one of these five soil classes is intended

to be independent of the climate (e.g. rainfall) at that site.

To avoid convergence problems during parameter estimation,

we applied principal component analysis (PCA) to the 14 different

environment variables (both from the VEMAP and CRU05 data)

to remove highly correlated variables. Among highly correlated

variables, the variable with the highest weighting in the principal

components was retained and the rest discarded. This left four

CRU05-derived climatic variables (radiation, yearly precipitation,

mean annual temperature and maximum wind speed) to be

included as possible mortality predictors, plus one FIA soil texture

classification associated with each tree. We normalised each factor

(i.e. subtracted the mean value and divided by the standard

deviation) to allow for a simple comparison between the

magnitudes of effects of each of the factors. We also check that

plot basal area was not highly correlated with the remaining

climate variables.

Model description
Tree mortality is a difficult property to estimate because unlike

growth, it has only 2 possible outcomes from each re-measured

tree (survived or died), and typical tree mortality rates are low (on

the order of 0.1 to 2% year21), such that large sample sizes and/or

long re-measurement periods are required. Moreover this dataset

contained varying re-measurement intervals, meaning that a

simple ‘proportion dead’ would not have been informative [3].

We therefore chose to parameterize a model describing the annual

probability of death for each individual tree i, P(mortality, i). Since

P(mortality, i) must lie between 0 and 1, we used a logistic

Eastern US Tree Mortality
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transformation

P mortality,ið Þ~1= 1zexp {kið Þð Þ ð1Þ

where ki (which can vary from 6 ‘) is a function of the predictor

variables.

We included different combinations of the predictor variables:

dbh (continuous); soil type (discrete, ranging from 1–5); plot basal

area (i.e. FIA inventory plot) (continuous); and environmental

variables (all continuous) as follows:

ki~azf1zf2z::: ð2Þ

where a is a constant parameter, and f1 is a function of the first

predictor variable (e.g. dbh), f2 is a function of the second (e.g.

precipitation), and so on. Initial analysis indicated that the

relationship between dbh and mortality was U-shaped, corre-

sponding to high mortality in small trees, low mortality for

medium sized trees (typically 25–40 cm) and increasing mortality

in larger trees. To describe this relationship we tried several

different model equations and found the best fit to the data using

the following functional form

fsize,1~b1 dbhð Þexp b2 dbhð Þ ð3Þ

where b1 and b2 are parameters. In keeping with the qualitative

pattern visible in the initial assessment of the size-dependency of

mortality, Eqn (3) allows the initial decrease in mortality vs. size for

small trees to be steeper than the increase in mortality for size for

larger trees whilst giving high flexibility to the shape of the

response. For each environmental variable V (ie climate and soil

measures) we considered two alternative functional forms:

fV ,i~bVVi linearð Þ ð4Þ

fV ,i~bVVizcVV
2
i non-linearð Þ ð5Þ

where Vi is the value of environmental variable V associated with

tree i, and b and c are parameters. We used the same functional

forms to include the effects of plot basal area B (m2 ha21):

fB,i~bVBi linearð Þ ð6Þ

fB,i~bBBizcBB
2
i non-linearð Þ ð7Þ

where Bi is the plot basal area B associated with tree i, and b and c

are parameters. Although we chose to use a quadratic functional

form, we did not constrain the shape further so that, within a

species’ range, it could predict shallow or steep monotonic curves,

as well as U-shaped (or hump-shaped) responses. Since we had no

strong evidence for a particular across-species response for any of

the environmental variables we felt that a quadratic functional

form would be sufficiently complex to capture essential patterns

without being too complex. Together, Eqns (1)–(7) allow for a very

large possible number of models, with a wide variety of numbers

of parameters, depending on which predictor variables are

included, and depending on whether each variable is included

using a linear or non-linear (quadratic) functional form. We

allowed each parameter in any given model to be either species-

specific (e.g. in Eqn (4) this would give us 21 separate bV

parameter values, one for each species, each of which is

unaffected by data from other species) or global, that is, shared

among species (e.g. in Eqn (4) there would be a single bV value for

all trees regardless of their species). To avoid having to fit all

possible models, we used a selection procedure that compared

models with major differences in their predictor variables (see

model selection, below).

Parameter estimation
We used Bayesian methods based on Metropolis-Hastings

Markov Chain Monte Carlo sampling [41] to estimate values

and confidence intervals for each of the parameters in each model.

These methods were chosen because they allow for simple,

efficient estimation of parameters, including confidence intervals.

However, we did not use informative priors, so the outcome of the

analysis can be expected to be similar to the outcome of a

Maximum Likelihood analysis using the same data and models.

The first step of the analysis was to define, for a given candidate

model M, the log-likelihood of the inventory data (referred to here

as X), given a particular set of parameters (referred to here as h)

values for model M:

l X DM,hð Þ~Si ln
1{P mortality,ið Þ½ �

Si
if tree i survived

1{ 1{P mortality,ið Þ½ �Si if tree i died

(

ð8Þ

Eqn (8) represents a sum, over all trees i, of the logarithm of the

probability of the observation for i (survived or died), given the

model structure M and parameter set h, where Si is the survey

interval (years) for tree i.

We used non-informative uniform priors on all parameters so

the MCMC algorithm (see below) needed to refer to the log-

likelihood only. However, for numerical reasons we imposed

upper and lower limits on the allowable values of all parameters,

i.e., a prior probability of 0 on parameter values outside of the

allowable range. We set the allowable range much wider than the

plausible values, and also checked the posterior distributions to

make sure the tails of the posterior distributions were a long way

from the edge of the allowable range.

The next step was to estimate values for the parameter set h in

model M, given the definition of the log-likelihood (Eqn (8)). We

did this using an adaptive Metropolis MCMC algorithm [42,41],

which returns random samples from the posterior distribution of h.

At each iteration, a particular parameter pk is chosen and altered

by adding a random value from a normal distribution N 0,n2k
� �

where vk is specified for each parameter. The likelihood of the data

given the new parameter is calculated and the parameter change is

‘accepted’ based on the ratio of the new likelihood and the

previous likelihood:

P acceptance of a new parameter set ~hh
� �

~min 1,
l X DM,~hh
� �

l X DM,hð Þ

2

4

3

5

The variance vk for each parameter was tuned during a ‘burn-in’

period to achieve an optimal parameter acceptance rate of 25%

[41] so the samples returned from the MCMC can be said to have

efficiently sampled the posterior of each parameter.

We implemented the MCMC algorithm by initializing each

parameter value at a random point close to the middle of the

allowable range, allowing a suitable burn-in period (between

25,000 and 1,000,000 iterations) for the algorithm to reach quasi-

equilibrium, then recording every 100th sample of h (to avoid auto-
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correlation) from a post burn-in period of between 50,000 and

250,000 iterations (the number required depended on the speed of

model convergence and the number of parameters). This provided

us with a set of between 500 and 2,500 samples of h for each

model M that we parameterized. From these samples, we

calculated the mean, and 95% confidence interval, of each

parameter p within h. For the best-fit model we re-ran the model

four times with differing starting parameter values and found the

results were unchanged.

Model selection
As metrics to compare alterative models, we calculated, for each

model M that we parameterised, the Akaike Information Criterion

(AIC; [43]) and the Bayesian Information Criterion (BIC; [44]).

Both criteria reward models for providing a better fit to the data,

but penalise models according to the number of free parameters

that they contain, thus allowing for model selection from sets of

models that differ in model complexity. However, the AIC

penalises complexity less strongly than the BIC, so it is useful to

compare the two criteria. Simple likelihood-ratio based compar-

isons would not have been appropriate since the models were, in

general, non-nested [45]. Both criteria require an estimate of the

maximum likelihood, for which we used the maximum value of the

log-likelihood encountered by the MCMC algorithm in the post

burn-in period.

Given the high number of possible mortality predictors, the

options of functional forms presented by Eqns (2)–(7) and the

choice of species-specific or global for any parameter, there was a

very large set of possible models M. We wished to select an

appropriate best model from this set, but without having to

examine every possible combination of possible predictors. To do

this we used the procedure outlined in the next three paragraphs.

First, we established which of the possible predictor variables

was the best single predictor of mortality by parameterising all

possible mortality models featuring one predictor variable

(referred to here as 1-d models). This set of models was still

relatively large (28 different models), since the predictor variable

in question could included using a linear or non-linear function,

and with species-specific or global parameters (see Eqns (4)–(6)).

We also tested some of the closely correlated alternative climate

predictors in this way, but none gave a better fit than the set we

had already chosen. Comparing the AIC and BIC values

associated with each model allowed us to determine whether,

considered in isolation, each predictor variable was best

described using species-specific vs. global parameters, and a

linear vs. non-linear functional form (see Eqns (4)–(6)). This

analysis suggested that all predictor variables were best described

using non-linear, species-specific functional forms. Therefore we

decided to retain, within the larger set of all possible models, only

those models that included non-linear functional forms. Further,

comparing the maximum likelihood of the different 1-d models

allowed us to rank the predictor variables in descending order of

importance (meaning importance considered in isolation). The

rank was: size..radiation.yearly precipitation.mean annual

temperature.plot basal area.maximum wind speed.soil type.

Since size (dbh) was by far the best single predictor of mortality,

we decided at this point to discard, form the large set of all

possible models, any models not including dbh as a predictor

variable.

Second, we sought, within the remaining set of models, the best

set of environmental variables to include in the model. Since

radiation was the best single environmental predictor, we tested

each additional environmental predictor to find the best two-

predictor combination, using species-specific responses, giving a

model of the form:

k~azb1 dbhð Þexp b2 dbhð Þð Þzb3 radiationð Þ

zb4 radiationð Þ2zb5 environmentð Þzb6 environmentð Þ2

We found that adding in yearly precipitation gave the best fit. We

repeated this procedure to find the best three and four parameter

models, and finally checked that including all five predictors

(radiation, yearly precipitation, mean annual temperature, max-

imum wind speed and soil type) gave a better fit than the other

models, using AIC and BIC.

These steps gave us for types of predictor variable: the constant

a (Eqn (2)), dbh (Eqn (3)), the set of five non-linear environmental

effects (Eqn (5)) and the non-linear competition effect (plot basal

area: Eqn (7)). To determine the final model form we generated a

set of models which allows us to test whether each type of predictor

should be species-specific or shared, and whether the extra model

complexity added by including environmental and competition

effects in the simple size model was justified by the improvement in

fit. We tested models using every combination of species-specific or

shared effects for each type of predictor, as well as every

combination with or without environment and competition effects

(36 models in total). The full list of different models tested are

shown in Table S1 (see Supporting Information), along with AIC

and BIC scores. The score of the best model was a very large

improvement on the next best, although it is worth noting that

models without environmental effects performed significantly

worse than those without plot basal area as a predictor.

Parameter significance
The majority (74%) of parameters’ 95% posterior distributions

did not include 0, indicating statistically significant effects for these

parameters. None of the posterior distributions for the constant or

size parameters (aj, b1j and b2j in Eqn (4)) included 0, while the

least significant deviations from zero were seen for soil type and

maximum wind speed parameters, and for the species Liquidambar
styraciflua, Thuja occidentalis and Nyssa slyvatica. In principle many

additional parameterizations could be used to eliminate some

effects for some species (i.e. remove terms associated with species-

parameters with posteriors including zero), but we considered that

this extra computational effort could not be justified in terms of

increased scientific understanding.

Interpretation of the results
In order to compare the different mortality rates predicted for

each species we calculated a single ‘baseline’ mortality of each

species as the predicted mortality of a tree of standard size growing

in a standard environment (we used both the mean environment,

taken over the study region, for all variables together with a ‘mesic’

soil texture; and the species’ own median environment). We chose

to use 20cm as the standard stem diameter because it is

approximately the size of a canopy tree [3].

In order to visualise geographical patterns in observed mortality

rates, we calculated a mortality rate for each plot (‘‘plot-averaged

mortality’’) by fitting a single-parameter logistic model to the data,

and used the coordinates of each to create a regional mortality

map. We visualised geographical patterns in predicted mortality

rates by creating simulated datasets which were identical to the

original dataset except that whether each tree died or not was

determined using the model’s posterior parameter values. We then

used the simulated data to calculate a model-predicted mortality

rate for each plot. For each tree i we calculated its annual

mortality rate based on the model equation generated from the

Eastern US Tree Mortality
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randomly chosen parameter set. From this we determined the

probability it died, Pi, over the whole survey period, and then

assigned it as dead with probability Pi and alive with probability 1-

Pi within the simulated dataset. We generated 100 simulated

datasets in this way, using different parameter sets randomly

drawn from the joint posterior of the parameters, and combined

their results using likelihood profile methods to predict a single

model-predicted mortality rate for each plot. Using multiple

randomly chosen samples from the joint posterior instead of

simply the mean value of each parameter accounts for any co-

variance in the parameters and the effect this would have on the

predictions. By comparing the predicted and observed maps we

were able to examine how well our predictions fitted the observed

mortality and in which regions there were mismatches.

We also wanted to create maps showing how mortality varies

regionally in response to variation in species identity, stand

structure (stem size and plot basal area) and environmental

conditions, whilst controlling for variation in the other factors. We

devised an approach to do this, based on creating simulated

datasets in various different ways which selectively removed

variation in the predictors which were not of interest. For example,

to analyse the mortality patterns arising from variation in stand

structure, we generated new 100 simulated datasets in which the

tree alive/dead column was predicted from our model by using

size and plot basal area, but assuming all trees were Acer rubrum (the

most common and wide-ranging species in the dataset) and every

tree experienced the same environmental conditions (the region’s

average). Similarly, to analyse mortality patterns arising from

species composition, we retained species information but assumed

all trees had the same size (20cm dbh), basal area (the average

density) and environmental conditions (the region’s average) when

creating the dead/alive column of the simulated datasets. Finally,

to analyse mortality patterns arising from variation in environ-

mental conditions we retained environmental information but

assumed all trees were A. rubrum, and had the same size (20cm dbh)

and were in plots of average density.

Our maps are an imperfect way to partition spation variation

but this method allows us to analyse variation in mortality due to

each factor by selectively controlling for variation in the others.

Had we chosen a different size of tree or a different set of

environmental conditions, we would have seen the same spatial

variation in mortality rates but the overall level of mortality would

have been different. Since different species responded in different

ways to changes in environment and stand structure, we also

calculated variation in mortality due to these factors but using

Pinus taeda (the most common gymnosperm species) instead of A.

rubrum. However, this species has a much smaller range than A.

rubrum so we only considered variation in mortality in the region in

which the species is found.

We were also interested in seeing how mortality varied along the

range of each predictor, both for all species together (‘‘forest-

averaged mortality’’) and for each individual species (‘‘species-

averaged mortality’’). We generated estimates of how observed

mortality varied along the range of each predictor by binning the

raw data according to the predictor of interest into equal sized bins

(i.e. each containing the same number of stems) and found the best

single annual mortality rate for the whole bin in the same way as

before, using a single parameter logistic model. We did this both

for the raw data (for just the 21 species for which we parameterised

the model) and for all the data (including the rare species). In order

to compare this to the model predictions for all species together

(the forest-averaged mortality) we created 100 sets of simulated

data as before (i.e. data of the same form as the original dataset but

with alive/dead status based on our model predictions), ordered

and binned these according to the variable of interest and

calculated a single mortality rate for each bin, and a 95%

confidence interval on this rate. Thus the forest-averaged mortality

accounted for simultaneous changes in species composition and

size structure across whichever gradient was being considered, and

could be compared to the observed data.

Finally, for each species we were interested in how mortality

varied with changes in the variable of interest alone, but since the

predictors (size, environment and stand basal area) all co-varied

along each gradient we calculated the median conditions in which

each of the species was found. For each model predictor we

created 100 simulated datasets using parameter values randomly

chosen from the joint parameter posterior distributions. In these

datasets, each tree was given the median condition of its species

(apart from the predictor of interest) and was assigned as dead or

alive based on its predicted annual mortality rate. For example, in

order to examine the sole effect of temperature change on

mortality we re-assigned each tree the median size, precipitation,

radiation, maximum wind speed, soil type and stand basal area in

which its species was found in the original dataset, and kept only

the temperature information for each individual tree and then

created the 100 simulated datasets as before by selecting 100

parameter sets at random from the joint posterior. This gave us a

spread of mortality vs. temperature functions for each species,

where the spread represents parameter uncertainty (variation in

parameters causing variation in probability of mortality) and

sampling (random variation in whether lived or died given the

probability of mortality). This allowed us to consider only the

effect of temperature on that species mortality, whilst modelling

the species in a reasonable environment.

Results

Model selection
Using AIC and BIC, we found that the 7 best performing

models all included species-specific environment effects, even

when other predictors were not species-specific, or when plot basal

area was not included. Plot basal area was only found to be a

worthwhile predictor if its effects were species specific but did not

benefit the model if the effect was shared among species. Models

with non species-specific constant or size effects performed well,

but the model with all predictors included as species-specific

performed significantly better than all the others, according to

both AIC and BIC. Therefore in our final model the function k

(Eqn (1)) took the form:

kj~ajzb1j dbhð Þexp b2j dbhð Þ
� �

zb3j radiationð Þ

zb4j radiationð Þ2zb5j precipitationð Þ

zb6j precipitationð Þ2zb7j mean annual tempð Þ

zb8j mean annual tempð Þ2zb9j max wind speedð Þ

zb10j max wind speedð Þ2zb11j soil typeð Þ

zb12j soil typeð Þ2zb13j plot basal areað Þ

zb14j plot basal areað Þ2

ð9Þ

where j is the species and aj and the bjs were the parameters

estimated (so a different function kj was estimated for each species).

The MLEs, Bayesian means and confidence intervals for the

parameters for each species of the best fit model (Eqn (9)) are given

Eastern US Tree Mortality
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in Table S2 (see Supporting Information). The predicted trends in

mortality were close to the observed patterns across all predictor

variables included in the model (Fig. 1, S1, S2, S3 in Supporting

Information) suggesting that the structure of the model was

appropriate for capturing mortality patterns within these data.

Species-mortality relationships
Species showed very different baseline mortality rates, even when

other effects were factored out (Table 1), and as a consequence plot-

level mortality is highly sensitive to species composition. To

illustrate this point we compared species mortality rates calculated

at the median environment of each individual species. These

mortality rates differed widely: the highest, for Populus tremuloides, was

80 times larger for than for the lowest, Quercus prinus (Table 1). In

addition to the differences in baseline mortality, species showed

contrasting responses to environmental variation. For example, the

model predicts substantial species differences in the direction and

magnitude of responses to hypothetical increases in temperature

and precipitation (Fig. 2).

Size-mortality relationship
The relationship between size (dbh) and mortality was U-shaped

for all species (Fig. 1A: p,,0.001 for all species). The highest

mortality rates were found for the smallest trees and the lowest

rates for trees of 18–37 cm dbh. The rate at which mortality

decreased with size in saplings and increased with size in larger

trees varied considerably among species, from relatively flat (e.g.

Thuja occidentalis) to dramatic (e.g. Acer saccharum). However, species

with higher minimum mortality consistently showed both higher

sapling mortality and higher mortality at larger stem sizes

(Spearman’s Rank Correlation p,0.05 for both trends). Forest-

averaged mortality was U-shaped mortality vs. size (i.e. when all

data were grouped together, the model applied to each individual

and the total average mortality calculated). However, the upturn

in forest-averaged mortality in large trees was less pronounced as

larger size classes became increasingly dominated by species with

low mortality rates.

Environment-mortality relationships
Of the several environmental factors included in the model,

temperature and precipitation are particularly important in this

region because they are likely to change substantially, and perhaps

rapidly, under anthropogenic climate change [46]. Forest-

averaged mortality was U-shaped against annual mean temper-

ature. The minimum mortality, which occurred at a temperature

of around 8–10uC, was 6–9 times lower than the rate at low or

high temperatures (mean annual temperature ,5 or .15uC)

Figure 1. Observed and predicted mortality against stem size and environmental gradients. Observed and predicted forest-averaged
and species-averaged annual mortality rates (deaths tree21 yr21, log scale) plotted against (A) diameter at breast height (cm), (B) mean annual
temperature (uC), (C) total annual precipitation (mm/year), and (D) solar radiation (kJ m22 day21). Each panel shows the observed trends in mortality
calculated using data from all species (orange) and from the 21 most common species (green), and the predicted curves for 21 common species
(grey) and the combined curve from these species (purple). Individual species mortality rates are shown vs. changes in the predictor variable of
interest alone, i.e. with all other predictor variables held at the median for that species (see Supporting Information). Error bars on the predictions
(grey and purple) are 95% confidence intervals calculated from an error propagation procedure that accounted for parameter uncertainty. Error bars
on the observations for the whole forest including rare species (orange) and 21 species combined (green) are 95% confidence intervals for mortality
rates in the data (see Supporting Information).
doi:10.1371/journal.pone.0013212.g001
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(Fig. 1B). This observed pattern was robust to whether all species,

or only the 21 common species, were considered (Fig. 1B, green

and orange lines respectively), and was reproduced by our model

(Fig. 1B, compare green and purple lines). This occurred despite

the fact that the observed forest-averaged mortality pattern across

the temperature gradient was not always reflected in the species-

averaged responses of the particular species present at those

temperatures. In the range 10–15uC, both the forest-averaged

mortality and the species-averaged mortality for the majority of

the species increased with temperature (Fig. 1B, grey lines).

However, forest-averaged mortality decreased with increasing

temperature below 10uC and increasing mortality with increasing

temperature above 15uC. In contrast, species-averaged mortality

for the majority of species found in these temperature ranges

showed the opposite trend. Analogous mismatches in the response

of particular species vs. the forest average were also found for

precipitation (Fig. 1C) and radiation (Fig. 1D).

Forest-averaged mortality rates decreased with increasing

precipitation up to a threshold of around 800 mm yr21 and

showed no clear trend thereafter (Fig. 1C), but individual species

showed both increasing and decreasing mortality in the driest part

of the range. At higher precipitation levels the forest-averaged

mortality pattern was less clear, with some species showing

increasing species-averaged mortality with higher precipitation

(producing an overall U-shaped response to precipitation), and

some a flat response. The opposite effect was found in the

relationship between mortality and radiation, with a strong trend

for increasing forest-averaged mortality up to a threshold point of

about 200 kJ m22 day21 (Fig. 1D), after which the response was

much flatter. For most species we found that species-averaged

mortality vs. basal area was hump-shaped (p,0.05 for 16 of 21

species), with 50% of species showing maximum mortality in

stands of 10–37 m2 ha21 (Fig. S3 in Supporting Information). The

inclusion of less common species raised the observed forest-

averaged mortality rate, but otherwise left the patterns unchanged

(Fig. 1 and see Supporting Information Fig. S1, S2, S3).

Geographical variation in mortality
The model reproduces most of the geographical patterns in

plot-averaged mortality observed in the FIA dataset (compare

Fig. 3D and Fig. 3E) with a high correlation seen between

observed and predicted mortality in plots with more than 10 stems

(Figure S4: r2=0.89). Since the model reproduced geographical

variation well, we were able to decompose the variation into the

separate effects of stand structure (stem-size distributions and plot

basal area), environment and species (Fig. 3A–C). According to

this decomposition, variation in species composition and environ-

mental conditions were much more important than variation in

stand structure in determining geographical patterns in plot-

averaged variation in mortality. High observed plot-averaged

mortality in the southeast is reproduced by considering only the

environmental conditions of the region, but not when only stand

structure or species composition are considered (Fig. 3C). In

particular, several species common in the southeast (e.g. Nyssa

sylvatica, A. rubrum and Quercus nigra) showed strongly increasing

species-averaged mortality with the higher average temperatures,

Table 1. Species’ predicted annual mortality rates.

Mortality in forest mean environment Mortality in each species’ median environment

Species Annual mortality rate 95% CI Annual mortality rate 95% CI

Acer rubrum 0.0035 (0.0034, 0.0038) 0.0022 (0.0020,0.0023)

Acer saccharum 0.0108 (0.0104, 0.0112) 0.0052 (0.0049,0.0054)

Betula papyrifera 0.0012 (0.0010, 0.0014) 0.0009 (0.0008,0.0011)

Carya spp 0.0011 (0.0009, 0.0012) 0.0026 (0.0023,0.0028)

Fagus grandifolia 0.0020 (0.0018, 0.0022) 0.0017 (0.0014,0.0019)

Fraxinus americana 0.0016 (0.0014, 0.0018) 0.0008 (0.0007,0.0010)

Liquidambar styraciflua 0.0040 (0.0037, 0.0042) 0.0048 (0.0045,0.0052)

Liriodendron tulipifera 0.0005 (0.0004, 0.0006) 0.0009 (0.0008,0.0010)

Nyssa sylvatica 0.0180 (0.0170, 0.0187) 0.0323 (0.0311,0.0336)

N. sylvatica (biflora) 0.0044 (0.0040, 0.0049) 0.0098 (0.0090,0.0104)

Populus tremuloides 0.0017 (0.0015, 0.0018) 0.0407 (0.0399,0.0414)

Quercus alba 0.0016 (0.0015, 0.0017) 0.0013 (0.0012,0.0014)

Quercus nigra 0.0094 (0.0088, 0.0102) 0.0068 (0.0063,0.0074)

Quercus prinus 0.0004 (0.0003, 0.0005) 0.0005 (0.0004,0.0006)

Quercus rubrum 0.0062 (0.0059, 0.0064) 0.0035 (0.0033,0.0038)

Quercus stellata 0.0392 (0.0384, 0.0399) 0.0083 (0.0078,0.0088)

Quercus velutina 0.0114 (0.0110, 0.0119) 0.0072 (0.0068,0.0075)

Pinus echinata 0.0157 (0.0151, 0.0163) 0.0054 (0.0051,0.0057)

Pinus taeda 0.0020 (0.0018, 0.0022) 0.0054 (0.0052,0.0057)

Pinus virginiana 0.0047 (0.0042, 0.0052) 0.0282 (0.0271,0.0299)

Thuja occidentalis 0.0114 (0.0110, 0.0119) 0.0011 (0.0010,0.0013)

Predicted baseline annual mortality rate (deaths tree21 year21) calculated for each species both in the mean environment of the dataset for 20cm dbh trees, and at each
species’ median environmental conditions (that is the conditions at which the highest number of individuals within the dataset were found), using the best fit model.
95% confidence interval for the mortality rates are also given.
doi:10.1371/journal.pone.0013212.t001
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but this effect doesn’t appear when only species composition is

considered since temperatures in the region are much higher than

these species’ median environments. High plot-averaged mortality

in the west is driven primarily by species composition (Fig. 3B);

whilst variation in stand structure has relatively little impact on

plot-averaged across the region (Fig. 3A). We checked whether our

conclusions were dependent on our choice of species (i.e. A .rubrum)

by creating the equivalent maps using the most common

gymnosperm species, P. taeda (Fig. S5). We again found that

variation in environmental conditions resulted in higher variation

in mortality than variation in stand structure (Fig. S5).

However, not all variation predicted by the model was

explained by a simple sum of the three components, indicating

strong interactions between them. For example, both stand

structure and species composition (Fig. 3A, 3B) predict higher

plot-averaged mortality in the northeast than is predicted by the

model or is observed (Fig 3D, 3E), indicating an interaction with

environmental conditions (Fig 3C), which predict lower plot-

averaged mortality in the area. The largest differences between

model predictions and observations of plot-averaged mortality

were all in plots with less than 100 stems. Differences were mostly

due to underestimated plot-averaged mortality by the model,

particularly in the furthest northwest and southeast of the region

where many plots were dominated by species too rare across the

whole region to be included in our analysis (see Supporting

Information Fig. S6).

Discussion

Size and stand structure
We found that size (dbh) was the single variable with the

greatest effect on mortality rate at the level of the individual tree,

with trees of intermediate size exhibiting mortality rates much

lower than smaller, or larger, trees. This U-shaped relationship

between size and mortality appears to be a common feature of

forests, whether from sub-boreal [47], temperate [48–50] or

tropical [51] regions. It seems likely that this feature results from

two opposing effects: (i) mortality is often high when trees are

small because they are competitively inhibited by taller

neighbours, but with higher light levels show an increase in

growth rate and reduction in mortality [2]; and (ii) a general

increase in mortality in larger individuals due to senescence and/

or increased exposure to strong wind and other disturbance

agents [52,53,50]. This explanation is supported by the fact that

species exhibit their minimum mortality rates at around the size

they enter the canopy (around 20 cm dbh, corresponding to a

height of around 20 m for a typical Eastern US deciduous tree;

[3]): once in the canopy, individuals are less affected by

competition for light with neighbours. U-shaped mortality has

potentially major implications for understanding forest structure

and the forest carbon cycle, because larger trees contain a

disproportionate fraction of above-ground woody biomass, such

that any increase in their mortality has a large effect on carbon

storage [7].

However, despite size being the most important single predictor

of mortality at the tree scale, variation in stand size structure had

almost no effect on geographical variation in plot-averaged

mortality (Fig. 3A). This may be simply because stand structure

does not vary systematically across the region, otherwise,

geographical variation in size distributions would result in

geographical variation in plot-averaged mortality. However, the

precise way in which the dynamics of size distributions might

interact with climate change and/or changes in tree harvesting to

induce future changes in plot-averaged mortality remains largely

unexplored.

Within vs across species variation in mortality along
climatic gradients
The mismatches we found between species-averaged and forest-

averaged mortality -environment correlations imply that, under

climate change, forest-averaged mortality will change in ways that

cannot be anticipated by examining the current relationship

between observed mortality and climate. Given that mortality is

highly dependent on species identity, size and environmental

factors, it is important to include all these factors in predictive

models of climate-change effects. For example, consider the

response of carbon stocks in the coldest regions of the Eastern US

to a scenario of increased temperature. Forest-averaged mortality

is currently greatest in the coldest locations, suggesting that

warming should decrease mortality rates, and increase carbon

stocks (Fig. 1B). In contrast, the fact that the species that currently

dominate cold regions had higher species-averaged mortality rates

in warmer areas implies that the warming might increase mortality

in cooler regions dominated by these species. Although warming-

induced mortality increases have been observed in other

temperate forests [8,54], even this extrapolation must be viewed

with caution, because it ignores any simultaneous changes in

species composition.

At the forest-averaged level, wind speed did not have an effect

on mortality yet several species-averaged mortality rates showed a

strong correlation with it (Fig. S1). The effect may be confounded

with other variables, for example trees may experience higher

mortality with higher wind speed in low density areas where there

is little protection from neighbouring trees [55]. At the forest-

averaged level, we found that mortality increased with increasing

radiation (Fig. 1D). A similar pattern of increasing mortality in

higher light conditions has been found for oak seedlings in the

Mediterranean [56] and linked to higher desiccation risk.

Figure 2. Predicted changes in species’ mortality rates with
increases in temperature and precipitation. Predicted changes in
species’ average annual mortality rate (calculated at each species’
median size and environment) when subjected to a hypothetical 2uC
temperature increase (N) and a 20% increase in annual precipitation
(%), shown plotted against the current average mortality rate without
this change.
doi:10.1371/journal.pone.0013212.g002
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Although several species followed this pattern, many others

showed the opposite trend of decreasing mortality with increasing

radiation, in agreement with many other studies linking light to

survival (e.g. [57–59]).

Species-mortality responses to changing climate
Our results suggest that species show contrasting responses to

changing environmental conditions, and these mortality responses

were strongly non-linear which suggests that individuals within a

species may respond at different rates to a change in conditions,

depending on where they sit within the species range. Changes in

mortality have been correlated with changing temperature and

precipitation levels in the USA in other studies [60,54], and since

many parts of the Eastern USA are predicted to experience

increases in temperature and precipitation under climate change

[46], we examined changes in mortality under scenarios of blanket

increases in temperature and precipitation only (Fig. 2). We found

that the largest changes were seen in the species with the highest

mortality rates, implying that under these climate change scenarios

the largest changes in carbon dynamics might be seen in highly-

disturbed landscapes where fast-growing species dominate. Such

changes in mortality could have repercussions for forest structure

and species composition, but any consequences would need to be

understood in the context of compounding effects of species-

specific changes in growth and recruitment rates [61,11], and

frequency of disturbance events, such as pest and pathogen

outbreaks, which may change with climate change [62]. However,

since observed wood anatomy and demographic rates within a

species may have adapted to local climatic conditions [63], the

future response of mortality to rapid climate change may follow

different patterns to the correlations between chronic climatology

and mortality documented here.

Limitations
Although this work presents strong evidence for marked

variation in mortality with a variety of different factors, we

Figure 3. Regional variation in mortality due to variation in each component of the model. Maps of estimated annual forest-level
mortality across the Eastern United States illustrating the contributions of each of the components of the model (A–C), the full model results (D), and
the observed mortality for the 21 common species (E). (A) Variation in forest structure alone (stem size and plot basal area), illustrated by removing
environmental effects and modelling just the most common species (A. rubrum). (B) The effect of variation in forest species composition alone,
illustrated by removing environmental variation, and stand structure variation (i.e. modelling a 20 cm dbh tree). (C) The effect of variation in
environment alone, illustrated by modelling A. rubrum without stand structure variation (i.e. modelling a 20 cm dbh tree) across the region. Full
model results (D) are strongly affected by species-environment interaction, and closely match the observed geographical pattern of average
mortality (E).
doi:10.1371/journal.pone.0013212.g003
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recognise several shortcomings in terms of a lack of inclusion of

external disturbance factors, forest management and history,

which are all likely to affect mortality. It is also important to note a

significant limitation of the study, namely that the data used cover

a single survey period only (1980s–1990s), so particular quantita-

tive results are dependent on conditions in this period and must be

treated with caution. This raises the possibility that some of the

patterns reported here reflect particular episodic events that may

not be representative of mortality patterns averaged over the

longer term. However, our four main conclusions (that mortality is

U-shaped against dbh, hump-shaped against plot basal area, and

species exhibit both different underlying mortality rates and

different responses to changes in environmental conditions)

presented in the main paper are robust unless: (a) over longer

periods temporal variation completely or nearly removes all effects

of species, size or environment on mortality, (b) the apparent

effects of the different predictor variables on mortality uncovered

here were caused entirely by temporally varying factors not

considered by this study, for example pests and pathogens [17],

forest management practices or extreme weather events [64].

Fortunately, national forest inventories are beginning to provide

re-surveyed data covering more than one time interval (e.g. [40]).

In principle, this kind of data can be used to estimate the

magnitude of inter-decadal variation in tree mortality directly.

These limitations are important and call for caution in interpreting

the results given here, and/or in utilising our models of mortality

(Table S2 in Supporting Information). More importantly, these

limitations, together whether the marked correlations between

climate and mortality documented here, call for further research

into tree mortality and its potential contribution to the response of

the terrestrial carbon cycle to climate change.

Conclusion
We found large and statistically significant differences in

mortality among species not only in baseline mortality rates

(Table 1), but also in their responses to environmental variation

(Fig. 1, S1, S2, S3 in Supporting Information), along with marked

effects of individual size, and plot basal area. Importantly, both

species composition and stand structure are likely to continue to

undergo directional changes over decadal timescales, independent

of any effects of climate change. Therefore, projections of future

forest carbon dynamics will be in error unless they incorporate the

effects of projected changes in species composition and stand

structure. The good news is that recent decades have seen the

appearance of a variety of simulation models that can make

accurate predictions of forest dynamics, whether within the

context of forest community ecology (e.g. [3]) or silviculture (e.g.

[65]), as well as Dynamic Global Vegetation Models which in

principle can predict forest responses to changing CO2 concen-

trations (e.g. [66]). These models, together with the large forest

inventory databases that are rapidly becoming available for many

of the world’s forests, suggest that believable predictions of future

forest dynamics and the forest carbon balance are within reach.

Supporting Information

Table S1 Table comparing model fits using AIC and BIC 36

models were run within which the four types of model predictor in

Eqn (4) (constant, size, environment, basal area) were left out or

included with forest-level (FL) or species specific (SS) effects. Total

number of parameters, AIC and BIC scores and rankings are

reported. Models without size and species effects were rejected

very strongly, and the additional inclusion of environmental and

competition variables increased model fit significantly. The best-fit

model, number 26, showed a very significant improvement on the

next best using both AIC and BIC.

Found at: doi:10.1371/journal.pone.0013212.s001 (0.07 MB

DOC)

Table S2 Table of maximum likelihood estimators (MLEs),

Bayesian means and 2.5% and 97.5% confidence levels calculated

from the posterior distributions for each of the 15 parameters of

Eqn (9) for each of the 21 common species parameterised by the

adaptive MCMC algorithm. The burn-in for the algorithm was

750,000 iterations and the sampling was 250,000 iterations.

Found at: doi:10.1371/journal.pone.0013212.s002 (0.18 MB

DOC)

Figure S1 Observed and predicted mortality rates against

maximum wind speed. Log annual mortality rates observed for

the whole forest including rare species (orange) and the 21

common species (green), and the model predictions for the 21

species combined (purple) and each species individually (grey),

plotted against maximum wind speed (m/sec). Species’ error bars

(grey) show parameter uncertainty, forest error bars (purple,

orange and green) show the 95% confidence interval for the

mortality rates predicted from the model-created and real datasets.

Found at: doi:10.1371/journal.pone.0013212.s003 (8.20 MB TIF)

Figure S2 Observed and predicted mortality rates against soil

type. Log annual mortality rates plotted against soil type for the

predicted forest-level mortality rate for all 21 species parame-

terised by the model (purple), the real forest-level mortality rates

for the 21 species (green) and the whole forest including rare

species (orange). Error bars (purple, orange and green) show the

95% confidence interval for the mortality rates predicted from the

model-created and real datasets.

Found at: doi:10.1371/journal.pone.0013212.s004 (8.20 MB TIF)

Figure S3 Observed and predicted mortality rates against plot

basal area. Log annual mortality rates observed for the whole

forest including rare species (orange) and the 21 common species

(green), and the model predictions for the 21 species combined

(purple) and each species individually (grey), plotted against plot

basal area (m2/hectare). Species’ error bars (grey) show parameter

uncertainty, forest error bars (purple, orange and green) show the

95% confidence interval for the mortality rates predicted from the

model-created and real datasets.

Found at: doi:10.1371/journal.pone.0013212.s005 (8.20 MB TIF)

Figure S4 Observed versus predicted plot-averaged mortality

rates. Observed versus predicted plot-averaged annual mortality

rate for all plots with at least 10 stems, showing the high

correlation (r2=0.9).

Found at: doi:10.1371/journal.pone.0013212.s006 (8.20 MB TIF)

Figure S5 Patterns of mortality due to regional variation in

stand strucuture and environmental alone. Maps of estimated

annual forest-level mortality across the Eastern United States

illustrating the contributions of variation in stand structure (stem

size and plot basal area) and environment, modelled across the

range of Pinus taeda to control for the effects of species composition.

(A) Variation in forest structure alone (stem size and plot basal

area), illustrated by removing environmental effects and modelling

just the most common species (P. taeda). (B) The effect of variation

in environment alone, illustrated by modelling P. taeda without

stand structure variation (i.e. modelling a 20 cm dbh tree) across

the region.

Found at: doi:10.1371/journal.pone.0013212.s007 (8.88 MB TIF)

Figure S6 Regional patterns of differences between observed at

predicted mortality rates. Map of absolute difference between
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predicted and observed forest level mortality across the Eastern

United States.

Found at: doi:10.1371/journal.pone.0013212.s008 (7.66 MB TIF)
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variation in the response of growth, crown morphology, and survivorship to light

of six tree species in the conifer belt of the Bhutan Himalayas. Canadian Journal
of Forest Research 34: 1093–1107.

60. Voelker SL, Muzika R, Guyette RP (2008) Individual Tree and Stand Level
Influences on the Growth, Vigor, and Decline of Red Oaks in the Ozarks. Forest
Science 54: 8–20.
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