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Influences of organic carbon speciation on
hyporheic corridor biogeochemistry and microbial
ecology
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The hyporheic corridor (HC) encompasses the river–groundwater continuum, where the

mixing of groundwater (GW) with river water (RW) in the HC can stimulate biogeochemical

activity. Here we propose a novel thermodynamic mechanism underlying this phenomenon

and reveal broader impacts on dissolved organic carbon (DOC) and microbial ecology. We

show that thermodynamically favorable DOC accumulates in GW despite lower DOC con-

centration, and that RW contains thermodynamically less-favorable DOC, but at higher

concentrations. This indicates that GW DOC is protected from microbial oxidation by low

total energy within the DOC pool, whereas RW DOC is protected by lower thermodynamic

favorability of carbon species. We propose that GW–RW mixing overcomes these protec-

tions and stimulates respiration. Mixing models coupled with geophysical and molecular

analyses further reveal tipping points in spatiotemporal dynamics of DOC and indicate

important hydrology–biochemistry–microbial feedbacks. Previously unrecognized thermo-

dynamic mechanisms regulated by GW–RW mixing may therefore strongly influence bio-

geochemical and microbial dynamics in riverine ecosystems.
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G
roundwater–river water (GW–RW) mixing can stimulate
dissolved organic carbon (DOC) turnover1 in the
hyporheic corridor (HC)2, a critical domain of riverine

ecosystems3–6 responsible for up to 90% of ecosystem respira-
tion7. A full accounting of the mechanisms that govern mixing-
driven enhancements of biogeochemical activity and their
ecosystem-scale consequences are prerequisites of process-based
hydro-biogeochemical models that aim to predict the impacts of
environmental change on watershed hydrology and bio-
geochemistry. In addition, a key challenge in working toward
watershed-scale process-based hydro-biogeochemical models is to
connect fine-scale processes to larger scale phenomena8–10. One
mechanism through which mixing can enhance activity is by
complementary electron donors (e.g., organic carbon) and
terminal electron acceptors (e.g, oxygen) coinciding when GW
mixes with RW, resulting in a biogeochemical hotspot11,12. By
combining recent findings in marine and subsurface systems, we
suggest an alternative, three-part mechanism: first, biologically
labile DOC can accumulate along subsurface flow paths (as
shown by Helton et al.13); second, concomitant decreases in DOC
concentration protects this labile DOC (as shown by Arrieta
et al.14); and third, in turn, GW–RW mixing combines low
concentration labile DOC—protected from microbial oxidation
by low total energy availability—with RW DOC that is higher
concentration1,15 but less labile16.

We hypothesize that biogeochemical activity is, in turn, sti-
mulated during GW–RW mixing due to GW-derived labile DOC
‘priming’17,18 the oxidation of poor quality river-derived DOC.
Here we test this hypothesis—diagrammed conceptually in Fig. 1
—from a thermodynamic perspective using ultra-high resolution
profiling of DOC via Fourier transform ion cyclotron
resonance–mass spectrometry (FTICR–MS). Upon finding sup-
port for the hypothesis, we examine the larger scale implications
of mixing-driven enhancements for DOC biogeochemistry across

the HC by coupling end-member mixing models with time-lapse
electrical resistivity tomography (ERT). We further reveal lin-
kages between microbiome composition and DOC biochemistry,
which highlight critical feedbacks among hydrology, DOC bio-
chemistry, and microbial ecology.

Results
Mixing models and DOC thermodynamics. We used water
samples from GW wells and a near-shore piezometer to monitor
subsurface aqueous chemistry through space (400 m spatial
extent) and time (7-month temporal extent) (Fig. 2). Consistent
with previous work1, the analysis of water samples provided
evidence that GW–RW mixing elevated heterotrophic respiration
across the HC, but only within a narrow range of mixing con-
ditions (~ 0–10% GW; Fig. 3). Per our conceptual model (Fig. 1),
we hypothesized that intrusion of RW into the HC would sti-
mulate microbial heterotrophic respiration1,19,20, whereby DOC
would decrease and dissolved inorganic carbon (DIC) would
increase. An alternative hypothesis is that GW–RW mixing sti-
mulates biogeochemical activity by bringing together com-
plementary electron donors and terminal electron acceptors11.
This mechanism is unlikely in the studied field system, because
both end members (GW and RW) are oxygenated, whereby
terminal electron acceptors would not be limiting. Nonetheless, to
evaluate the potential for this mechanism, we took advantage of
the higher concentration of DOC in RW and higher nitrate
concentration in GW. In this case, the alternative hypothesis
predicts that—in addition to a decrease in DOC and an increase
in DIC, relative to a mixing model—GW–RW mixing will lead to
losses of nitrate relative to a mixing model12.

End-member mixing model results were consistent with our
conceptual model. Measured DOC and DIC concentrations fell
below (Fig. 3a, d) and above (Fig. 3b, e) a linear mixing model
expectation, respectively; reactive solute concentrations (DOC,
DIC, and nitrate) and conservative tracer concentrations (using
Cl−) in GW and RW were used to estimate a linear mixing model
for each reactive solute1 (see Methods). Consistent with
stimulated heterotrophic respiration—and excluding purely
abiotic processes such as sorption—the magnitudes of deviation
were negatively correlated (Fig. 3f); greater losses of DOC were
associated with greater increases in DIC, but only when
considering conditions with less than ~ 10% GW (see purple
boxes in Fig. 3d, e). However, nitrate did not deviate from the
mixing model (Fig. 3c), thereby rejecting the alternative
hypothesis that biogeochemical activity is stimulated by mixing
complementary electron donors and acceptors.

Although elevated respiration under conditions of GW–RW
mixing may be due to transport into the HC of labile DOC from
RW and/or surficial sediments1,19,20, our results are consistent
with our conceptual model (Fig. 1). Our results also reject the
hypothesis that labile DOC is derived from the RW. These
inferences are supported by integrating DOC thermodynamics
and concentrations with the mixing models. To examine DOC
thermodynamics, we used FTICR–MS to assign molecular
formulas to DOC species in our aqueous samples21,22 and, in
turn, calculated the Gibbs free energy of the half reaction of
organic carbon oxidation23 (ΔG0

Cox) (see Methods). Values of
ΔG0

Cox are positive such that DOC oxidation must be paired with
the reduction of a favorable terminal electron acceptor23.

A classic paradigm is that along subsurface flow paths microbes
oxidize the most easily accessible DOC species, thereby leading to
a decline in both DOC lability and concentration as residence
time increases20,24–26. Based on this paradigm we hypothesized a
negative relationship between ΔG0

Coxand DOC concentration;
ΔG0

Cox values are positive and values closer to zero are more

Groundwater

Mixed groundwater

and river water

River waterDOC CO2

Fig. 1 Hypothesized mechanism underlying the stimulation of respiration by

mixing of groundwater with river water: low concentration of DOC protects

thermodynamically favorable C (represented as monomeric C) by imposing

an energetic limitation in terms of low total energy across the DOC pool,

allowing favorable DOC to accumulate in GW. The thermodynamically

unfavorable state of DOC (represented as polymeric C) in RW protects it

from microbial oxidation, allowing it to accumulate in RW despite the DOC

of RW being at a higher concentration. GW–RW mixing increases DOC

concentration, relative to GW (removing the energetic protection), and

improves DOC thermodynamic favorability (removing thermodynamic

protection). Simultaneously removing these protection mechanisms

stimulates aerobic respiration (DOC to CO2)
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thermodynamically accessible for microbial respiration23. We
further hypothesized that ΔG0

Cox would increase with increasing
GW fraction (i.e., DOC will be less thermodynamically favorable
in GW due to consumption of more favorable DOC along flow
paths25).

Our results directly conflict with the classic paradigm of
decreasing DOC lability along subsurface flow paths, wherein we
found that ΔG0

Cox decreased with increasing GW fraction (Fig. 4a)
and was significantly higher above a DOC concentration of 0.4
mg l−1 (Fig. 4b). These results indicate that more thermodyna-
mically favorable carbon accumulates in the GW where DOC
concentrations are lowest (Fig. 3a), and that higher DOC
concentrations in the river (Fig. 3a) are associated with less
thermodynamically favorable DOC. Poor quality of DOC in RW
is further supported by recent experiments showing that RW
from the field system studied here does not elevate aerobic
respiration relative to a DOC-free control16. Increased lability of
organic carbon along longer flow paths is, however, consistent
with recent work showing that carbon lability can increase with
residence time in alluvial aquifers13. Those authors suggested that
labile DOC—across long subsurface flow paths—may be derived
indirectly through methanotrophy using methane that is
generated in formations underlying the upper unconfined aquifer.
Consistent with this explanation, DelVecchia et al.27 showed that
invertebrate biomass in the same aquifer is derived indirectly
from methane. In our system, labile DOC in GW may also be
indirectly derived from methanotrophy, as methane concentra-
tions are elevated within fine-grained sediments that underlie the

coarse-grained sediments within which we sampled28. Labile
DOC in the GW of our system may also be leached from buried
organic carbon deposits (e.g., woody material), which occur
sporadically in the aquifer29.

Although labile DOC found in GW may be derived from a
variety of sources, we propose that labile DOC is protected in the
GW aquifer due to low DOC concentrations, as was recently
shown for the deep sea14. In this case, labile DOC is protected by
an energetic constraint, whereby the available DOC does not
provide enough cumulative energy through time to each
microbial cell, to offset the energetic costs of maintaining cellular
machinery needed to oxidize the DOC14. We infer that this
energy limitation is driven by very low GW DOC concentrations
(~ 0.35 mg l−1) that decrease the probability of a DOC molecule
physically encountering a given microbial cell. In turn, DOC
oxidation by microbial cells yields insufficient energy to offset
maintenance costs (i.e., there is poor return on investment). This
energetic constraint is based on the size of the DOC pool and
contrasts with chemical constraints based on biochemical features
of individual DOC species30 and more physically based
constraints such as mineral sorption or sequestration inside soil
aggregates31. We further propose that the energetic constraint
leads to rates of DOC oxidation that are too low to strongly
influence the thermodynamic profile of the DOC pool. That is, we
hypothesize that there is not enough oxidation of DOC to remove
enough thermodynamically favorable compounds to drive the
median ΔG0

Cox toward higher values. In turn, low DOC
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concentrations allow more thermodynamically favorable com-
pounds to persist in the DOC pool.

Combining our DOC mixing model results with the observa-
tion of more labile DOC in GW supports the inference of an
energetic constraint on DOC oxidation in GW. More specifically,
along the continuum from pure GW to pure RW, there is a
threshold at ~ 10% GW beyond which there is little change in
DOC concentrations, which results in a linear trajectory—from
10% to 100% GW—toward the mixing model expectation
(Fig. 3d). This suggests that once the DOC concentration
decreases below some threshold, there is minimal oxidation of
the remaining DOC regardless of how thermodynamically
favorable the DOC is.

Identification of the DOC threshold below which there was
little DOC oxidation aligned with the estimate of this threshold in
the deep sea, suggesting a global constraint in saturated/aqueous
environments. Preliminary analyses indicated that across the
locations we sampled (Fig. 2) this threshold was at ~ 0.4 mg l−1,
which was confirmed as shown in Fig. 4b. Below this
concentration, more labile DOC accumulated (although it does
not always do so), and above this concentration DOC is
dominated by less thermodynamically favorable species (Fig. 4b).
Arrieta et al.14 recently showed that DOC in the deep sea is

protected by low concentration, as opposed to being biochemi-
cally recalcitrant, which aligns with our inferences. They used
controlled laboratory experiments to show that at DOC
concentrations below ~ 0.35 mg l−1 there is not enough energy
to support metabolic machinery needed to oxidize DOC. Their
lab experiment-based estimate of the DOC concentration
threshold is very close to our estimate based on field observations.
This correspondence suggests the intriguing possibility that DOC
concentrations below ~ 0.35–0.4 mg l−1 may globally constrain
DOC oxidation in saturated/aqueous environments.

GW–RW mixing can stimulate biogeochemical activity by
bringing together complementary electron donors and acceptors,
leading to biogeochemical hot spots and moments11,32. Here we
suggest an alternative mechanism, however, whereby GW
supplies labile DOC that is energetically protected due to low
concentration14 and RW delivers DOC that is thermodynamically
protected, whereby the mixing of these carbon pools overcomes
their respective protection mechanisms. In this case, the GW-
derived DOC can be thought of as ‘priming’17,18 the oxidation of
river-derived DOC.

Although we can only speculate about mechanisms underlying
this priming effect, we hypothesize that DOC thermodynamics
may regulate expression and/or activity of enzymes used in the

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

Groundwater fraction

N
P

O
C

 (
n
o
rm

a
liz

e
d
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1.0

1.5

2.0

2.5

D
IC

 (
n
o
rm

a
liz

e
d
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

20

40

60

80

N
it
ra

te
 (

n
o
rm

a
liz

e
d
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−0.6

−0.4

−0.2

0.0

0.2

N
P

O
C

 d
e
v
ia

ti
o
n
 (

fr
o
m

 n
o
rm

a
liz

e
d
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−0.4

−0.2

0.0

0.2

0.4

D
IC

 d
e
v
ia

ti
o
n
 (

fr
o
m

 n
o
rm

a
liz

e
d
)

−0.6 −0.5 −0.4 −0.3

0.1

0.2

0.3

0.4

NPOC deviations

D
IC

 d
e
v
ia

ti
o
n
s

R
2
 =0.44

p = 0.001

Mixed

Groundwater

River water

ba

fed

c

Groundwater fraction Groundwater fraction

Groundwater fractionGroundwater fraction

Fig. 3 Reactive solutes and groundwater fraction and mixing model deviations. a–c Reactive solutes as functions of groundwater (GW) fraction inferred

using Cl– as a conservative tracer. Linear mixing model expectations are indicated by dashed lines; gray lines are spline fits. River water (RW)

concentrations of reactive solutes varied through time. Concentrations at each point in time were thus normalized to the associated RW concentrations;

RW samples (blue circles) are always at 1 on the vertical axes. Cl− concentrations varied across GW wells (open circles) such that a threshold

concentration was selected to indicate pure GW; non-river samples with Cl− concentration below this threshold were considered mixed (red circles).

DOC, dissovled organic carbon; DIC, dissolved inorganic carbon. d, e Deviations from the DOC and DIC mixing models as functions of GW fraction. The

purple rectangles on both panels indicate the range of conditions across which DOC deviations become increasingly negative. f DIC and DOC mixing model

deviations within the purple rectangles are regressed on each other, revealing a significant negative relationship; the solid line is the regression model and

statistics are provided on the panel

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02922-9

4 NATURE COMMUNICATIONS | (2018)9:585 |DOI: 10.1038/s41467-018-02922-9 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


processing and oxidation of DOC. Under this hypothesis, inputs
of low concentration and thermodynamically favorable DOC
from GW act as a signal that results in increased enzyme
expression or activity. The regulatory signal may be associated
with the amount of energy gained per oxidation event. If the
mechanism is via enhanced enzyme activity, it would suggest
positive feedback regulation similar to that shown for the
stringent response in Escherichia coli33. We further hypothesize
that the thermodynamics-based signal only operates when DOC
concentrations are above a threshold needed to offset the costs of
producing enzymes used for DOC oxidation. As discussed above,
this threshold appears to be ~ 0.35–0.4 mg l−1 across both our HC
system and the deep sea. Although speculative, this regulation-
based hypothesis provides a starting point for future experiments
designed to reveal underlying mechanisms.

Spatiotemporal projections of DOC across the HC. The pat-
terns discussed above represent a largely unrecognized collection
of processes that have the potential to strongly influence carbon
cycling within the HC. Coupling the mixing models with time-
lapse ERT34–36 further indicates that these processes have a
strong influence over HC-scale DOC dynamics (see Methods and
Supplementary Figs. 1–3). In particular, processes leading to the
nonlinear relationship between DOC and GW fraction—due, in
part, to processes captured in Fig. 1—result in thresholding
behavior in the spatial distribution of DOC. Specifically, across
the HC significant increases in DOC were projected to occur only
when the GW fraction dropped below 10% (Fig. 5). Leveraging
the contrast in electrical conductivity (EC) between GW and RW
in the study system, ERT34 imaging was used to characterize the
intrusion of RW into the HC (Fig. 5a, d). RW pulsed in and out of
the HC during our 7-month study period due to a combination of
seasonal- and dam-controlled variation in river stage (Fig. 2)34.
This resulted in a broad range of GW–RW mixing conditions
across the HC. Over this period, ERT was used to produce images
of changes in aquifer EC resulting from RW intrusion and retreat,
which were subsequently converted to spatiotemporal estimates
of GW fraction. The statistical relationship between DOC and
GW fraction (gray line in Fig. 3a) was coupled to the ERT images,
in order to project DOC concentrations across the ERT domain at
each point in time.

Coupling the aqueous chemistry to the ERT images revealed
that large intrusion events that lowered the GW fraction in the
HC to ~ 15% (Fig. 5a) had little effect on the DOC concentration
(Fig. 5b) due to substantial losses of DOC during RW intrusion
(Fig. 5c). ERT projections further highlight an important impact
of the nonlinear relationship between DOC and GW fraction; a
relatively small decrease in the GW fraction from ~ 15% to 10%
(Fig. 5d) may lead to significantly more DOC being transported
into the HC (Fig. 5e, f). Therefore, relatively small increases in
river surface elevation that cause increased intrusion of RW and,
in turn, a decrease in GW fraction may significantly alter
spatiotemporal dynamics of DOC across the HC. This type of
thresholding behavior is a critical feature to capture in process-
based hydro-biogeochemical models of the HC.

Microbial ecology and DOC biochemistry. Despite stimulated
heterotrophic respiration in response to RW intrusion, the phy-
logenetic composition of microbiomes across the HC responded
weakly to the intrusion of RW (Supplementary Fig. 4). To
determine turnover in microbiome composition we used the
β-nearest taxon index (βNTI) metric, which quantifies the dif-
ference between observed compositional turnover and a sto-
chastic expectation37. βNTI< − 2 indicates that ecological
selection pressures are consistent through time/space (termed
homogenous selection), resulting in little variation in microbiome
composition. βNTI> + 2 indicates that ecological selection pres-
sures change through time/space (termed variable selection),
causing large shifts in microbiome composition. βNTI values
between − 2 and + 2 indicate that the selective environment does
not strongly determine differences (or similarities) between a
given pair of microbiomes38,39. βNTI analysis revealed that
microbiomes within each compartment of the HC system—river,
nearshore hyporheic zone, or the unconfined GW aquifer—were
governed by homogeneous selection (Supplementary Fig. 5).

Although HC microbiomes did not respond strongly to RW
intrusion, a striking connection between microbiome composi-
tion and DOC composition was revealed when river microbiomes
were compared with hyporheic zone microbiomes. Specifically,
βNTI increased nonlinearly (to values > + 2) with increasingly
large shifts in DOC composition (Fig. 6a), determined by
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FTICR–MS. Turnover in DOC composition was quantified with
the Sorensen dissimilarity metric, ranging from 0 to 1; a value of 1
being completely dissimilar, using the presence/absence of MS
peaks. Large differences (i.e., βNTI> + 2) in microbiome
composition between the river and hyporheic zone were
associated with clear shifts in DOC composition (Van–Krevelen
analysis40, Fig. 6b). In particular, there was a shift from lignin-like
compounds composed of only C, H, and O in RW (Fig. 6c) to
amino sugar-like compounds composed of C, H, O, and N in HZ
water (Fig. 6d). Lignin-like CHO compounds that were over-
represented in the RW may be the result of allochthonous (i.e.,
terrestrial) C inputs to RW41, whereas amino sugars over-
represented in the hyporheic zone likely reflect microbial
processing of fresh plant material and microbial biomass42.

The strong positive relationship between βNTI and the FTICR-
MS-based Sorensen dissimilarity indicated that shifts in DOC
speciation were associated with shifts in deterministic ecological
selective pressures that govern the composition of microbiomes39.
To reveal key biochemical interactions between the microbiomes
and DOC, we identified biochemical transformations that were
differentially represented between RW and the hyporheic zone.
To do so we focused on FTICR–MS data from samples associated
with βNTI> + 2 (Fig. 6a). We focused on these samples, because
βNTI> + 2 indicates a shift in microbiome composition that is
deterministically driven by a shift in environmental conditions38.
Within these samples, we identified FTICR–MS peaks unique to
the river and those unique to the hyporheic zone. In turn, we

leveraged the high mass accuracy of the FTICR–MS to estimate—
within each set of unique peaks—the frequency of 82 unique
biochemical transformations43 (see Methods and Supplementary
Datas 1, 2). This approach follows from Longnecker and
Kujawinski44, and is based on counting the number of times
each transformation was inferred within each set of peaks.

For each transformation in each data set, we estimated its
fractional contribution to the total number of observed
transformations; resulting values are akin to relative abundances
within each data set. The fractional contribution of each
transformation in the RW was subtracted from its fractional
contribution in the hyporheic zone. Resulting values > 0 indicate
higher relative representation in the RW and values < 0 indicate
higher relative representation in the hyporheic zone (Fig. 6e).
This comparison was enabled by relatively similar numbers of
peaks and transformations in the hyporheic zone and RW data
sets. Before removing shared peaks, the hyporheic zone and river
had 10,708 and 11,086 peaks, respectively, and 117,651 and
108,120 transformations, respectively. There were 4,813 peaks in
common, leaving 5,895 and 6,273 peaks in the unique peak sets
for the hyporheic zone and river, respectively. The unique peak
sets were associated with 34,954 and 31,307 transformations in
the hyporheic zone and river, respectively. Normalized counts
and river-to-hyporheic zone differences in normalized counts for
each transformation are provided for the analyses with and
without shared peaks removed (see Supplementary Datas 1, 2).
Below we focus on interpreting analyses when shared peaks were
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removed, but our primary inferences were the same whether we
kept or removed peaks shared between the hyporheic zone and
river data sets (see below). We emphasize, however, that
FTICR–MS is not quantitative in terms of concentrations of
specific compounds. Our results should therefore be interpreted
as providing new hypotheses about the interaction between HC
microbiomes and DOC biochemistry.

The analysis of biochemical transformations revealed that
deterministic shifts in microbiome composition were associated
with a clear shift DOC biochemistry (Fig. 6e), providing
mechanistic insight into the interactions between HC micro-
biomes and their biogeochemical environment. In particular, this
analysis revealed a clear transition from N-free biochemical
transformations in RW to N-containing transformations in the
hyporheic zone that were largely associated with amino acids
(Fig. 6e). This pattern was found both when removing or
retaining FTICR–MS peaks shared between the hyporheic zone
and river data sets (cf. Fig. 6e and Supplementary Fig. 6).
Therefore, the ability to degrade protein may be a key functional
trait selected for in hyporheic zone microbiomes. Furthermore,

ecological selective pressures in the RW appear to be consistent
through time (Supplementary Fig. 5; also see Graham et al.45) and
may not include selection for microbial taxa with proteolytic
abilities. Although our results do not reveal what imposes
selection within RW, they indicate that selection for proteolytic
activity is strong within the hyporheic zone and is not a selective
pressure in RW. The lack of selection for proteolytic activity in
the RW microbiome therefore appears to be a key factor
differentiating microbiomes between RW and the hyporheic
zone. In our study system we have repeatedly found distinct
microbiomes between RW and the hyporheic zone1,15,45. We
expect this is generally true due to sustained biogeochemical
differences between RW and hyporheic zone, even for systems
with more temporal variation in selective pressures within RW.
This hypothesis warrants broad evaluation.

Elevated proteolytic activity in the hyporheic zone may
generally reflect higher cell densities and greater biogeochemical
activity of the hyporheic zone, relative to RW7. Past work has,
however, shown equivocal relationships between proteolytic
activity and microbial biomass46,47, instead finding that
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proteolytic activity is induced under N or S limitation47,48. This
suggests an important shift in limiting nutrients between RW and
the hyporheic zone, and higher proteolytic activity in the
hyporheic zone may specifically indicate N-limitation. Recent
experimental work in the same field system, however, did not
indicate N-limitation in the hyporheic zone; addition of N as
nitrate did not elevate respiration rates, as measured by CO2

production from sediment water slurries49. Furthermore, stable
ecological selection pressures imposed on the RW microbiome
(see above) suggest that the identity of limiting resources within
RW is consistent through time. An intriguing question is whether
the presence of dams in the study system leads to greater
temporal stability in limiting resources, relative to undammed
systems with greater temporal variability in river stage, flow
velocities, and sediment transport. We look forward to evaluation
of such questions and note that many inferences derived here
should be treated as hypotheses that will need to be evaluated
using additional controlled experiments and quantitative
methods.

Discussion
Integrating results across our analyses suggests a conceptual
model that connects RW discharge dynamics, biogeochemistry,
and microbiomes across the HC as follows: RW contains CHO
lignin-like organic compounds—potentially indicating significant
terrestrial carbon inputs to the RW—which are thermo-
dynamically unfavorable for microbial oxidation, and these
compounds enter the hyporheic zone following a rise in river
stage. Once in the hyporheic zone, the CHO lignin-like com-
pounds mix with more thermodynamically favorable GW DOC
that, in turn, primes microorganisms to mineralize the river-
derived DOC. This results in an increase in microbial activity,
depletion of CHO lignin-like compounds and an increase in
amino-acid-associated biochemical transformations in the
hyporheic zone. These shifts in DOC composition are associated
with a clear shift in deterministic ecological selection pressures
that differentiate RW and hyporheic zone microbiomes, poten-
tially due to selection for proteolytic activity in the hyporheic
zone associated with N or S limitation. The influx of river-derived
DOC into the hyporheic zone is followed by a rapid decline in
DOC concentrations—due, in part, to microbe-driven DOC
oxidation that is enhanced by GW–RW mixing. This occurs up to
a GW fraction of 10% and across GW fractions larger than this
threshold, DOC concentrations stabilize due to an energetic
limitation imposed by low DOC concentration that persists
despite accumulation of thermodynamically favorable DOC. The
rapid decrease in DOC concentration as RW travels through the
hyporheic zone results in minimal influences of RW intrusion on
DOC concentrations and microbiome composition across the
broader GW aquifer.

A key next step is to understand how shifts in DOC thermo-
dynamics—arising from GW–RW mixing—impact microbial
genomic potential and metabolic functioning across the HC.
Given that mixing conditions can change rapidly (< 1 h) and
frequently (daily)50,51, we expect microbiomes across the HC to
be well adapted to dynamic shifts in hydrologic and biogeo-
chemical conditions1,15,45, which is consistent with temporally
stable selective pressures on microbiomes indicated by our βNTI
analyses (Supplementary Fig. 5). In turn, genome-encoded
metabolic potential may be relatively stable through time52,
whereas gene and protein expression patterns likely shift rapidly
when the system moves across the critical mixing threshold of
10% GW. Understanding short- and long-term responses of
microbial metabolism to mixing-induced changes in DOC ther-
modynamics will enable more process-based representation of the

feedbacks among hydrology, DOC biochemistry, and microbial
ecology in hydro-biogeochemical models.

Methods
Field sampling. Water samples were collected from the Columbia River and within
the adjacent HC across a broad range of river stage conditions in 2013 (Fig. 2). GW
was sampled with a submersible pump from 10 wells screened across the top of the
subsurface aquifer. Hyporheic water and RW were sampled using a peristaltic
pump from a piezometer installed into the riverbed to ~ 1 m depth and from an in-
river location near the piezometer, respectively (Fig. 2). After purging pump lines a
0.22 µm polyethersulfone Sterivex filter (Millipore Co. Billerica, MA) was installed
to filter water for aqueous chemistry samples. Filtered samples were collected into
40 ml borosilicate vials to be used for anions, DOC, and DIC, and stored at 4 °C.
Three samples for FTICR–MS organic carbon analysis were also collected in 40 ml
borosilicate vials and frozen at − 20 °C. After water sample collection, Sterivex
filters were frozen on dry ice and stored at − 80 °C to be used for DNA extraction.

Analytical methods. DIC and non-purgeable organic carbon (referred to as DOC)
were estimated with a Shimadzu combustion carbon analyzer TOC-Vcsh with ASI-
V auto sampler. DIC was determined by injection into 25% phosphoric acid at
ambient temperature with a calibration range of 0.35 to 40 mg l−1 as C and both
sodium bicarbonate solid and sodium carbonate solid standards (Nacalia Tesque).
DOC was determined after acidification with 2 N HCl (five minute sparging) to
remove DIC. The sample was then injected into the furnace at 680 °C with cali-
bration from 0.35 to 3.5 mg l−1 and limit of quantification of 0.20 mg l−1 as C and
potassium hydrogen phthalate solid standard (Nacalia Tesque).

A Dionex ICS-2000 anion chromatograph with AS40 auto sampler was used to
determine nitrate and chloride concentrations (Guard column: IonPac AG18
guard, 4 × 50 mm; analytical column: IonPac AS18, 4 × 250 mm; suppressor: RFIC
ASRS, 300 4 mm, self-regenerating; suppressor current: 99 mA). A 25 min gradient
method was used with 25 μl injection volumes and a 1 ml min−1 flow rate at 30 °C.
The gradient consisted of 22 mM KOH (7min), increasing KOH (1min), 40 mM
KOH (12 min), followed by decreasing KOH back to 22 mM (5min). Aanion
standards (1,000 mg l−1 ; Spex CertiPrep, Metuchen, NJ) were diluted for a
calibration range from 0.60 to 120 p.p.m., and measurement error was 2.5% for Cl–

and 1.4% for NO3
−.

Organic carbon characterization. Ultrahigh resolution characterization of DOC
was done with a 15 Tesla Bruker SolariX FTICR–MS at the Environmental
Molecular Sciences Laboratory (EMSL), a Department of Energy-Office of Biolo-
gical and Environmental Research national user facility in Richland, WA. Samples
were thawed overnight and then prepared by adding 0.5 ml of methanol (Optima
LC/MS grade, Sigma Aldrich, Saint Louis, MO) to 0.5 ml of sample water in an
Eppendorf 96 well plate fitted with 2 ml glass sleeves. Suwannee River Fulvic Acid
standard (1 mgml−1 powder in MilliQ filtered water, diluted to 2 µg ml−1, Inter-
national Humic Substance Society) was used as control and injected every 15th

sample to assure instrument stability. Lab blanks (1 : 1 by volume LC/MS grade
methanol and MilliQ filtered water) were injected after the control to verify no
sample carryover.

For the FTICR–MS analysis we analyzed three replicate samples for each
sampling location on each sampling date. Samples were directly injected into the
instrument using an automated custom-built system and ion accumulation time
was optimized for all the samples. A standard Bruker electrospray ionization (ESI)
source generated negatively charged molecular ions. Samples were introduced to
the ESI source equipped with a fused silica tube (30 μm i.d.) through an Agilent
1200 series pump (Agilent Technologies) at a flow rate of 3.0 μl min−1. Previous
DOC characterization experiments were used to set experimental conditions to
optimal parameters (needle voltage, +4.4 kV; Q1 set to 50m/z; heated resistively
coated glass capillary operated at 180 °C). Individual scans (144) were averaged for
each sample and internally calibrated using OM homologous series separated by
14 Da (–CH2 groups). The mass measurement accuracy was typically within 1 p.p.
m. for singly charged ions across a broad m/z range (100–1,100m/z). The mass
resolution was 350,000 at 339.112 Da. DataAnalysis software (BrukerDaltonics
version 4.2) was used to convert raw spectra to a list of m/z values using FTMS
peak picker (S/N threshold of 7; absolute intensity threshold of 100). To reduce
cumulative errors, all sample peak lists for the entire dataset were aligned to each
other before formula assignment to eliminate possible mass shifts that would
impact formula assignment. In addition, the three replicates for each sampling
location on each sampling date were collapsed into a single DOC profile by
retaining all peaks observed across any of the three replicates. This was done to
provide a more complete sampling of DOC species.

Putative chemical formulas were assigned using EMSL in-house software based
on the Compound Identification Algorithm, described by Kujawinski and Behn21,
and modified by Minor et al.22. Chemical formulas were assigned based on the
criteria of S/N> 7 and mass measurement error < 1 p.p.m., taking into
consideration the presence of C, H, O, N, S, and P, and excluding other elements.
Peaks with large mass ratios (m/z values> 500 Da) often have multiple possible
candidate formulas; these peaks were assigned formulas through propagation of
CH2, O, and H2 homologous series. To ensure consistent choice of molecular
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formula when multiple formula candidates were found, the following rules were
implemented: we consistently picked the formula with the lowest error with the
lowest number of heteroatoms and the assignment of one phosphorus atom
requires the presence of at least four oxygen atoms. The chemical character of
thousands of features for each sample’s ESI FTICR–MS spectrum was evaluated on
van Krevelen diagrams. Compounds were plotted on the van Krevelen diagram on
the basis of their molar H : C ratios (y axis) and molar O : C ratios (x axis). The Van
Krevelen diagrams enabled comparison of the average properties of OM and the
ability to assign DOC species to major biochemical classes, which included lipid-,
protein-, lignin-, carbohydrate-, and condensed aromatic-like.

To characterize biochemical transformations that were potentially occurring
within each sample, the mass differences between FTICR–MS peaks within each
sample were compared with precise mass differences for commonly observed
biochemical transformations43. A mass of 2.0156 Da, e.g., represents a
hydrogentation/dehydrogentation reaction; a mass difference of 71.0371 indicates a
reaction in which one alanine (C3H5NO) was lost. It is possible to infer biochemical
transformations because the ultra-high mass accuracy of FTICR–MS. Within each
sample we counted the number of times each transformation was observed based
on precise mass differences between FTICR–MS peaks. Statistical analyses of the
resulting transformation profiles are discussed below in sub-section ‘Statistical
analyses.’

We calculate the Gibbs free energy for the half reaction of organic carbon
oxidation (ΔG0

Cox) by first estimating the nominal oxidation state of carbon
(NOSC), per La Rowe and Van Cappellen23. NOSC is calculated from the equation:

NOSC ¼ �ðð�Z þ 4aþ b� 3c� 2d þ 5e� 2f Þ=aÞ þ 4: ð1Þ

Here, a, b, c, d, e, and f are the number of atoms of elements C, H, N, O, P, and S,
respectively, in a given DOC species, and Z is the net charge of the species. In turn,
ΔG0

Cox is estimated from the empirical equation:

ΔG0
Cox ¼ 60:3� 28:5 NOSCð Þ: ð2Þ

Values of ΔG0
Cox are usually positive, indicating that the oxidation of DOC must be

coupled to the reduction of a terminal electron acceptor. Importantly, a higher
value of ΔG0

Cox indicates a less thermodynamically favorable species23. The ΔG0
Cox

for a given sample was estimated as the median value; median was used instead of
the mean due to some within-sample distributions of ΔG0

Cox being skewed. It is
noteworthy that each DOC species (i.e., each unique m/z peak) was associated with
a single ΔG0

Cox value and DOC species were treated as present or absent. Peak
intensities were not used due to uncertainty in how ionization efficiency of any
given DOC species (and thus peak intensity) varied across samples due to changes
in the profile of DOC species. As such, for a given sample, median ΔG0

Cox was
estimated by first calculating the ΔG0

Cox for each peak in the sample and then
finding the median value across all peaks within the sample. The resulting estimates
for median ΔG0

Cox were then analyzed by either regressing these values against GW
fraction (Fig. 4a) or by grouping the samples based on their DOC concentration.
To group samples, they were split into high and low DOC groups based on whether
their DOC concentration was greater than or less than 0.4 mg l−1, respectively. In
turn, the distribution of median ΔG0

Cox values within each group was summarized
as a boxplot (Fig. 4b) and a t-test was used to evaluate whether the means of the
two distributions were significantly different. The number of samples in the high
and low DOC groups was 52 and 104, respectively, which does not pose a problem
when using a t-test to compare means between the two groups. The number of
peaks within each sample used to estimate the median ΔG0

Cox varied from 211 to
3,499; sample-by-sample variation in the number of peaks in provided in
Supplementary Data 3. Variation in the number of peaks across samples could
result in samples with more peaks having more accurate estimates of median
ΔG0

Cox , but this does not preclude comparing distributions of median ΔG0
Cox values.

This does, however, highlight the fact that methods do not currently exist to
estimate the true level of uncertainty for within sample estimates of ΔG0

Cox . This
suggests that the differences in ΔG0

Cox we found between low and high DOC
concentrations should be interpreted as generating a hypothesis that
thermodynamic favorability of DOC varies with DOC concentration.

DNA extraction and processing. DNA was extracted from Sterviex filters using a
modification of methods from Bostrom et al.53. Each Stervix filter housing was
cracked open and the filter was removed using sterile instruments. Filter material
was incubated at 85 °C for 15 min in lysis buffer. To avoid DNA fragmentation, the
solution was slowly cooled and lysozyme was added to a final concentration of 1
mgml−1. The resulting solution was incubated at 37 °C for 30 min. SDS was added
to 1% final concentration, and proteinase-K was added to 100 µl ml−1 final con-
centration. The resulting solution was incubated at 55 °C for ~ 12 h. To facilitate
cell lysis, the samples were subsequently exposed to three freeze–thaw cycles using
liquid N2 followed by warming to 55 °C. Samples were then vortexed, which was
followed by isopropanol precipitation and pellet elution in Tris-EDTA (TE). The
samples were treated with 10 µg ml−1 RNase at 37 °C for 30 min, followed by
phenol–chloroform clean-up, isopropanol precipitation, and elution in TE.
Extracted DNA was stored at − 20 °C until shipment (on dry ice) to be sequenced
using an Illumina MiSeq at the Environmental Sample Preparation and Sequencing

Facility at Argonne National Laboratory (ANL), Lemont, IL, following the same
methods as in Stegen et al.1.

Sequences generated by the ANL facility were processed in QIIME 1.8.054. The
function split_libraries_fastq.py was used to demultiplex the fastq-formatted
sequences, with a Phred55 quality cutoff of 20. To identify chimeras the function
identify_chimeric_seqs.py was used to call USEARCH v6.156 with
‘non_chimera_retention’ set to ‘intersection.’ After removing identified chimeras
(with function filter_fasta.py), the function pick_open_reference_otus.py was used
to call USEARCH v6.1, pick operational taxonomic units (OTUs), and generate a
phylogeny using SILVA (97% similarity, release 111) (http://www.arb-silva.de/) as
the reference; default parameters were used except for the following modifications:
‘suppress_de_novo_chimera_detection’, ‘suppress_reference_chimera_detection,’
and ‘derep_fullseq’ were all set to ‘True,’ and ‘prefilter_percent_id’ was set to 0.

All additional analyses were carried out in R (http://cran.r-project.org/). OTUs
identified as chloroplasts were removed and the OTU table was subsequently
rarefied to 977 sequences—which resulted in one sample being dropped—using the
rrarefy function in the vegan package. OTUs that had zero abundance across all
samples, following rarefaction, were removed from both the OTU table and the
phylogeny using the match.phylo.data function in the picante library. β-Mean
nearest taxon distance (βMNTD) was used to quantify turnover in community
phylogenetic structure; abundance weighted βMNTD was calculated with the
comdistnt function in the picante package (see also refs 37,39,57,58). To evaluate the
potential for shifts in the relative balance between stochastic and deterministic
ecological processes, randomizations were used to generate a null distribution (999
randomizations) for each βMNTD estimate; βMNTD is a pairwise distance metric
such that a null βMNTD distribution was generated for each pairwise community
comparison. The βNTI measures the difference between observed βMNTD and the
mean of the null distribution in units of SD (see also refs 37,39,57,58):

βNTI ¼ βMNTDobs � βMNTDnull

� �

=sd βMNTDnullð Þ ð3Þ

Statistical analyses. As in Stegen et al.1, we used Cl– as a conserved tracer of
GW–RW mixing. Owing to the long time span across which samples were col-
lected, solute concentrations changed in the RW. Fitting a single mixing model to
the entire dataset was not therefore feasible. Instead, for each sampling event we
normalized all reactive solute (i.e., NO�

3 , DOC, and DIC) concentrations to the RW
concentration during that sampling event. In this case, the normalized con-
centration of each solute in RW always takes on a value of 1 (e.g., in Fig. 3a the RW
values are all exactly at 1), and values in all other samples are proportional to the
normalized value. For example, a DOC concentration that was 50% of the RW
concentration during a given sampling event has a value of 0.5 in Fig. 3a and a
NO�

3 concentration that was 20 times the RW concentration has a value of 20 in
Fig. 3c; GW had a much higher NO�

3 concentration than RW.
For each sample we converted Cl– concentration into an estimate of

‘groundwater fraction.’ This was done to facilitate the end-member mixing model
analysis and to connect the reactive solute concentrations to the time lapse ERT
images. GW fraction was estimated by first defining any Cl– concentration values
over 17.5 mg l−1 as pure GW; without any influence of RW, Cl– concentrations vary
naturally across the GW aquifer we studied such that a threshold must be defined
based on samples collected during low river stage, when there is no RW intrusion.
We then found the mean Cl− concentration for all samples with Cl−> 17.5 mg l−1.
The resulting mean Cl− concentration was considered 100% GW. This value was
used in the mixing model analyses. As 100% GW coincides with a mean Cl−

concentration, GW fraction can exceed 100% (Fig. 3). The mean Cl− concentration
from all RW samples was used to indicate 0% GW. The concentration of each
reactive solute in GW was estimated as the mean value (normalized within each
sampling event by the associated RW concentration) across all samples with Cl−>
17.5 mg l−1. These analyses therefore provided reactive solute concentrations for
each end member, RW, and GW; those estimates were combined with the
estimated GW fractions to first fit end-member mixing models and then compare
those models with the data from across the RW-to-GW gradient (Fig. 3a, b, c).

During the mixing model analyses we noted two samples that were clear outliers
from the first two sampling events. To be conservative, we removed the first two
sampling events from the mixing model analyses.

To evaluate the degree to which changes in GW–RW mixing conditions
influenced microbial community composition through deterministic ecological
selection, we used distance matrix regression and a permutation-based Mantel test
to relate βNTI to changes in in Cl− concentration. The Mantel test was used to
account for non-independence among the pairwise distance measurements (i.e.,
βNTI and change in changes in in Cl− concentration are both pairwise
measurements of difference or distance). As we were interested in the influences of
GW–RW mixing conditions, we excluded RW microbial communities from this
analysis.

To evaluate the potential for DOC speciation to influence microbial community
composition, we performed an exploratory analysis relating βNTI to changes in the
DOC speciation profile. Change in the DOC speciation profile between all pairwise
sample comparisons was based on the shifts in the presence/absence of m/z peaks
from the FTICR-MS. Shift in the DOC profile was quantified with the Sorensen
dissimilarity metric, a common ecological metric used to measure shifts in
community composition (distance function in the ecodist R package). The analysis
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revealed a strong positive relationship between βNTI and Sorensen dissimilarity
when comparing RW samples with nearshore hyporheic zone samples (Fig. 6a).
Such a relationship was not observed in other comparisons; river samples
compared with GW aquifer samples, hyporheic zone samples compared with GW
aquifer samples, or simultaneously comparing samples from all parts of the system.

The strong positive relationship between βNTI and the FTICR–MS-based
Sorensen dissimilarity indicated that shifts in DOC speciation were associated with
shifts in deterministic ecological selective pressures that govern the composition of
microbial communities39. As DOC interacts with microbial communities through
biochemical transformations (see sub-section ‘Organic carbon characterization’),
we identified transformations that were overrepresented in either RW or the
hyporheic zone. To do so we focused on FTICR–MS data from samples associated
with βNTI > +2 in the comparison between RW and hyporheic zone microbial
communities, shown in Fig. 6a. We studied these samples, because βNTI > + 2
indicates a shift in microbial community composition that is deterministically
driven by a shift in environmental conditions38. In turn, we identified a set of
samples from the river and another set from the hyporheic zone, all of which were
associated with βNTI > +2. We then identified the FTICR–MS peaks that were
unique to each set (i.e., peaks unique to the river and those unique to the hyporheic
zone, for samples associated with βNTI> +2). Within these sets of peaks we
inferred biochemical transformations and tallied up the number of times each
transformation was observed. To compare the RW transformations with the
hyporheic zone transformations we normalized the transformation counts within
each data set and then subtracted the normalized representation of each
transformation in the RW from its representation in the hyporheic zone. Resulting
values> 0 indicate higher relative representation in the RW and values< 0 indicate
higher relative representation in the hyporheic zone (Fig. 6e).

Imaging RW intrusion. Three-dimensional time-lapse ERT was used to monitor
stage-driven RW intrusion into the aquifer by imaging the resultant changes in
subsurface EC. The spatial domain covered by ERT monitoring is shown in Fig. 2
and Supplementary Figure 1. Details of the analysis are provided in Johnson et al.34

and summarized here. ERT utilizes an array of electrodes to inject electrical current
into the subsurface and measure the resulting potential field. A single measurement
uses four electrodes, two as the current source and sink electrodes, and two as the
positive and negative potential electrodes. Many such measurements are strategi-
cally collected and tomographically inverted to provide an estimate, or image, of
the bulk subsurface EC distribution that gave rise to the measurements. A major
component of EC in porous media is the conductivity of the pore fluid. At the
monitored field site the EC of RW was ~ 50% of the GW conductivity, enabling it
to act as a contrasting agent for time-lapse ERT imaging. Using low-stage condi-
tions (when the HC is occupied only by ground water) as baseline, decreases in EC
from baseline were diagnostic of the presence of RW. Subsequently, when ERT data
were repeatedly collected and tomographically inverted, three-dimensional images
of RW intrusion into and retreat from the GW-saturated HC34,35 were produced.
To illustrate, Supplementary Fig. 1 shows the surface electrode array superimposed
on the ERT computational mesh.

The array consisted of 352 electrodes, divided into 11 electrodes lines spaced ~ 25
m apart, with 10m spacing between electrodes on a given line. A single ERT survey,
which constitutes a one time-lapse ERT snapshot, consisted of 40,454 dipole–dipole
measurements (at numerous dipole spacing’s), and required ~ 6 h to collect. Data
were collected continuously, providing four snapshots per day, for a 60-day period
comprising the period of spring-time peak flows (1 April to 29 June 2013).

Supplementary Figure 2 shows a single snapshot of the change in EC caused by
the presence of RW at the peak stage observed during the monitoring period.
Larger decreases in conductivity (i.e., cooler colors) are diagnostic of higher RW
concentration, whereas white indicates no change from baseline, or 100% GW. To
estimate the relative concentrations of RW and GW at a given point in space and
time within the HC, each time-lapse image was transformed using an end member
analysis36. End member analysis uses the ERT estimated conductivity at two points
—when the aquifer is saturated with GW (EC0) or RW (ECrw)—to identify the
endpoint conditions for a two-point calibration. Based on the fact that the EC of
the subsurface is a linear function of the pore water EC59, the RW fraction at each
image pixel is given by

Frw ¼
ECt � EC0

ECrw � EC0
; ð4Þ

where ECt is the ERT estimated conductivity at time t. The corresponding GW
fraction is given by

Fgw ¼ 1� Frw : ð5Þ

For example, equations 4 and 5 were used to convert the distribution of EC show in
Supplementary Fig. 2 into the distribution of Fgw shown in Supplementary Fig. 3.

Data availability. Data are available from the corresponding author upon request.
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