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Abstract: Vegetation phenology is a commonly used indicator of ecosystem responses to climate
change and plays a vital role in ecosystem carbon and hydrological cycles. Previous studies have
mostly focused on the response of vegetation phenology to temperature and precipitation. Soil
moisture plays an important role in maintaining vegetation growth. However, our understanding
of the influences of soil moisture dynamics on vegetation phenology is sparse. In this study, using
a time series of the normalized difference vegetation index (NDVI) from the moderate resolution
imaging spectroradiometer (MODIS) dataset (2001–2020), the start of the growing season (SOS), the
end of the growing season (EOS), and the length of the growing season (LOS) in the Qilian Mountains
(QLMs) were extracted. The spatiotemporal patterns of vegetation phenology (SOS, EOS, and LOS)
were explored. The partial coefficient correlations between the SOS, EOS, and seasonal climatic
factors (temperature, precipitation, and soil moisture) were analyzed. The results showed that the
variation trends of vegetation phenology were not significant (p > 0.05) from 2001 to 2020, the SOS
was advanced by 0.510 d/year, the EOS was delayed by 0.066 d/year, and the LOS was prolonged
by 0.580 d/year. The EOS was significantly advanced and the LOS significantly shortened with
increasing altitude. The seasonal temperature, precipitation, and soil moisture had spatiotemporal
heterogeneous effects on the vegetation phenology. Overall, compared with temperature and soil
moisture, precipitation had a weaker influence on the vegetation phenology in the QLMs. For
different elevation zones, the temperature and soil moisture influenced the vegetation phenology
in most areas of the QLMs, and spring temperature was the key driving factor influencing SOS; the
autumn soil moisture and autumn temperature made the largest contributions to the variations in EOS
at lower (<3500 m a.s.l.) and higher elevations (>3500 m a.s.l.), respectively. For different vegetation
types, the spring temperature was the main factor influencing the SOS for broadleaf forests, needleleaf
forests, shrublands, and meadows because of the relative lower soil moisture stress. The autumn
soil moisture was the main factor influencing EOS for deserts because of the strong soil moisture
stress. Our results demonstrate that the soil moisture strongly influences vegetation phenology,
especially at lower elevations and water-limited areas. This study provides a scientific basis for
better understanding the response of vegetation phenology to climate change in arid mountainous
areas and suggests that the variation in soil moisture should be considered in future studies on the
influence of climate warming and environmental effects on the phenology of water-limited areas.

Keywords: vegetation phenology; Qilian Mountains; soil moisture; remote sensing

1. Introduction

Vegetation plays an important role in ecosystem carbon and hydrological cycles [1,2]
and is a sensitive indicator of ecosystem response to climate change. Vegetation phenology,
which is the periodic life activity of plants, provides an independent measure of how
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ecosystems respond to climate change [3] and varies significantly according to climate zone
and vegetation type, especially in temperate and northern regions [4,5]. Affected by climate
change and human activity, the start of the growing season (SOS), the end of the growing
season (EOS), and the length of the growing season (LOS) show substantial interannual
variability [6]. Phenological changes result in small-area changes in plant activity within
the community and large-area changes in overall land surface processes, such as the
carbon budget, surface energy flux, and regional climate [7]. Therefore, understanding
phenological variation and its response to climate change is critical for improving terrestrial
biosphere models and climate models [8].

Current research methodologies on vegetation phenology mainly include the tra-
ditional ground observation method and satellite remote sensing monitoring method.
Traditional ground observations can provide detailed specific plant phenology information
at the species-scale or individual plant scale but have limitations in terms of observational
stations and spatial coverage [9]. In addition, most ground observation sites only focus on
cultivated plants rather than natural vegetation [10]. Remote sensing data from satellites
can provide long time series and a high temporal resolution vegetation index (VI) and have
been widely applied in large-scale vegetation phenology monitoring [11]. The satellite
remote sensing monitoring method primarily uses time series VIs, and the normalized
difference vegetation index (NDVI) is the most commonly used VI [12]. The NDVI is
simple to calculate and sensitive to plant growth and can track seasonal dynamic changes
in vegetation [13].

Climate changes can be directly reflected in vegetation phenology [6]. Temperature can
be considered the most important factor affecting vegetation phenology in many regions.
Numerous studies have found that advances in spring phenology at middle and high
latitudes are primarily controlled by increased global surface mean temperature [14–17].
Additionally, precipitation is a key factor in regulating vegetation phenology, particularly
in water-limited arid and semiarid regions [18]. For example, Ren et al. [19] showed that the
influence of precipitation on the interannual variation in the SOS and EOS is more important
than that of temperature in the Inner Mongolian Autonomous Region. Compared with
precipitation, soil moisture is the most direct water supply for vegetation and is susceptible
to drought, which can affect vegetation phenology [20]. Some observational studies have
suggested that soil water availability is also an important factor that can trigger vegetation
growth in water-limited areas [21,22]. An understanding of the impact of soil moisture
dynamics on vegetation phenology is very important and can increase our understanding
of the influence of climate change on ecosystems. However, there are insufficient studies
related to this topic.

The Qilian Mountains (QLMs) are located in the arid/semiarid region of northwestern
China, which is a transitional zone between the Qinghai–Tibet Plateau (QTP), Loess Plateau,
and Inner Mongolia Plateau. The QLMs have a vulnerable ecosystem and complex climate,
and the hydrothermal conditions differ from east to west [23]. In recent years, the QLMs
have experienced significant climate changes, which involve a significant trend of warming
and wetting, frequent climate anomalies [24], and local vegetation becoming sensitive
to climate changes [25]. In addition, the large east–west span and spatial heterogeneity
among the vegetation types in the QLMs lead to enormous differences in the response
relationship between the vegetation phenology of different vegetation types and climatic
factors. Soil moisture plays an essential role in maintaining vegetation growth, especially
in arid and semi-arid regions [20]. Soil moisture in the QLMs increases with an increase
in altitude and is heterogeneous between different types of land cover [26]. Due to the
complex topography and climatic conditions, the ecosystems in the QLMs are fragile and
sensitive to climate change, and thus it is necessary to systematically explore the effects of
temperature, precipitation, and soil moisture on vegetation phenology.

Based on moderate resolution imaging spectroradiometer (MODIS) NDVI time series
products from 2001 to 2020, this study extracted the SOS, EOS, and LOS for the QLMs’
vegetation and analyzed the characteristics of the changes in vegetation phenology and
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the response relationship between vegetation phenology and driving factors, including
temperature, precipitation, and soil moisture. The main objectives of this study were to
(1) investigate the characteristics of the spatiotemporal patterns of vegetation phenology in
the QLMs during the period 2001–2020, (2) evaluate the effects of seasonal temperature,
precipitation, and soil moisture on the SOS and the EOS in the study area, and (3) explore
the relationship between the phenology of different elevation zones, vegetation type, and
climatic factors in the QLMs. This study can contribute to our understanding of the
mechanism of the effects of climate change on vegetation phenology in arid mountain
areas, and the findings enable the prediction of the future evolution of ecosystems and the
implementation of effective ecosystem management.

2. Data and Methods
2.1. Study Area

The QLMs represent the largest mountain system in the marginal northeast of the QTP,
which crosses Gansu Province and Qinghai Province. The geographical coordinates lie be-
tween 93◦25′–103◦50′E and 35◦52′–39◦52′N, with a total area of approximately 184,000 km2.
The terrain gradually rises from northeast to southwest, and the average elevation exceeds
3500 m (Figure 1). The northern slope of the QLMs contain the headwaters of three inland
rivers (Heihe, Shulehe, and Shiyanghe rivers) in China [27]. Qinghai Lake is the largest
inland saltwater lake in China and is fed from the south slope of the QLMs. The QLMs
belong to the midlatitude northern temperate zone, which has a typical continental plateau
climate [28]. Due to the obvious vertical zonality and horizontal zonality, the water and heat
conditions in the Qilian Mountains dramatically vary spatially. Precipitation mainly occurs
in the summer and decreases from east to west, increasing with altitude, but temperature
shows the reverse pattern [25]. The main vegetation types in the region include broadleaf
forests, needleleaf forests, shrublands, meadows, grasslands, and deserts, and the natural
ecosystems are fragile and sensitive to climate change because of complex topographic and
climatic conditions.
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Figure 1. Geographical location of the Qilian Mountains.

2.2. Data Sources

NDVI time series have been widely used as an important proxy for quantifying
vegetation photosynthetic activity. The MODIS NDVI products (MOD13A2) from 2001 to
2020 with a 1 km spatial resolution and 16-day time step were used in this study. The NDVI
data were obtained from NASA (https://lpdaac.usgs.gov, accessed on 20 November 2021)
and were preprocessed using the MODIS reprojection tool (MRT) for band extraction and
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mosaic, format, and projection conversion. We removed pixels with average annual NDVI
values (2001–2020) < 0.1 to prevent the interference of nonvegetation signals [18,29].

The ground-based phenology data were collected from the vegetation phenological
observation datasets at Haibei station from 2006 to 2015, which were provided by the
Chinese Ecosystem Research Network (CERN) (http://www.cnern.org.cn, accessed on
17 December 2021). In addition, the phenology data of Sidalong station, Liancheng station,
Xiyinghe station, and Suganhu station from 2020 were obtained from the National Tibetan
Plateau Data Center (https://data.tpdc.ac.cn/en/, accessed on 17 December 2021).

Monthly temperature and precipitation data from 2001 to 2020 were obtained from the
National Tibetan Plateau Data Center (http://data.tpdc.ac.cn, accessed on 22 April 2021).
These datasets were spatially downscaled from CRU TS v4.02 with WorldClim datasets
based on the delta downscaling method and were evaluated using the data of 496 national
weather stations across China. The evaluation indicated that the downscaled dataset is
reliable for investigations related to climate change across China [30]. The monthly surface
soil moisture data (0–7 cm) from 2001 to 2020 were obtained from ERA5-Land and used
to represent the water availability indicator to evaluate the water content impacts on
vegetation phenology. ERA5-Land provides a soil moisture reanalysis dataset of 0.1◦ × 0.1◦

from 1950 to the present. The monthly soil moisture data from ERA5-Land were resampled
to the same resolution as the vegetation phenology data using a bilinear interpolation
algorithm. The digital elevation model at a spatial resolution of 1 km was obtained from
the Resource and Environmental Science and Data Center (http://www.rsdc.cn/, accessed
on 17 December 2021).

2.3. Methods
2.3.1. Extraction of Vegetation Phenology

The NDVI time series involves some noise caused by clouds or poor atmospheric
conditions and needs to be smoothed using a filter. In this study, NDVI was smoothed using
a seven-parameter double logistic function proposed by Gonsamo et al. [31] to reconstruct
the NDVI time series at a daily temporal resolution:

f(x) = α1 +
α2

1 + e−∂1(x−β1)
− α3

1 + e−∂2(x−β2)
(1)

where f(x) is the fitted NDVI at day x; x is a specific day of year (DOY); α1, α2, α3, ∂1, ∂2, β1, β2
are smoothing parameters; α1 is the background NDVI value; α2 is the early summer
plateau; α3 is the amplitude of the late summer plateau; ∂1 and ∂2 represent the transitions
in the slope coefficient; and β1 and β2 are the midpoints at the start and end of the growing
season transitions, respectively.

For the fitted NDVI time series, the dynamic threshold derived from each pixel was
used to determine the SOS and EOS. In this method, the SOS and EOS are defined as the
DOY when the NDVIratio reaches a certain threshold during the NDVI rising stage in spring
and decline stage in autumn. The NDVIratio is calculated as:

NDVIratio =
NDVIx − NDVImin

NDVImax − NDVImin
(2)

where NDVIx represents the NDVI value on day x and NDVImax and NDVImin are the
maximum and minimum NDVI values in the annual NDVI time series, respectively. In this
study, the dynamic threshold was defined as NDVIratio values of 30% and 50% to determine
the SOS and EOS, respectively. The LOS was the difference between the SOS and EOS.

2.3.2. Trend Analysis

The temporal trends in the time series of the vegetation phenology were calculated
by the Theil–Sen median slope estimator [32] at the pixel level. The Theil–Sen median
slope estimator is a nonparametric median-based slope estimator that is less susceptible to
noise and outliers [33]. A positive Theil–Sen slope indicates a delayed or extended trend,

http://www.cnern.org.cn
https://data.tpdc.ac.cn/en/
http://data.tpdc.ac.cn
http://www.rsdc.cn/
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while a negative value indicates an advanced or shortened trend. The Mann–Kendall (MK)
method [34] was used to determine the significance of the long-term advanced/delayed
trend in vegetation phenology. In our study, the significance level was based on the
MK test value, and p < 0.05 was defined as statistically significant. The combined use
of the Theil–Sen median slope and MK trend test classified vegetation phenological pa-
rameters into five categories, namely, “significant advanced/shortened”, “insignificant
advanced/shortened”, “no change”, “insignificant delayed/extended”, and “significant
delayed/extended”.

2.3.3. Partial Correlation Analysis

Partial correlation coefficients were calculated to examine the correlation between
vegetation phenology and seasonal driving factors (temperature, precipitation, and soil
moisture). In our analysis, the seasons were defined as spring (March–May), summer
(June–August), and autumn (September–November). The second-order partial correlation
coefficient was calculated as follows:

r12,34 =
r12,3−r14,3 × r24,3√

(1− r2
14,3)× (1− r2

24,3)
(3)

where r12,34 represents the partial correlation coefficient of variables 1 and 2 after controlling
for variables 3 and 4. r12,3 represents the first order partial correlation coefficient and was
computed as follows:

r12,3 =
r12−r13 × r23√

(1− r2
13)× (1− r2

23)
(4)

where r12, r13, r23 represent the Pearson’s correlation coefficients between variables 1 and 2,
1 and 3, and 2 and 3, respectively. After we calculated the partial correlation coefficient values,
Student’s t-test was used to identify the significance of the coefficient, and only the pixels
with a significance level of p < 0.05 were considered significant. To determine the influence
of terrain and vegetation types on the linkage between vegetation phenology and seasonal
driving factors, the partial correlation coefficients in different elevation zones and different
vegetation types were also analyzed in our study. The elevation was reclassified into four
classes (1: <3000 m a.s.l., 2: 3000–3500 m a.s.l., 3: 3500–4000 m a.s.l., and 4: >4000 m a.s.l.).

3. Results
3.1. Temporal and Spatial Variation in Vegetation Phenology

The vegetation phenology derived from the satellite data was consistent with ground
observations at the Xiying River, Liancheng, Suganhu, and Sidalong stations in 2020 and
the Haibei station from 2006 to 2015. The correlation coefficient (R2) between the SOS and
field data was 0.536 (p < 0.01), the mean absolute error (MAE) was 9 d, the root mean square
error (RMSE) was 11 d, the R2 was 0.533 (p < 0.01), the MAE was 5 d, and the RMSE was
6 d between the EOS and field data (Figure S1). Based on the validation results described
above, the remote sensing monitoring method adopted in this paper can accurately reflect
vegetation phenological characteristics in the QLMs.

The interannual changes in vegetation phenology in the QLMs from 2001 to 2020
showed different fluctuation ranges (Figure 2). There was an advanced SOS trend of
0.510 d/year and an extended LOS trend of 0.580 d/year. There was a delayed EOS trend
at a rate of 0.066 d/year, which is only a slight change. However, no significant changes
were found in these vegetation phenology parameters (p > 0.05).

The vegetation phenology parameters varied with altitude (Figure 3). With an increase
in altitude, the SOS showed a gentle upward trend, but the correlation between the SOS and
altitude was weak (p > 0.05). Conversely, with an increase in altitude, the EOS gradually
advanced and the LOS gradually shortened. There was a significant negative correlation
between the altitude and both EOS and LOS (p < 0.05), and the correlation coefficients
were high (R2 ≥ 0.899). The SOS tended to be delayed by 0.20 d/100 m, while the EOS
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tended to advance by 0.60 d/100 m, and the LOS tended to extend by 0.80 d/100 m with
increasing altitude.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 19 
 

 

rate of 0.066 d/year, which is only a slight change. However, no significant changes were 
found in these vegetation phenology parameters (p > 0.05). 

 
Figure 2. Interannual changes in vegetation phenology in the QLMs. 

The vegetation phenology parameters varied with altitude (Figure 3). With an in-
crease in altitude, the SOS showed a gentle upward trend, but the correlation between the 
SOS and altitude was weak (p > 0.05). Conversely, with an increase in altitude, the EOS 
gradually advanced and the LOS gradually shortened. There was a significant negative 
correlation between the altitude and both EOS and LOS (p < 0.05), and the correlation 
coefficients were high (R2 ≥ 0.899). The SOS tended to be delayed by 0.20 d/100 m, while 
the EOS tended to advance by 0.60 d/100 m, and the LOS tended to extend by 0.80 d/100 
m with increasing altitude. 

The multiyear average spatial distribution of phenology in QLMs from 2001 to 2020 
is shown in Figure 4a,c,e. From east to west, the vegetation phenology showed evident 
changes. Overall, the SOS in the study area mainly occurred from 115 days to 150 days, 
which accounted for more than 80% of the vegetation region. The earlier SOS was mainly 
seen in the eastern and western QLMs, and the later SOS was mainly distributed in the 
central section. In addition, the multiyear mean EOS of vegetation phenology varied be-
tween 255 and 275 d (more than 80% of the overall pixels) from the middle of September 
to early October. The EOS showed the opposite pattern in terms of spatial distribution 
compared with the SOS; it was earlier in the central section of the QLMs and later in the 
western and eastern sections of the QLMs. Due to the combined effects of SOS and EOS, 
the LOS was mainly between 110 and 160 d. The spatial pattern of LOS was similar to that 
of EOS, whereby the LOS was shorter in the central section of the QLMs and longer the 
eastern and western sections of the QLMs. 

Figure 2. Interannual changes in vegetation phenology in the QLMs.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 3. Characteristics of the changes in the SOS (a), EOS (b), and LOS (c) with altitude. 

Figure 4b,d,f and Table 1 show the spatial distribution of the vegetation phenology 
trend in the QLMs from 2001 to 2020. A total of 72.37% of the vegetation pixels showed 
an advancing trend of SOS from 2001 to 2020. A total of 13.85% of pixels, which were 
mainly concentrated in the central and eastern sections of the QLMs, showed a significant 
advancing trend of SOS. A few areas in the northwest of the QLMs showed a delayed 
trend of SOS, whereas only 1.44% of the total land area was significantly delayed. Regions 
with delayed EOS accounted for 47.59% of the vegetation pixels in the study area from 
2001 to 2020 and were mainly located in the eastern and central sections of the QLMs. In 
addition, the areas with advanced EOS were mainly located on the northern margins and 
at the northwest of Qinghai Lake. Approximately 6.8% of vegetation pixels had a signifi-
cant delayed trend in terms of the EOS, and 3.9% of vegetation pixels had a significantly 
advanced trend. There was an overall extended LOS trend for most parts of the vegetation 
area (71.66% of the vegetation pixels) from 2001 to 2020, with 12.65% being significantly 
extended and only 1.87% being significantly shortened. The areas with extended LOS 
trends were mainly distributed in the central and eastern sections of QLMs. 

Figure 3. Characteristics of the changes in the SOS (a), EOS (b), and LOS (c) with altitude.



Remote Sens. 2022, 14, 3645 7 of 18

The multiyear average spatial distribution of phenology in QLMs from 2001 to 2020
is shown in Figure 4a,c,e. From east to west, the vegetation phenology showed evident
changes. Overall, the SOS in the study area mainly occurred from 115 days to 150 days,
which accounted for more than 80% of the vegetation region. The earlier SOS was mainly
seen in the eastern and western QLMs, and the later SOS was mainly distributed in the
central section. In addition, the multiyear mean EOS of vegetation phenology varied
between 255 and 275 d (more than 80% of the overall pixels) from the middle of September
to early October. The EOS showed the opposite pattern in terms of spatial distribution
compared with the SOS; it was earlier in the central section of the QLMs and later in the
western and eastern sections of the QLMs. Due to the combined effects of SOS and EOS,
the LOS was mainly between 110 and 160 d. The spatial pattern of LOS was similar to that
of EOS, whereby the LOS was shorter in the central section of the QLMs and longer the
eastern and western sections of the QLMs.
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Figure 4b,d,f and Table 1 show the spatial distribution of the vegetation phenology
trend in the QLMs from 2001 to 2020. A total of 72.37% of the vegetation pixels showed
an advancing trend of SOS from 2001 to 2020. A total of 13.85% of pixels, which were
mainly concentrated in the central and eastern sections of the QLMs, showed a significant
advancing trend of SOS. A few areas in the northwest of the QLMs showed a delayed
trend of SOS, whereas only 1.44% of the total land area was significantly delayed. Regions
with delayed EOS accounted for 47.59% of the vegetation pixels in the study area from
2001 to 2020 and were mainly located in the eastern and central sections of the QLMs. In
addition, the areas with advanced EOS were mainly located on the northern margins and at
the northwest of Qinghai Lake. Approximately 6.8% of vegetation pixels had a significant
delayed trend in terms of the EOS, and 3.9% of vegetation pixels had a significantly
advanced trend. There was an overall extended LOS trend for most parts of the vegetation
area (71.66% of the vegetation pixels) from 2001 to 2020, with 12.65% being significantly
extended and only 1.87% being significantly shortened. The areas with extended LOS
trends were mainly distributed in the central and eastern sections of QLMs.

Table 1. The percentage of different trends of vegetation parameters based on MK analysis across
the QLMs.

Vegetation Phenology Insignificantly
Advanced/Shortened

Insignificantly
Delayed/Prolonged

Significantly
Advanced/Shortened

Significantly
Delayed/Prolonged

SOS 58.52% 19.62% 13.85% 1.44%

EOS 36.57% 40.79% 3.90% 6.80%

LOS 23.42% 59.01% 1.87% 12.65%

3.2. Response of Vegetation Phenology to Seasonal Driving Factors

The spatial distribution of the partial correlation coefficients between seasonal driving
factors and vegetation phenology metrics are displayed in Figure 5. For the QLMs, the SOS
was negatively correlated with spring temperature in 73.81% of vegetation pixels, while
21.21% of pixels showed a significant correlation (p < 0.05) and were mainly located in the
eastern and central parts of the study area (Figure 5a). The percentage of negative and
positive correlations between the SOS and spring precipitation was similar (Figure 5c), with
a significant negative correlation occurring in the northeast of Hala Lake. More than half
of the vegetation pixels (61.34%) of the SOS had a negative correlation with spring soil
moisture, of which 9.18% of pixels showed a significant negative correlation (Figure 5e),
mainly at the west of Qinghai Lake. The results above indicate that the increases in spring
temperature and soil moisture likely cause the SOS to advance in most part of the QLMs.

The partial correlation coefficients between the EOS and autumn temperature showed
that the EOS was positively correlated with temperature in 65.20% of vegetation pixels, and
9.89% of the areas passed the significance test (Figure 5b). Approximately 56.19% of the
vegetation pixels showed a negative correlation between the EOS and autumn precipitation,
and only 4.75% of the areas passed the significance test (Figure 5d). For autumn soil
moisture, positive correlations between the EOS and soil moisture occurred in 60.44% of the
total vegetation pixels, and approximately 9.50% of the pixels showed a significant positive
correlation (p < 0.05, Figure 5f), most of which were distributed west of Qinghai Lake and
southeast of Hala Lake. In total, the autumn temperature and soil moisture influenced the
EOS in most areas, and the increase in autumn temperature and soil moisture likely caused
the EOS to be delayed.
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Figure 5. The partial correlation coefficients between vegetation phenology parameters and seasonal
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the top of each subpicture.

3.3. Vegetation Phenology Parameters Response to Seasonal Driving Factors Based on Different
Elevation Zones

The driving factors had different effects on vegetation phenology depending on
elevation. The results of the partial correlation analysis between the vegetation phenology
parameters (SOS, EOS) and seasonal driving factors (temperature, precipitation and soil
moisture) for different elevation zones are shown in Figure 6. A mainly negative correlation
occurred between the SOS and spring temperature (the percentage of significant negative
correlation ranged from 14.59% to 24.87%) at different elevation zones. At middle elevations
(3000–4000 m a.s.l.), more than 76% of the vegetation pixels showed a negative correlation
between the SOS and spring temperature (Figure 6a), and more than 24% of the areas passed
the significance test. The SOS was mainly negatively correlated with spring soil moisture
(more than 61%) at the <4000 m elevation zone, and the percentage of areas that passed
the significance test at the 95% level ranged from 7.24% to 12.5% (Figure 6c). However, the
SOS had the opposite correlation with spring soil moisture in the highest elevation zone
(mainly positive), 7.63% of the areas showed a significant positive correlation (Figure 6c).
Compared with spring temperature and soil moisture, spring precipitation had a weaker
influence on the SOS at the four elevation zones, and the areas of positive and negative
correlation between spring precipitation and the SOS were similar, with few pixels showing
a significant correlation (Figure 6b).
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zones. The three driving factors were (a) spring temperature (Tspring), (b) spring precipitation
(Pspring), and (c) spring soil moisture (SMspring).

At the lowest elevation zone (<3000 m a.s.l.), the EOS was positively correlated with
summer temperatures and precipitation in 62.57% and 72.16% of areas, and 8.03% and
18.1% of the areas showed a significant correlation (p < 0.05), respectively (Figure 7b,e).
Notably, a negative correlation between EOS and summer soil moisture occurred in 80.96%
of vegetation pixels at the lowest elevation zone (<3000 m a.s.l.), which was more than
four times larger than the positive correlation (19.04%). Approximately 30.06% of the
pixels showed a significantly negative correlation between summer soil moisture and EOS
(p < 0.05) at the lowest elevation zone (<3000 m a.s.l.), while areas with significant positive
correlations represented only 0.59% of the total (Figure 7h), indicating that the EOS was
advanced in most low elevation regions with an increase in summer soil moisture. A
positive correlation between the EOS and autumn temperature covered more than 60%
of the area in the different elevation zones, and more than 7.00% of the pixels exhibited a
significant correlation (Figure 7c). For the region with elevations less than 4000 m, more
than 8.81% of the areas demonstrated a significantly positive correlation between the EOS
and autumn soil moisture (Figure 7i). For the regions with elevations of less than 3500 m,
the area with a significant positive correlation between the EOS and autumn soil moisture
was greater than the EOS and autumn temperature (Figure 7c,i), so at lower elevations (less
than 3500 m), soil moisture played a more important role in vegetation growth in autumn.
At higher elevations (higher than 3500 m), temperature played a more important role in
vegetation growth in autumn (Figure 7c). Overall, compared with autumn temperature
and soil moisture, autumn precipitation had a weaker influence on the EOS at the four
elevation zones (Figure 7f).



Remote Sens. 2022, 14, 3645 11 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 19 
 

 

was greater than the EOS and autumn temperature (Figure 7c,i), so at lower elevations 
(less than 3500 m), soil moisture played a more important role in vegetation growth in 
autumn. At higher elevations (higher than 3500 m), temperature played a more important 
role in vegetation growth in autumn (Figure 7c). Overall, compared with autumn temper-
ature and soil moisture, autumn precipitation had a weaker influence on the EOS at the 
four elevation zones (Figure 7f). 

 
Figure 6. Percentages of correlation between SOS and three driving factors at different elevation 
zones. The three driving factors were (a) spring temperature (Tspring), (b) spring precipitation 
(Pspring), and (c) spring soil moisture (SMspring). 

 
Figure 7. Percentages of correlation between EOS and different driving factors at different elevation 
zones. The driving factors were (a,b,c) seasonal temperature (Tspring, Tsummer, and Tautumn are 
spring, summer, and autumn temperature, respectively), (d,e,f) seasonal precipitation (Pspring, 
Psummer, and Pautumn are spring, summer, and autumn precipitation, respectively), and (g,h,i) 

Figure 7. Percentages of correlation between EOS and different driving factors at different elevation
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3.4. Vegetation Phenology Response to Seasonal Driving Factors across Vegetation Types

Generally, different vegetation types had different responses to driving factors
(Figures 8 and 9). For different vegetation types, the partial correlation coefficients be-
tween the SOS and spring temperature were mostly negative (Figure 8a), especially for
broadleaf forests, needleleaf forests, shrubland, and meadows (more than 23% of regions
had significantly negative correlations). The partial correlation coefficients between the
SOS and spring soil moisture were also mostly negative (Figure 8c) for different vegetation
types, except alpine vegetation, and more than 7.80% of areas had significantly negative
correlations. For alpine vegetation, the SOS was negatively correlated with spring tem-
perature in approximately 65.18% of areas, of which 12.14% of areas showed a significant
negative correlation (Figure 8a). However, it was positively correlated with the spring soil
moisture in 52.04% of areas, with 7.49% of regions showing a significantly positive correla-
tion (Figure 8c). Compared with spring temperature and soil moisture, spring precipitation
had a weaker influence on the SOS in most vegetation types. The areas of positive and
negative correlation between spring precipitation and the SOS were similar, with few pixels
showing a significant correlation (Figure 8b).

Compared with the correlation between the EOS and autumn temperature and soil
moisture, there were limited positive and negative correlations between the EOS and
autumn precipitation, and there were relatively few significant pixels for most vegetation
types (Figure 9f). Autumn temperature and soil moisture had mainly positive correlations
with the EOS for most vegetation types (Figure 9c,i), and the EOS had a more significant
relation with soil moisture than temperature for grasslands and deserts. There was a
negative correlation between EOS and spring temperature in more than 65% of areas of
broadleaf forests, and 13.49% of the areas were significantly correlated (Figure 9a). For
needleleaf forests, there was a negative correlation between EOS and spring precipitation
in 66.11% of areas, and 10.64% of the areas were significantly correlated (Figure 9d). A
significant positive correlation between the EOS and summer precipitation was found in
11.51% of pixels for broadleaf forest and 11.36% of pixels for needleleaf forest (Figure 9e).
Summer and autumn soil moisture had opposite correlations with the EOS in QLMs, except
meadows. The EOS was mainly negatively correlated with summer soil moisture, especially
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for broadleaf forests, needleleaf forests, and grasslands (approximately 15.58%, 14.71%,
and 18.78% of the pixels had significant negative correlations, respectively). The EOS of
most vegetation types were positively correlated with autumn soil moisture, especially
those of grasslands and deserts (for which approximately 11.35% and 12.97% of the pixels
had significant positive correlations, respectively).
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4. Discussion
4.1. The Spatial Heterogeneity of Vegetation Phenology in the Qilian Mountains

The vegetation phenology in the QLMs showed significant spatial heterogeneity. In
general, the SOS was later in the central region and earlier in the eastern and western
regions of the QLMs, and the EOS exhibited the opposite trend in terms of its spatial
distribution. These results are consistent with the results reported by Qi et al. [27] and
Sun et al. [35] but inconsistent with the results reported by Qiao et al. [36], who observed
that the multiyear mean SOS was gradually delayed from southeast to northwest and that
the multiyear mean EOS gradually advanced from southeast to northwest in the QLMs.
The main reasons for the differences in the results are the different temporal and spatial
resolutions of the remote sensing data. Different remote sensing data sources and data
time series may obtain different vegetation phenology results [37,38]. The AVHRR and
MODIS datasets have a consistently high temporal resolution time series of data and are
widely used for phenology studies [39]. MODIS data (1 km) have a higher resolution
than AVHRR data (8 km) and can extract more detailed spatial phenological signals for
vegetation types, particularly in heterogeneous areas [40]. The vegetation phenology of the
QLMs was characterized by an advanced SOS, delayed EOS, and extended LOS during the
period from 2001 to 2020, which are consistent with recent results on the QTP [37,38,41]
and on the QLMs [27,35].

In our study, the results showed that the SOS gradually delayed, the EOS gradually
advanced, and the LOS gradually shortened with increasing altitude. No significant
correlation was found between the SOS and altitude, but a significant negative correlation
was found between both the EOS and LOS and altitude. These results are consistent
with recent findings on the QTP [2]. The SOS change may have almost nothing to do
with altitude [2]. At higher altitudes, there is relatively low air temperature, which is not
beneficial for delaying leaf senescence, and the EOS advances to avoid harm from frost and
has a shorter LOS [42].
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4.2. Response of Vegetation Phenology to Different Driving Factors

Vegetation phenology responses to different driving factors are complex and variable.
In our study, we found that the SOS was negatively correlated with spring temperature
and spring soil moisture in most regions of the study area, implying that the advanced SOS
could be associated with a warmer spring air temperature and higher soil moisture. In our
study, the spring temperature had a stronger influence on the SOS, and most studies have
also reported that higher temperatures were the main factor associated with an earlier SOS
around the world over the last several decades [18,43–45].

The impacts of driving factors on vegetation phenology were varied in different
elevation zones. For SOS, spring temperature seemed to be the main factor limiting
vegetation growth. The QLMs are located in high altitude areas with low temperatures
(the annual mean temperature in most areas is below 0 ◦C); with an increase in altitude,
the temperature gradually decreased (Table 2). Vegetation needs a certain amount of
cumulative temperature to green up, so the early stages of vegetation growth are more
affected by temperature in relatively cold regions [5,46]. The autumn soil moisture was
the main limiting factor at lower elevations (<3500 m a.s.l.), and autumn temperature was
the main limiting factor at higher elevations (>3500 m a.s.l.). These results are consistent
with the research of Peng et al. [47], which demonstrated that soil moisture was the major
limiting factor for the radial growth of Qinghai spruce at the lower elevations of the central
QLMs and that temperature was the major limiting factor for radial growth of Qinghai
spruce at higher elevations. These results also suggest that vegetation management must
take elevation differences into account when facing the challenges of climate change. From
Table 2, we can see that the annual average soil moisture at lower elevations (0.31 m3·m−3)
was less than that at higher elevations (0.34 m3·m−3), so this is one possible reason that the
autumn soil moisture had a stronger influence on the EOS in lower elevation zones. The
EOS showed a significant negative correlation with summer soil moisture in approximately
30.06% of the pixels in the lowest elevation zones (<3000 m a.s.l.). Peng et al. [47] also
found that, during the summer at lower elevations, soil moisture is the most important
factor limiting xylem cell differentiation based on the Vaganov–Shashkin model.

Table 2. The annual average soil moisture and temperature from 2001 to 2020 in four elevation zones.

Soil Moisture (m3·m−3) Temperature (◦C)

DEM < 3000 m 0.31 2.19

DEM: 3000–3500 m 0.31 −0.90

DEM: 3500–4000 m 0.34 −4.67

DEM > 4000 m 0.34 −7.27

At the landscape level, the SOS was negatively correlated with spring temperature in
most regions with different vegetation types. More specifically, 42.36%, 23.31%, 31.54%,
and 24.83% of the areas of broadleaf forests, needleleaf forests, shrublands, and meadows,
respectively, showed a significantly negative correlation between SOS and spring tempera-
ture (Figure 8a). This is because the broadleaf forests, needleleaf forests, shrublands, and
meadows are mainly located in semi-arid regions (more than 78% of these are located in
the semi-arid region) where the climate is relatively humid compared with arid regions;
however, the temperature is low in the study area, and higher temperature in spring could
decrease the damage from frost and promote spring thawing [5]. The spring soil moisture
had a stronger influence on the SOS of deserts (Figure 8c). This is because about 90.37%
of deserts are located in arid areas with limited soil water conditions (Table 3). The soil
water is an indispensable intermediary used to ensure nutrient substance transport, which
is likely to be the main reason for the negative correlation between soil moisture and
SOS for deserts. Additionally, there are many shallow-rooted plants in deserts, and these
shallow-rooted plants are more sensitive to soil moisture changes than other plants [48,49].
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A negative correlation was observed between summer soil moisture and EOS, but a posi-
tive correlation was observed between autumn soil moisture and EOS for most vegetation
types. This negative correlation shifted to a positive correlation from summer to autumn,
indicating that the summer and autumn soil moisture had a great influence on the EOS, but
the correlation was the opposite in these two seasons. The main reason for this differential
response is that the precipitation in QLMs is mainly concentrated in summer [25], and
too much moisture prevents vegetation growth because a high soil moisture can limit the
absorption of soil nutrients by vegetation [50]. Ren et al. found that the precipitation
played a more important role than temperature in the interannual variation of the SOS
and EOS in Inner Mongolia [19]. However, compared with temperature and soil moisture,
precipitation had a relatively limited impact on the EOS in the QLMs. This is because
precipitation may a have lagged effect on vegetation phenology, meaning that soil moisture
is a more straightforward driving factor for vegetation phenology than precipitation and
has a number of sources in the QLMs, including precipitation, snowmelt, surface runoff,
and groundwater.

Table 3. The annual average soil moisture and temperature from 2001 to 2020 for different vegeta-
tion types.

Soil Moisture (m3·m−3) Temperature (◦C)

Broadleaf forests 0.36 1.72

Needleleaf forests 0.34 −1.49

Shrublands 0.35 −2.05

Meadows 0.36 −4.87

Grasslands 0.29 −0.75

Deserts 0.20 −2.49

Alpine vegetation 0.33 −7.16

4.3. Limitations and Future Work

It should be noted that there may be some limitations to our current study. The number
of ground observations of vegetation phenology is insufficient, especially in the central and
western parts of the QLMs because of a lack of phenological observation networks. At the
same time, the existing observation stations have a relatively short historical record. Digital
cameras have been shown to be valuable tools to validate the phenology derived from
satellite imagery at a low cost [40] because of their high temporal and spatial resolutions. In
future, automated digital cameras are promising for providing consistent and continuous
monitoring of vegetation growth at local and regional scales [51,52].

The vegetation phenology results calculated from remote sensing data may contain
some uncertainties that are due to the inaccuracy of satellite data. NDVI data have been
widely used for phenology characterization because they are simple to measure for most
optical sensors [53,54]. However, because NDVI data are sensitive to the soil background
and are easily saturated in high vegetation coverage areas [55], the applications of NDVI
data may have some limitations. Considering the sparse vegetation in the western part
of the QLMs, the modified vegetation index, such as the soil-adjusted vegetation index
(SAVI), may be appropriate for detecting vegetation growth changes because of its ability
to minimize the effects of the soil background. In the future, collective analyses of multiple
VIs (such as the land phenology index, enhanced vegetation index, and perpendicular
vegetation index) may improve the accuracy of phenology estimation [56–58]. The spatial
resolution of ERA5-Land soil moisture data is relatively low, which may hide some spatial
details of soil moisture parameters. But the high-resolution soil datasets are difficult to
obtain for a large study area [59]. Future studies should integrate a series of soil moisture
datasets at a higher resolution to further discuss the response relationship between vegeta-
tion phenology and soil moisture. Vegetation phenology is also influenced by other factors,
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such as radiation, soil nutrients, climate extremes, and human activities, so more attention
should be paid to exploring the phenology variations in response to these driving factors
in future work. The vegetation phenology response to driving factors may be nonlinear,
and the interactions between climatic factors have critical role in vegetation phenology, so
other methods like the GeoDetector model can be used to detect the contribution of driving
factors to vegetation phenology and the interactions between driving factors. Our findings
suggest that the variation in soil moisture should be considered in future studies on climate
warming and the environmental effects of phenology in water-limited areas.

5. Conclusions

Based on the time series MODIS NDVI datasets from 2001 to 2020, we retrieved
the vegetation phenological parameters in the QLMs. The spatiotemporal variation in
vegetation phenology was analyzed, and divergent correlations between the SOS and
EOS and seasonal driving factors were explored. The results demonstrated that vegetation
phenology in the QLMs is characteristic of advancing SOS, postponing EOS, and prolonging
LOS, but the variation trends of vegetation phenology were not significant (p > 0.05) from
2001 to 2020. The seasonal temperature, precipitation, and soil moisture had spatiotemporal
heterogeneous effects on the vegetation phenology. Compared with temperature and soil
moisture, precipitation had a weaker influence on the vegetation phenology in QLMs. The
spring temperature was the key driving factor influencing SOS in the QLMs. The autumn
soil moisture and autumn temperature made the largest contributions to the variations in
EOS at lower elevations (<3500 m a.s.l.) and higher elevations (>3500 m a.s.l.), respectively.
Spring temperature was the key driving factor influencing SOS of most vegetation types.
Autumn soil moisture was the main factor influencing EOS in deserts because of the
strong soil moisture stress. An increase in summer soil moisture may limit vegetation
growth in the QLMs. Under ongoing global change, finding the response of the SOS and
EOS to driving factors is beneficial for a better understanding of the interactions between
vegetation phenology and future climate change.
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