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ABSTRACT

This report presents the solution to the pure-bending of a circular
cylinder with the couple-stress theory of linear elasticity. A linear
bending moment-curvature relation is derived parallel to the classical beam
theory. The section modulus (or the proportional coefficient) associated
with the couple-stress theory is always greater than that predicted by the
classical theory, and the ratio of the former to the latter increases as
the radius of the beam decreases. These aspects clearly agree with the

observed behavior of nuclear-grade graphite.

Based on the solution, it is further estimated that the characteristic
length 22 of the couple-stress theory for H-451 graphite ranges from
0.62 to 1.54 mm. This range of 22 concurs with the magnitude of the grain
size (maximum is 1.57 mm for H-451 graphite) and agrees with an aspect of

the couple-stress theory.
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NOMENCLATURE

difference of the quantity across the edge of C

vector or tensor

component of (m); partial derivative with respect to X
cross section

constants of integration

radius of the cylinder; radius of the cylindrical beam
couple~stress medium

edge

coefficient of bending moment; moment coefficient; quadratic

function of 32

coefficient of axial flexural stress; stress coefficient;
linear function of d2

couple-stress constants

line, surface, and volume area'elements, respectively
Young's modulus

applied force on edge C of the bounding surface

permutation symbol (used with summation convention jkl, jpq,
lpq, etc.)

modified Bessel functions of the first and second kinds,
respectively

summation over the range of the indices 1, 2, 3; summation
convention is adopted, unless otherwise noted

material parameter, characteristic length of the couple-
stress theory for H-451 graphite; defined by Eq. 2-3

bending moment vector and components of the bending moment
about x-axis and y-axis, respectively
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Vx

ij
Su

Sw

e=

surface couple

surface of unit outward normal vector

partition

applied surface force

tangential surface couple

position and position vector, respectively

unit tangent vector along edge of bounding surface
surface force

displacement field and displacement field vector, respec~
tively; plane strain displacement

secondary deformation field, displacement

rotation and rotation vector, respectively

cartesian coordinates

differential operator

divergence

curl

Kronecker delta function

virtual displacement

rotation accompanying 65

strain gradient associated with virtual displacement
rotation gradient associated with virtual displacement
strain tensor, kinematic quality of couple?stress theory

rotation gradient tensor; kinematic quality of couple-stress
theory; length inverse

Lame' constants

couple-stress tensor; plane strain displacement
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deviatory part of U linear isotropic function of x ;
moment per unit area v

trace of H’ scalar function

Poisson's ratio

stress tensor

skew-symmetric part of £

symmetric part of {, linear isotropic function of E
axial stress

apparent flexural stress

surface enclosing P
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1, INTRODUCTION

This report studies the implications of the couple-stress theory of
linear elasticity in modelling the mechanical behavior of granular brittle
materials, specifically the graphite used in gas-cooled nuclear reactors.
It solves a boundary value problem and then compares the results with the

laboratory-observed phenomena of graphite.

The complete boundary value problem in couple-stress theory of linear
elasticity was first correctly formulated by Mindlin and Tiersten (Ref. 1).

The general aspects of this theory, as described by Mindlin (Ref. 2), are

that
1. The couple-stress influence depends strongly on the ratio of the
smallest dimension of the body to the material parameter 22
(defined by Eq. 2-13).
2. If the ratio is large, the couple-stress effect is negligible.
3. When there are strain gradients and a dimension of a body

approaches 22, couple-stresses may produce effects of appreciable

magnitude,

4. The material parameter 22 is related to and believed to be about
the same order of magnitude as the grain size for idealized

granular materials.

In general, the laboratory mechanical test data of graphite show that,
in the presence of strain gradients, the apparent stress and apparent
strength, calculated by classical elasticity, consistently exceed the

stress and the strength determined by the homogeneous deformations (Ref. 3).
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For instance, in the pure-bending test of a graphite beam, the apparent
flexural stress (as defined in Eq. 7-1) at any given strain exceeds the
uniaxial tensile stress by approximately 35%, and the apparent flexural
strength exceeds the uniaxial tensile strength by nearly 50% (Ref. 3).

This phenomenon contradicts the constitutive assumption of classical
elasticity that the mechanical responses are uniquely determined by the
strain. Rather, it shows that the strain gradients affect the mechanical
responses of graphite. Moreover, Brocklehurst (Ref. 4) perceived that

"the influence of grain size relative to specimen dimensions must be
considered when obtaining strength data on different (graphite) materials."
He points out that the apparent flexural strength is dependent on the same
parameter, the ratio of the smallest dimension to grain size (in lieu of
ﬁz) as is the couple-stress .theory. These evidences make clear that the
mechanical responses of the graphite and the couple-stress theory have many
similarities, leading to the assumption that the mechanical responses of
graphite reflect couple-stress influence. This assumption and the dimen-
sional argument furnished in Ref. 2, quoted earlier, are used below to
estimate the error caused by neglecting couple-~stresses when analyzing

laboratory pure~bending test data.

The pure-bending test data of graphite show that most test specimens
are cylinders with the smallest dimension approximately 10 mm and with the
maximum grain sizes ranging from 0.4 to 6,7 mm (Ref. 3). The ratio of the
smallest dimension to the grain size for most of the test specimens is on
the order of 10. This is not a large enough number to indiscriminately
neglect the couple-stress influence without further investigation of the
problem. To quantitatively establish the couple-stress effects on the
mechanical behavior of graphite beams, the solution of the boundary value
problem for a circular cylinder under pure-bending is pursued further and

then compared with the existing experimental data.

The governing equations of the couple-stress theory for an isotropic
linear elastic medium and the accompanying boundary conditions are
reproduced in Section 2 following the work of Mindlin and Tiersten (Ref. 1).

The formulae of stress and couple-stress are also derived. The solution
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n

13

for the pure-bending of a circular cylinder is then formulated in Sections
3 and 4 by superimposing a plane strain deformation to the classical linear
elastic solution. The assumption in classical pure-bending solution (that
the normal cross section of the beam remains in a plane) is preserved in

the solution obtained in this report.

In Section 5, the solution is used in calculating the stress field,
the couple~stress field, and the bending-moment for a given bending curva-
ture. Numerical results of the bending-moment and the axial tensile stress
as functions of 3/22 (a is the radius of the cylinder) are also presented
for given values of Poisson's ratio. These results are summarized in

Section 6.

The theoretical results of the couple-stress theory and the experi-
mentally observed phenomena of graphite are qualitatively compared in
Section 7. Most observed phenomena on graphite beams under pure-bending
tests which disagree with the classical elasticity and the uniaxial tensile
test results can be satisfactorily interpreted by the solution of the

couple-stress theory presented in this report.

The dimensional argument for the couple-stress theory is also employed
to estimate the characteristic length 22 according to the solution and a
measured result for a graphite, This procedure yields a range of 12 that
concurs with the magnitude of grain size for the graphite and clearly
complies with the observation that 22 is at the same order magnitude as

grain size,
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2, COUPLE-STRESS THEORY OF LINEAR ELASTICITY

In this section, an outline of the couple-stress theory of linear
elasticity for isotropic materials, derived by Mindlin and Tiersten
(Ref. 1), is presented. Since the concern in this report is the static
equilibrium state between loading and deformation, the body forces, body
couple-forces, and inertia are all neglected in the formulation of this
section. Tensorial index notation and the rectangular cartesian coordinate
system x,, X, Xg, are predominantly employed in this section.

For any partition P of a couple-stress medium B (see Fig. 2-1) with

no body forces and body couples, the equations of equilibrium are

_/;)p rt\:,(,r\ll) ds =0 . (2-1a)

‘/;)p (2('_1\11) + Ix 5(%)) ds =0 , (2-1b)

where 0P = surface enclosing P,

surface force,

Wta(g)=
’{3(,\1;

ds = surface area element,

surface couple,

= position vector, and

28 on
]

unit outward normal vector.

Taking P as a tetrahedron enclosed by a surface of .unit normal n and the
planes parallel to the coordinate planes in the rectangular cartesian
coordinate system, then letting the volume of the tetrahedron shrink to

zero, results in Eq. 2-1 yielding
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Partition P of a couple-stress medium B

2-2



t(g)i IR F

m(g)i = nj “ji , (i, 3 =1, 2, 3) (2-2)

where T the stress tensor,
N

U = the couple-stress tensor, and the repeated indices
n

i and j = the summation over the range of the indices (adopting the summa-
tion convention).
Substituting Eq. 2-2 back into Eq. 2-1 and applying the divergence theorem

provides
T ., =0 s (2-3a)

uij,i + ejkl Tkl =0 ’ (1: Jo» ks l’ = 1: 29 3) (2_3b)

where ( ),i = the partial derivative with respect to X and

ejkl = the permutation symbol.

Equation 2-3a is the familiar equation of equilibrium, but Eq. 2-3b relates
the couple-stress K with the skew-symmetric part of £ (shown as {A in
Eq. 1-4 below). If Eq. 2-3b is multiplied by the permutation tensor e,

Jprq
and the sum over j, then

A 1
= = - . = 1 2 2_
qu 2 equ ul],l ’ (P’q H s 3) ) ( 4)
where TA = the component of TA.
Pq n
Let % be represented by the partition
=1 A -
Hig THi3 ¥ 737 W 2 (2-5)



where éij = the Kronecker delta function,
g = the deviatory part of h, and
N
ukk = the trace of %.

Then Eqs. 2-3, 2-4, and 2-5 and

®1pq Mkk,1p = °

yield

S

1
Tij,i '2" e = 0 s (2_6)

kij Mik,1i
where 15 = the symmetric part of g.
n

The scalar function Mk of Eq. 2-5 is an important function in satis-
fying the traction boundary conditions. However, since it does not appear
in the equation of equilibrium, it is a function of position but does not
influence the equilibrium equations. As a result, adoption of the conven-

tion

Ukk =0 s (2_7)

is possible, and the boundary conditions that involve ukk can be determined

later. With this convention, the stress tensor becomes

1
. =Tl m e (2-8)

pij "1p,1 -
Now the linear isotropic elastic solids are concentrated, and the

constitutive assumptions of the couple-stress theory of linear elasticity

are recorded. The kinematic quantities of the couple-stress theory are

defined as
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L}

1
ij 2 (ui,j + uj,i) , (2-9a)
(2-9b)

K., =W, . . (2-9c)

where E = the strain tensor,
5 = the rotation gradient tensor,
g = a given displacement field, and
x = the rotation vector.

Inspection of Eqs. 2-5, 2-7, and 2-8 indicates that at least constitu-

tive assumptions for 15 and U in the couple-stress theory of linear
i n

elasticity are needed. For the isotropic elastic media, it is assumed that

75 and I are linear isotropic functions of € and K, respectively:
" n, v v

S = + -—
Tij Aekk Gij 2ueij s (2-10a)
uij = 4d1-Kij + 4d2 Kji , (2-10b)
where A and Y = the Lamé constants, and E} and-:l-2 = the couple-stress

constants. Dimensionally, since E is moment per unit area and K is length
N

inverse, dT

from Eqs. 2-9b and 2-9c, E is trace free and is, hence, the deviator of the

and 32 have the unit of force. In Eq. 2-10b, since Kik = 0

couple-stress u.
~

The positive-definiteness of the strain-energy requires that A, U, d1,

and d satisfy the restrictions (Ref. 1)

2
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1

u>0 3x+2u>0

d. >0 d >4d, > -d . (2-11)

It is assumed in this report that Eq. 2-11 is met for the material constants.

The equation of equilibrium (Eq. 2-6) can be expressed in terms of the

displacement field u by using Eqs. 2-9 and 2-10., In vector notation, it is
n

O+20) Weu-n -229) vxvxu=0 (2-12)
o 2 "
where V = the differential operator,

Ve = divergence,

Vx = curl, and

22 = the characteristic length defined by
22 =3, /u (2-13)
2 1 :

To determine the solutions for Eqs. 2~9, 2-10, and 2-12 in the surface
traction boundary value problems requires knowing the conditions on the
boundary that relate the surface traction to the internal stress and couple-
stress. A short review of the boundary conditions derived by Mindlin and

Tiersten (Ref. 1) follows.

For an arbitrary admissible variation @g of the displacement field u
n

in the body B, the principle of virtual work requires that

S _ ~ - -
A (Tij éeij + uij (SKij) dv = _/{;B (Pi Gui + Qi GWi) ds

+/(;E16uid2 .

(2-14)



the variation of the strain-energy caused by

where the left-hand side

the virtual displacement d&u,
Iy

§e and 8k = the strain gradient and the rotation gradient,

K
~ ¥
respectively, associated with the virtual

displacement, and
dv = the volume area element.

On the right-hand side,

g = the applied surface force,
g = the tangential surface couple,
E = the applied force on the edge C of the

bounding surface,
dw = the rotation accompanying Su, and
"
d? = the line area element.

Because of the symmetric property of .—'\i’ there is no contribution in the

strain energy from the trace of H on the left-hand side of Eq. 2-14,

To apply Eq. 2-14, the scalar product of Su and Eq. 2-6 is formed and
N

then integrated over the volume of B. By the divergence theorem,
- _ S by -
A (Tij Segy *+ Ty aKij) dv = ./;B[ni T3y ug +ny Iy 6wk]ds . (2-15)

To convert the surface integral in Eq. 2-15 to the form of Eq. 2-14, the

second integral can be written as



where

is a scalar function. Therefore, Eqs. 2-14 and 2-15, with the Stoke's

theorem for the integral involving the last term of Eq. 2-16, yield

(-1;, Su, +Q 6w>ds+ f-ET Su, d2 = f[n.("rs
.A;s i i i i C i i B i\ ik

- Jieijk P j) suy + 0y Ty (‘Ski - oy “1) 5"1] ds  (2-17)

1 -
+ E"LZ ﬂ:unn]] tk 6uk s *

the unit tangent vector along the edge of the bounding surface,

where t

and

]

the difference of the quantity across the edge C.

By the standard argument of the calculus of variation, the traction

boundary conditions for the stress and couple-stress fields are

]!
1
ja}
-~
wn
+
(]
=]
o
——

— l — )
Ei =7 ti [[unn]] . (2-18)
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These boundary conditions, together with Eqs. 2-9, 2-10, and 2-12,
complete the governing equations for the couple-stress theory of linear
elasticity for homogeneous isotropic solids. In the following sections,
the boundary value problem for the pure-bending of a circular cylinder

is solved and compared with the classical beam theory.

2-9



3. PURE-BENDING OF CIRCULAR CYLINDER

It is convenient to adopt the circular cylindrical coordinate system
r, 8, and z for the boundary value problems concerning the circular
cylinders. The coordinate system for the circular cylinder under pure-
bending was chosen so that the z-~axis coincides with the central axis of
the cylinder and the 8 = 0 direction (x-axis for the corresponding
rectangular cartesian system) is perpendicular to the bending moment vector.

The origin can be located at any point on the central axis.

Let (e<r>, $<6>, $<z>) be the orthonormal basis at any point (r, 0, z)
n _
in the cylinder; then the displacement vector u of this point has the vector

representation

=u_ e<r> + u

<> + <z> -1
R T T (-0

where u_, ug, and u, = functions of r, 6, and z.

The governing equations in Section 2 can be converted to the cylindri-
cal coordinate system by referring the partial derivatives as the covariant
derivatives. Thus, the strain and rotation gradient tensors have the

following components:

Strain Tensor Components

€ = u N
rr r,r
1 1
€9 “T % t T Y,0 ’



rz

o

Rotation Gradient Tensor Components

rr

06

zz

rb

Or

rz

2r

Bz

z0

r

]
2 (‘r' Uyor - T2 Yz,6

- ue,rz)

s

(3-2)

(3-3)



In Egs.

3-2 and 3-3 and in what follows, ( )’r stands for the partial

derivatives with respect to r, etc. The stress tensor and couple-stress

tensor are a straightforward substitution of Eqs. 3-2 and 3-3 into Eq. 2-10,

For the

boundary condition Eq. 2-17 on the cylinder surface, ﬁzj 2 is
s

the divergence of E, and the unit normal to the bounding surface of a

circular cylinder is n = e<r>. Thus, U = 11 and the boundary conditions
NN nn rr

for the cylinder become

ol

ol

a-1]

with no edge

R 1 (- 1 - -

= Tr2 r "rr,8 + 2_(ur8,r + T Hes,0 + 28,z

+i0 +lg (3-4)
r Mro r “er ’

= Ure ’

= Urz ’

on the surface for an infinite cylinder, g = 0,

The classical linear elastic solution of the pure-bending of a circular

cylinder is studied next. Since the circular cylinder is a special case of

the prismatic bar whose solution can be found in most texts of elasticity

(e.g., Ref. 5), disregarding the rigid body of motions, this solution is

recorded in circular cylindrical coordinate system as follows:

_ 1 (\)rZ + 22) cos 0 ,
2 P

-1 (WZ _ 22> sin 6 (3-5)



cos O
r

z P
where p = the radius of curvature of the bent cylinder, and
Vv = the Poisson's ratio.

Lamé constants A and U can be related to Young's modulus E and Poisson's

ratio Vv by

_ VE _ E
‘T wa -2 *TIa+w (3-6)

Since the displacement vector function given by Eq. 3-5 satisfies the
Laplace equation for the equilibrium of the elastic media in classical
theory, Eq. 2-12 is also satisfied. Therefore, if % is a solution for the
couple-stress theory, it has to satisfy the traction-free boundary condi-

tions.

As has been computed in Ref. 5, the symmetric stress tensor TS has
n

the components

TS - Er cos © ,
zz
(3-7)
s _. S _.8 _.S __S _
Trr - Tee TrG Tez Trz 0

- - = \ sin ©
H., = =4 (vd1 + d2) o s
- _ - — \ sin 6
uzr——4 (d1 +\)d2) ’

3-4



Ty, = -4 (va; + ¢y) : (3-8)

|
"
—
<D
<D

I
=i
]
e |
r
<D

1}
=)
[as]
o

]
o

T

Substituting Eqs. 3-7 and 3-8 into Eq. 3-4, one finds that the traction-

free boundary conditions are not satisfied for the surface couple QZ:

= -, = sin © _
QZ = -4 (\)d1 + d2> -——p s (3-9)

but the rest of the free traction boundary conditions are satisfied. 1In
other words, Eq. 3-5 is a solution of the couple-stress theory for a
circular cylinder only if a distributed surface couple 62 given by Eq. 3-9

is applied.

Since it is assumed that there is no surface couple nor surface force
applied on the cylinder surface, the classical elastic solution (Eq. 3-5)
is not a solution of the pure-bending of the circular cylinder in the
couple-stress theory. To construct a solution for this problem, a

1)

secondary deformation field g , which satisfied Eq. 2-12 and the traction

boundary conditions, is introduced:
Pr = Pe = Pz = Qe =0 s
(3-10)

at r z

Ol
[l
S
TN
<
Y]
+
o)
N
S’
n
e
=]
[an]
[}

(M

Consequently, the superposition u + u will satisfy the free

traction boundary conditions and Eq. 2-12. Since the boundary condition

(Eq. 3-10) is uniform along the cylinder, the boundary value problem for
e
oy

devoted to solving this plane-strain problem,

can be regarded as a plane-strain problem. The next section is

3-5



4, SOLUTION OF THE PLANE STRAIN PROBLEM

1)

of the plane-strain problem that was deduced

The displacement of u
N
M s

in Section 3 is solved here. For simplicity, the superscript in u
deleted in this section. 1In the cylindrical coordinate system, the plane

strain displacement u has the general representation
N

u=u_ (r,0) e<r> + u, (r,08) e<bH> , (4-1)
N r n 6 "\

where u_ and ug are sufficiently continuously differentiable scalar valued

functions of r and O.

In solving for u, the divergence and curl operations, respectively,
are applied to Eq. 2-12 to yield the following pair of partial differential

equations:

V= Ve
(4-2)

(- zg v2) v2 (Vx u) = 0
n,

According to the boundary conditions (Eq. 3-10) for Eq. 4-2, a solution that

is a linear function of sin 6 and cos 6 is expected. 'Thus,

3 3
_ 2 72 r\ _ 32 r
u_ = ['Cz 9, = 1, (ﬁz) D, %, =K, (EZ) +E, r +F for
2 2
-2 3 72 r 372 r
+ G1 r - H1] cos O + [A2 22 - I1 ( 22) + B2 £2 — K1 (E;)
+E. r’ 4+ F. fnr - G r2 +H in 6
) T 5 Anr 2 2 si s



[ %
3 T 2 r 2 T
u, =]c, 82 )1 [+—=Y- =1, [—){-D JL + =K, [(+—
§) L 2 23 0 (Qz) T 1 (22)2 2 ( ) r 1 (Rz)g
(4-3)
+ E r2 + F, inr + G r_2 + H sin 0 + A 23 E—
3 3 1 QZ
3 2
2 T 3 r _2 xr 2
- L (zz)i'Bz 223“0 <22>+r & (22)§+E4r + F, Aot

where In(,) and Kn( ) =

A,, B

22 72

The requirement of the

for a simply connected

B, =D, = F,
1

Hy =-50C
1

Hy = - 734

The solution (Eq.

simplified to

the modified Bessel functions of the first and second

kinds, respectively, n equals 0, 1, (Ref. 6), and

constants of integration.

continuous differentiability of u, and ug means that,

cylinder, the integration constants must satisfy

(4-4)

4-3) for a simply connected cylinder is therefore



2
3 r 2 r 2 1 3
+ [AZ 22 ;IO (E;>- ;f-I1 <E;>$ + E4 r’ -5 A2 22} cos 6 ’

C2, E1, EZ’ E3, and E, = constants to be determined by the

where A 4

2’
boundary conditions.

To apply Eq. 3-10, it will be convenient here to express P and 6 in
N

"
terms of u of Eqs. 4-1 and 4-5. Using Eqs. 2-10, 3-2, 3-3, and 3-4, the
I'\} -

boundary conditions become

- 1
A (ur,r + = u_ +'; u6,6)+ 2y ur,r =0 , (4-6a)

1 1 - 1 1
H (“e,r +';-ur,6 T “e) - d1 (- ;'ur,rre + ue,rrr + ;E “e,eer

1 1 2 1
" 3,008t 2 %,r6 T T Y,rr T3 Yo,00 (4-6b)
r r r
1 1 . “ o
T 3%, 2%,r T 3% B :
r r r
r=a

(4-6¢)

sin O .

where a = the radius of the cylindrical beam.

4=3



Substituting Eq. 4-5 into Eq. 4-6, since sin 6 and cos 0 are linearly

independent, obtains

Ay=E,=E =0 . (4=7)

C =
2 L]
2 3
2 2 L
1 2 a 1 72 2 a
5+ 4(1 - V) - IO<—5L )— e + 8(1 - V) -3 I1 (2 )
a 2 a 2
- 2
d 2 2
2 211 a 2 a
1 a 2 2
E1 = L3 A - R
2 3
2 L L
1 2 a 1 72 2 a
3 + 401 - V) - IO <—2 )— [5 e + 8(1 - V) =3 I1 (—2 )
a 2 L a 2
| (4-8)
- 2
d 2 2
2 211 a 2 a
[‘5 - ‘*W(V +E>/° '—2[5 Iy (2 )‘a— L (r)]
E = 1 J a 2 2
’ 22 g g3
1 2 a 1 72 2 a
7 40 =) 210(2)"2'Z'+8(1'v)—3'11(7')
a 2 a 2

where the Lamé constants A and U are replaced by the Young's modulus E and

Poisson's ratio v through Eq. 3-6.
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5. BENDING MOMENT AND STRESS

The displacement field of the circular cylinder with couple-stresses
under pure bending is the superposition of Eq. 4-5 to the classical linear
elastic solution (Eq. 3-5). The stress and couple-stress tensors can
. therefore be calculated from the kinematic equations (Eqs. 3-2 and 3-3),
the constitutive relations (Eq. 2-10), and the stress equation (Eq. 2-8).

The bending moment-curvature relation can also be obtained.

From the equation of equilibrium (Eq. 2-1b), the bending moment in the

couple-stress theory is computed by the formula

M=/[rx(nT)+nk{]ds . (5-1)
n N NN N
A
where % = the bending moment vector,
A = the cross section,
n = the unit normal to the area element ds, and
N
r = the position vector.
n

The explicit expansion of this formula in the cylindrical coordinate system

for a cross section perpendicular to z-axis is

2M.a :
. f/ [I: SineTzz+uzr cos e—uze sin G]rdr do .
(o} 0

(5-2)

2Tea
My = // [-r cos B T,, T M, sin 6 + M, g €OS 61 r dr d6 ,
o 0

=
]



where M and My = the components of the bending moment about the x-axis
X v

and y-axis, respectively.

Since the stress and couple-stress components due to the displacement

5 of Eq. 3-5 are given by Eqs. 3-7 and 3-8, respectively, only the stress
(1)

and couple-stress fields due to the displacement u given by Eq. 4-5 need
further elaboration. Substitutions of Eq. 4-5 1nto Eqs. 3-2 and 3-3 yield
(M (1)

the following components of ¢ and
N

Strain Tensor Components

[ 2 g2
(1) 2 r 2 r
€rr zCZ 22 Tr I0 (E;>.+2 2 I1 (22> + 2 E1 r‘ cos 0 ’

2 2
(1) 2|72 r\ _ 2 r .
66 302 22 - IO <E;> 2 ;5 I1 (EZ>] + (E1 + E3) r} cos B s

(1) )y _ (1) _
€2z T Ezr T &9 ° o (5-3)

Rotation Gradient Components

2
(1) r 2 r 1 .
“rz ;2 €2 % [ 0 (zz') r N '<E;)]+?(E1 ¥ 3E3)f sin 6
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rf

M _ ) (D
66

rr

Eqs. 5-3 and 2-10 then yield f’(])

and E(1). These results are

ZZ

superposed to Eqs. 3-7 and 3-8, respectively, then Eq. 2-8 is employed to

obtain the stress tensor I

z2Z

b

B

E

6z

+ A (3E1 + E

d

r
I, [=—
11 (22

) sin 0 = -1

2
cos O + 2p {Cz 22 [

+ 2E1 r} cos O .

cos 6 + 2u {

2
¢y 4

;ﬂ r cos 6 R
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The couple-stresses are

L
- — — \ sin © — r 2 r
Mo, = - (\)d1 + dz) =+ 2d, {Cz L, [10 (’Lz) -1, (Qz)]
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= |
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N
1
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n |n
-~
A
x1n
N
N
[

(5-4b)

Urr “ee = uzz = “re = u6r

where the Lamé constants A and U in the stress tensor are related to E and

Vv by Eq. 3-6. Using Eq. 5-2, the bending moment is obtained:

M =0 . (5-4c)



R CUR T e
M, = -1 {'p'““ 2(d1+"d2> a + V) (1—2v5(3E +E3>

pa
(5-5
8d, / c, 22 )
— 21 +38,)-83, 221 (%>
- 22\ 3 2 3 1 \2 ’
a 2
where I = ﬂaA/A is the area moment of inertia with respect to the y-axis.
Using C2’ E1, and E2 given by Eq. 4-8,
EI
Mo=-—cCc
y p m
2
82 a2\ ¢
cC =1+ az-—;-1—_—2—§11%—+;—10-2—
" T+ v d 2 2
L, - , q, o\ o
2 (AN evieavtes - 1 -] 6-6)
a 1\2 d =2 2
2/ | d1 a
1 lg a 1 23
. 7-+4(1—\))—E IOQ—Z——2-+8(1-\))—2-
a a

%, (a ) -1
Lz ,
a 2

where Cm = the coefficient of bending moment for the pure-bending of a

circular cylinder, or simply moment coefficient. From Eq. 5-é4c,

_ r cos 0
Tzz = Ct E 5 s

5-5



2 —_—
% d 2
22 =211 al)__2 a_ .
8 VvV \V+3 210<2>_a I1(2)
C oo 42 1 2 2 |
t 1T+ v 2 ’ (5-7)
l+4(1_\))£2_]: .a_._ .]_2;2_4..8(1 ).%.2. I a—
2 21 to \% 7 a R B b2
a 2 2
(5-7)

~where Ct = the coefficient of axial flexural stress for the pure-bending
of a circular cylinder, or simply the stress coefficient. Both Cm and Ct
are dependent on the geometry (radius a), as well as the material property
(v, E}, and Eé). Also, Ct is a linear function of d., but Cm is a

quadratic function of d2.

The numerical values of Cm and Ct with Eé/g1 as a parameter are
plotted in Figs. 5-1 through 5-3 for v = 0.1, 0.15, and 0.2, respectively.
From these results, the negligence of the couple-stresses in the analysis

will yield errors of less than 10% for both bending moment and axial

fluexural stress if a/,Q,2 > 10.
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Fig. 5-1. Coefficient of bending moment Cm and axial flexural stress C, for Poisson's ratio v = 0.1
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6. SUMMARY OF THE COUPLE-STRESS SOLUTION

To facilitate comparing couple-stress theory and the classical

elasticity theory, some aspects of the results of previous sections are

summarized below:

The couple-stresses cause an in-plane deformation (Eq. 4-5) in
addition to the classical elastic deformation (Eq. 3-5), and the
stress (in Eq. 5-4) is not uniaxially aligned along the beam

axis as in the classical beam theory.

The axial stress Tzz and the bending moment My are proportional
to Ex/p (x = r cos 8) and EIy/p, Eqs. 5-7 and 5-6, respectively.
The proportional coefficients, stress coefficient Ct and moment
coefficient Cm, are functions of the cylinder cross section
(radius a) and the material constants but independent of the
bending curvature.

The axial stress coefficient Ct is a linear function of d2 and

has the following properties:

Ctél if \)()+%)§0 . (6-1)
Ct +> 1 as a > (6-2)
and

C, = 1+0(v) if [v| is small . (6-3)



The bending moment coefficient Cm is a quadratic function of d2
and decreases with the increase of the radius a for a given

material. It also has the following properties:

c > 1 s (6-4)
m
Cm - 1 as a > (6-5)
and

— \2

d2

1- 31 zg

Cm > 8 T—v ;E- as a >0 . (6-6)

The bending moment coefficient Cm is always greater than the

axial stress coefficient Ct'

From the numerical values of C, and Ct shown in Figs. 5-1 to 5-3,
it is concluded that for Posson's ratio v ~ 0.1; the negligence
of the couple~stresses in the pure-bending of the circular
cylinder will yield errors of less than 107 in axial stress and

bending moment, respectively, if a/SZ,2 is greater than 10.
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7. APPLICATION TO THE GRAPHITE

From the characteristics of Cm and Ct as given in Section 6 and shown
in Figs. 5-1 through 5-3, it is seen that Ct is fairly close to 1 for
small |v|, but Cm varies considerably in the midrange of a/22. Moreover,
Cm can be easily determined experimentally by using Eq. 5-6 for a given
circular cylinder. These properties make the measured Cm a favorable
choice for the purpose of identifying the influence of the couple-stresses
in a given material. Other relevant facts shall also be examined sub-
sequently to fully confirm that the observed mechanical responses are
caused by the presence of couple-stresses. This section compares experi-
mentally measured data of pure-bending with theoretical implications to

show how couple-stresses influence observed graphite phenomena.

Recent literature contains a considerable amount of experimental data
concerning graphite mechanical behavior. Most of these experiments, however,
are designed according to the classical elasticity; hence, the data
primarily display the inconsistency of the classical elasticity in

characterizing graphite stress responses. The classical elasticity has not

been able to correlate the various experiments of graphite, but information
that can lead to the quantitative verification of the couple-stress theory

for graphite is normally missing in the reported data.

In what follows, some representative evidences of nuclear grade
graphite beams under pure-bending reported in Refs. 3, 4; and 7 are
qualitatively compared with the results of the couple-stress theory.

Since some available experimental data are measured for noncircular
cylinders, it is assumed that the implications of the circular cylinder
obtained in this article is applicable qualitatively, or by an analogy, to

the noncircular cylinders with the similar Ct and Cm'



To utilize the results of the previous sections, the apparent
flexural stress T;:) in a beam under pure-bending is defined by

(@ _  *
Tzz - Iy ’ (7-1)

where x = r cos O is the distance of the material point from the neutral
axis, and My is the total moment about the y-axis. With this definition,

the bending moment My given by Eq. 5-6 yields
=c = (7-2)

This relation makes clear that Cm is equivalent to the quotient

T(a)
YAA

Ex/p

for the couple-stress materials. In the following discussion, these two

quantities will not be distinguished, with the understanding that the latter

is the parameter implicitly used in most experimental reports (e.g., Ref. 3).
(a)

Also, Tzz , defined by Eq. 7-1, is not the actual axial stress T, which

is given by Eq. 5-7.

Based on the loading and the strain measurements (Ref. 3), Cm is
independent of the bending curvature for a given graphite beam with
unspecified cross section. Quantitatively, Cm is approximately 1,35,

which is greater than 1 as required by Eq. 6-4.

No explicit data are available to establish a functional relation

between Cm and the beam cross section of nuclear graphite, but it is
(a)
zz
the increase of the beam volume (Ref. 4)., This observation suggests that

reported that T for the graphite beam at failure state decreases with

7-2



the measured values of Cm decrease with the increase of the beam cross
section and agrees with the characteristics of Cm described in conclusion

4 of Section 6.

A useful relation can be derived from Eqs. 5-7 and 7-2 and conclusion

5 of Section 6:

(@ 5 ¢ . (7-3)

22 z2

This relation shows that the apparent flexural stress is always greater
than the actual axial stress for a material with couple-stresses. If the
failure of the graphite beam is determined by the maximum tensile stress,
then Tzz at failure state equals the uniaxial temnsile strength, and Eq. 7-3
yvields that the apparent flexural stress of a graphite beam at failure
state is higher than its uniaxial tensile strength. This is clearly

measured experimentally and stated in Refs. 3, 4, and 7.

Next, use is made of the observation that the maximum failure strain
of the pure-bending test exceeds the uniaxial tensile failure strain (Ref.
3) with the presumption that the elastic response of the nuclear grade
graphite can be predicted by the couple-stress theory of linear elasticity.
Since the measured maximum tensile strain in the pure-bending test is a/p,
the maximum tensile stress failure criteria and Eq. 5-7 yield that Cta/p
at the bending failure equals the uniaxial tensile failure strain, Thus,

it 1s reasonable to extract from the measurements on strains in Ref. 3 that

C. <1 ] (7-4)

Employing Eq. 6-1 results in

v (v + EQ/EH) <0 . ‘ (7-5)

for nuclear graphite.
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The practical application of the couple-stress theory needs the
material constants E} and Eé to be determined experimentally. As a result
of the solution in this article, it is necessary to measure the cross
section, the applied moment, and the bending curvature for a bending test,
in addition to the Young's modulus and Poisson's ratio determined by
homogeneous deformations. Also, more than one cross section is needed to
fully characterize both E} and Eé. There are no experimental data dictated
by the couple-stress theory in current literature. The following estimation
of d, and d, serves only as a further evidence that the existing graphite

1 2
data is compatible with the general aspect of the couple-stress theory.

In analysis of the H-451 graphite data in Ref. 7, the ratio of the
uniaxial tensile strength to the apparent flexural stress at the failure
state is needed, since these two quantities are measured, and their ratio
is used as a parameter in Ref. 7. With the maximum tensile stress failure
criteria, this ratio equals Ct/cm' In the discussion below, this failure
criteria is adopted, and the quotient Ct/cm is used for the ratio of the

uniaxial tensile strength to the apparent flexural stress at failure.

For H-451 graphite, it is reported in Ref. 7 that the Ct/Cm ratio
ranges from 0.5 to 0.8 for the 6.4-mm—-diameter circular cylinder. Theo-
retical values of Ct/Cm against a/S?,2 for 52/&1 = 0, as depicted in Fig.
7-1, can be used to calculate QZ’ which ranges from 0.53 to 1.12 mm. If
d2/d1 = -0.8 is chosen so that Eq. 7-5 is satisfied, 22 falls in the range
0.62 to 1.54 mm from Fig. 7-1. It is obvious that these values of 22 are
at the same order of the grain size of the H-451 graphite (maximum at
1.57 mm). This agrees with the general aspect of the couple-stress theory

that Mindlin has described (Ref. 2).

The discussions in this section have shown that the graphite uniaxial
and pure-bending test results which are incompatible in the classical beam
theory can be accommodated in the couple-stress theory. The conclusion is
therefore that the nuclear grade graphite is influenced by couple-stress
and that the couple-stress theory may answer why many graphite phenomena

are noticed as being dfscordant with classical elasticity.
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Fig. 7-1. Theoretical ratio of the uniaxial tensile strength to the
apparent flexural stress at failure, C./C,, for a circular
cylinder subjected to pure bending in the couple-stress
-theory for Poisson's ratio v = 1
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