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Factoring significantly into the global burden of influenza disease are high-risk populations
that suffer the bulk of infections. Classically, the very young, very old, and pregnant women
have been identified as high-risk populations; however, recent research has uncovered
several other conditions that contribute to severe infection. By using varied animal models,
researchers have identifiedmolecularmechanisms underpinning the increased likelihood for
infection due to obesity and malnourishment, as well as insight into the role sex hormones
play in antiviral immunity in males, in females, and across the life span. Additionally, novel
comorbiditymodels have helped elucidate the role of chronic infectious and genetic diseases
in influenza virus pathogenesis. Animal models play a vital role in understanding the contri-
bution of host factors to influenza severity and immunity. An in-depth understanding of these
host factors represents an important step in reducing the burden of influenza among the
growing number of people living with one or more chronic medical conditions.

I
nfluenza represents a significant burden for
global public health. Worldwide, millions of

cases of influenza are recorded per year, result-
ing in estimates of up to 600,000 deaths
(Thompson et al. 2009; Nair et al. 2011; Lee
et al. 2018). Most cases are represented by indi-
viduals with one or more underlying host sus-
ceptibility factors. Comorbidities, sex, and age
not only impact the host but can also impact the
virus itself, as they were found to be associat-
ed with increase in single-nucleotide polymor-

phisms (SNPs) in the influenza genome (Fig. 1)
(Nelson et al. 2001; Engels et al. 2017; Zhang
et al. 2017). To understand increased pathogen-
esis in high-risk populations, it is necessary to
develop accurate animal models to investigate
viral pathogenesis and immunity.

OBESITY

Obese individuals are at high risk for severe
influenza infection and account for most influ-
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enza-related hospitalizations (Milner and Beck
2012). To better understand this increased path-
ogenesis, most influenza obesity studies to date
have been performed in mouse models—specif-
ically, genetically obese mouse strains such as
ob/ob (OB) and db/db, achieved by knocking
out the leptin gene or the leptin receptor, respec-
tively (Lutz andWoods 2012), and diet-induced
obese (DIO) mice, which are thought to better
mimic obesity in the human population. DIO
mice are fed diets consisting of high-fat (ranging
from 40% to 60% calories from fat) or a so-called
Western diet with variable composition (Table
1) (Lutz and Woods 2012; Zeeni et al. 2015).
These high-fat, calorically dense diets result in
weight gain, glucose intolerance, and reduced
sensitivity to leptin and insulin (Campfield et
al. 1995).

Most murine studies show that obesity
increases morbidity and mortality during influ-
enza infection, consistent with clinical observa-
tions (Milner and Beck 2012). On infection with
influenza virus, both OB and DIO mice develop
severe pathology, increased viral spread, de-
creased pulmonary function, and impaired viral
clearance (Kim et al. 2012b; Zhang et al. 2013;
Radigan et al. 2014; Moorthy et al. 2016;
Karlsson et al. 2017a). A major complication of

influenza infection, especially in obese popula-
tions, is the development of secondary bacterial
infections (Diavatopoulos et al. 2010). Obese
mice are at greater risk of acquiring secondary
infections post–influenza challenge (Karlsson
et al. 2017a). Conversely, other studies reported
no differences in pathology between lean and
obese, although they did report mice fed high-
fat diets (HFDs) have increased oxidative stress
and generation of neutrophil extracellular traps,
both of which result in damage to the surround-
ing tissue (Moorthy et al. 2016).

Besides increased pathology, obese mice
mount a poor innate immune response to infec-
tion (for review, see Honce and Schultz-Cherry
2019). The baseline obesogenic lung consists of
increased expression of proinflammatory cyto-
kines and chemokines (Kim et al. 2012b) result-
ing in an increased influx of inflammatory cells
after infection (Namkoong et al. 2019). Despite
the increased inflammation, obese mice have
increased expression of suppressors of cytokine
signaling (SOCS1 and SOCS3) mRNA in the
lung leading to decreased type I interferon
(IFN) (Radigan et al. 2014). On infection,
IFN-α and IFN-β responses are delayed, along
with IL-6 and tumor necrosis factor (TNF)-α
production (Smith et al. 2007; Karlsson et al.
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Figure 1. Increased diversity in viruses derived from high-risk hosts. Using the influenza research database,
human surveillance influenza A viral samples with clinical metadata were pooled to look at single-nucleotide
polymorphisms (SNPs) in various high-risk groups. The same data set was stratified based on (A) comorbid state
of obesity or diabetes mellitus, other comorbidity, or healthy adult with no listed comorbidities, (B) sex, and (C)
age range on presentation of symptoms of 18–34, 35–50, or 51–65. Number of SNPs for each gene segment was
summed and plotted using box-and-whisker plots ranging from the 5th to 95th percentile with data outside the
range represented by data points. Datawere analyzed first for normality using the Kolmogorov–Smirnov test, and
then for differences in SNPs using a Kruskal–Wallis test (A,C) to compare more than two groups and a Mann–
Whitney test (B) to compare two groups. (�) P < 0.05. Database accessed on 30-July-2019.
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2010; Lutz and Woods 2012). However, later in
infection, DIO mice have increased IL-6 levels
versus lean mice (Namkoong et al. 2019). Mac-
rophages, one of the first innate immune cells to
sense infection and initiate a response, are func-
tionally impaired in obese hosts. Alveolar mac-
rophages taken from DIO mice and infected ex
vivo have suppressed IFN-α, IFN-β, and other
cytokines compared with lean controls, suggest-
ing dampened macrophage function in DIO
mice contributes to poor outcomes (Cho et al.
2016; Namkoong et al. 2019).

The adaptive immune system is also affected
by obesity. Pulmonary CD4+ T cell numbers are
reduced in DIO and OB mice (Milner et al.
2015). Regulatory T cells are reduced in DIO

and OB mice and are 40% less suppressive
than those of lean mice (Milner et al. 2013,
2015). Weight loss does not improve memory
T-cell function in DIO mice (Rebeles et al.
2019), implying that obesity might continue to
have an impact even after an individual loses
weight. Humoral responses are also altered.
DIO mice have higher B-cell IgM and IgG in
unstimulated B cells, but decreased expression
of cytokines and early commitment markers
such as IL-7, IL-7RA, and STAT5 (Kosaraju
et al. 2017). Not only are B-cell frequencies
lowered, but DIO mice have diminished anti-
body titers attributed to reduced plasma levels
of docosahexaenoic acid (DHA) (Kosaraju
et al. 2017). Many studies have shown differ-

Table 1. Animal models of obesity and outcome of experimental influenza virus infection

Model Genetics Weight Diet Outcome of infection References

Genetic
leptin
knockout
(ob/ob)

Spontaneous
recessive,
homozygous
Lepob nonsense
mutation

45 g Normal chow;
hyperphagic due
to loss of
appetite control
and satiety

Impaired viral
clearance,
increased risk of
secondary
infections, poor
wound repair, and
diminished
memory responses

Campfield et al. 1995;
Lutz and Woods
2012; Karlsson
et al. 2017a;
Meliopoulos et al.
2019

Genetic
leptin
receptor
knockout
(db/db)

Spontaneous
mutant in
Leprdb allele
causing
abnormal
splicing

40 g Normal chow;
hyperphagic due
to loss of leptin
receptor signal
transduction

Reduced viral
clearance,
impaired adaptive
immunity, and
increased lung
pathology

Lutz and Woods
2012; Radigan
et al. 2014

Diet-
induced
obesity
(DIO)

Some strains more
susceptible
than others

35 g High-fat, Western,
or “cafeteria”
diet

Mirrors genetically
obese models, but
generally moderate
phenotypes
between
genetically obese
and control
models

Campfield et al. 1995;
Smith et al. 2007;
Lutz and Woods
2012; O’Brien et al.
2012; Zeeni et al.
2015

Control Any matched
genetic
background

25 g Either low-fat diet
or regular chow;
diet choice may
alter results

Controlled viral
spread and
replication,
reduced lung
pathology,
improved wound
repair, and robust
antigenic memory

Lutz and Woods
2012; Zeeni et al.
2015

Adapted from data in Honce and Schultz-Cherry (2019).

Influenza in High-Risk Hosts

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a038604 3

w
w

w
.p

e
rs

p
e

c
ti

v
e

si
n

m
e

d
ic

in
e

.o
rg

 on August 27, 2022 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


ences in inflammation and immune cell popula-
tions—both innate and adaptive—are more
pronounced in the genetically obese models
compared with DIO mice, drastically affecting
the immune response to influenza (O’Brien et al.
2012).

An altered pulmonary microenvironment
also contributes to increased pathogenesis and
impaired immune response. Prostaglandin E2, a
lipid immune mediator, is higher in DIO mice
and mediates decreased expression of IFN-α,
IFN-β, and certain cytokines (Zhang et al.
2019b). In addition, during infection, lipid me-
tabolism in DIOmice is up-regulated, including
fatty acids and phospholipids (Milner et al.
2015). Although the exact impact of increased
lipidmetabolism on pathogenesis is unknown, it
is speculated that the altered cellularmetabolism
of obese mice inhibits efficient lung repair after
infection (O’Brien et al. 2012; Milner et al.
2015). Mechanisms of pulmonary homeostasis
are also altered by the obesogenic state. Recent
studies show that the β6 integrin contributes to
increased pathology during influenza infection
inmice by suppressing type I IFNs (Meliopoulos
et al. 2016), and that β6 integrin is expressed at
much higher levels in genetically obese mice
(Meliopoulos et al. 2019). Knocking out β6 in-
tegrin increases type I IFN signaling and im-
proves macrophage functionality, resulting in
controlled viral spread and protection from
severe influenza infection (Meliopoulos et al.
2016, 2019). Obese mice have increased ex-
pression of platelet-activating factor receptor
(PAFR) in the lung, which is associated with
increased severity of secondary bacterial infec-
tion (Ghoneim et al. 2013; Metzger and Sun
2013; Karlsson et al. 2016).

Although the mouse model provides valu-
able information regarding the influence of obe-
sity during influenza infection, ferrets remain
the gold-standard model for human influenza
infection. Unlike mice, ferrets are susceptible
to human influenza viruses without the need
for prior adaptation and have a distribution of
sialic acid residues within the respiratory tract
that mirrors that of humans (Robinson et al.
1986; Johnson-Delaney and Orosz 2011). Ferret
studies are limited by the lack of available ferret

reagents and currently focus on viral pathogen-
esis and viral transmission. To address this, the
National Institute of Allergy and Infectious Dis-
eases (NIAID)-funded Centers for Excellence in
Influenza Research and Surveillance has under-
taken an initiative to develop ferret immune re-
agents and antibodies (Albrecht et al. 2018). An
obese ferret model is thus currently under de-
velopment and has the potential to answermany
questions about obesity and influenza.

Overwhelmingly, data generated from stud-
ies using DIO and genetically obese mouse
models suggests increased immunopathology,
decreased or delayed immune response, and al-
tered pulmonary microenvironment all contrib-
ute to the increased morbidity and mortality
seen in obese individuals. Although differences
between studies have been noted, this is most
likely attributed to differences between obesity
models and diets. Even diets of similar compo-
sition can be obtained from different vendors
with major or minor differences between for-
mulations. Therefore, caution must be taken
when extrapolating murine results to studies of
human obesity and influenza.

MALNOURISHMENT

Malnourishment is also a risk factor for in-
creased influenza susceptibility and morbidity.
Several studies have found that vitamin A and D
deficiencies affect the immune response to in-
fluenza virus (Stephensen et al. 1993; Surman
et al. 2016; Penkert et al. 2017). Mice deficient
in vitamin A, vitamin D, or both have decreased
mucosal antibody response in the nasal-associ-
ated lymphoid tissue and lung; supplementa-
tion with vitamin A and/or D was sufficient to
restore the antibody response (Surman et al.
2017). Vitamin A– and vitamin D–deficient
mice, in addition to decreased overall numbers
of CD8+ T cells, have decreased virus-specific
CD103hi T cells, thought to inhibit recruitment
of virus-specific T cells to the airway (Surman
et al. 2017). Low vitamin C levels also contribute
to poor infection outcome, as Gulo−/− mice,
which are unable to survive without vitamin C
supplementation, show increased lung patholo-
gy and decreased MCP-1, RANTES, and IL-12

R. Honce et al.
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during influenza infection (Li et al. 2006). Sele-
nium deficiency increases influenza-associat-
ed lung lesions, as well as promotes higher
mutation rates in the M1 protein (Beck 2001;
Beck et al. 2001; Nelson et al. 2001).

Protein deprivation also increases severity of
disease. Mice fed inadequate amounts of protein
show increased viremia and delayed viral clear-
ance compared to controls (Pollett et al. 1979;
Taylor et al. 2013). This may reflect the altered
immune response of these mice, as protein-de-
prived mice have fewer natural killer (NK) cells,
leading to decreased levels of IFN-γ as well as
reductions in B cells, T cells, and total numbers
of leukocytes during influenza infection (Ritz
et al. 2008; Taylor et al. 2013). In addition, pro-
tein deprivation results in increased levels of
lung neutrophils associated with immunopa-
thology and lower serum hemagglutination in-
hibition titers (Taylor et al. 2013), suggesting
reduced protein intake compromises both the
innate and adaptive responses.

SEX DIFFERENCES

Hormonal variations between sexes have a
marked impact on antiviral responses (Klein
et al. 2010; Vom Steeg and Klein 2019). Al-
though influenza titers are largely similar be-
tween sexes, experimental influenza infection
of male and female mice reveals a greater in-
duction of proinflammatory cytokines and in-
creased morbidity in female mice, whereas
males show less production of humoral immune
responses (Lorenzo et al. 2011; Robinson et al.
2011; Klein et al. 2012; Vom Steeg and Klein
2017). This differential response to influenza
infection is mitigated after gonadectomy, sug-
gesting a role for sex hormones in the pathogen-
esis of influenza (Robinson et al. 2011).

17β-estradiol (E2) alleviates pulmonary in-
flammatory responses and promotes an antiviral
state by recruiting neutrophils and influenza-
specific CD8+ T cells to the lungs; however, in
females, low levels of E2 promote inflammation
and immunopathology (Robinson et al. 2011,
2014; Klein et al. 2012; Davis et al. 2017). Exog-
enous application of E2 protects females from
severe influenza by increasing pulmonary mi-

gration of neutrophils and enhancing CD8+

T-cell responses (Robinson et al. 2014). Con-
versely, during pregnancy, high levels of E2
may attenuate the antiviral response, leading to
increased morbidity after influenza virus infec-
tion (Pazos et al. 2012). Estriol (E3), another
endogenous estrogen, protects against pulmo-
nary inflammation but does not reduce lung
viral titers (Vermillion et al. 2018b). These find-
ings were confirmed in vitro: Treatment of
female-derived, but not male-derived, human
nasal epithelial cell cultures with estrogenic com-
pounds improved cellular response to infection
(Peretz et al. 2016).

Progesterone (P4) has both detrimental and
beneficial roles for the host during infection. P4
treatment of female mice promotes pulmonary
up-regulation of amphiregulin, fast-tracking
lung repair and recovery (Hall et al. 2016). In
contrast, ovariectomized female mice exoge-
nously treated with P4 have increasedmorbidity
following influenza virus infection, which is also
noted in pregnant mice during peak P4 levels
(Davis et al. 2017). Hormonal contraceptives
containing P4 reduce memory responses to het-
erotypic influenza challenges through decreas-
ing the activity of memory CD8+ T cells (Hall
et al. 2017).

Testosterone levels can also impact the re-
sponse to influenza infection, and testosterone
decline over the life span contributes to in-
creased severity in the elderly (Vom Steeg et al.
2016; Vom Steeg and Klein 2019). As is seen
with estrogens and progesterone, testosterone
levels do not alter viral load but rather impact
immune responses (Vom Steeg et al. 2016). Cas-
trated young and intact aged male mice suffer
increased pulmonary pathology and edema
upon infection because of low testosterone levels
(VomSteeg et al. 2016). Testosterone also plays a
role in the recovery and remodeling stage of in-
fection. Male mice show greater production of
amphiregulin than female mice with responses
sensitive to exogenous testosterone treatment
(Vermillion et al. 2018c).

Hormonal fluctuations across the life span
impact susceptibility to influenza differently in
males and females; these differences are high-
lighted during aging and pregnancy. Prepuber-
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tal and elderly males have a higher likelihood of
severe influenza infection compared with higher
susceptibility in females of reproductive age as
discussed further below (Jensen-Fangel et al.
2004; Vom Steeg and Klein 2019). Further, pu-
berty onset may increase disease severity in
males and females, as increased production of
estrogens exacerbatemortality on infection. Low
estrogen levels in prepubertal children—espe-
cially females—are protective against severe
influenza infection (Suber and Kobzik 2017).
Testosterone decline over the life span increases
susceptibility to influenza in aging males, and
the dynamic interaction between aging and sex
hormones impacts influenza pathogenesis as
well as host responses to infection and vaccina-
tion, as discussed below (Vom Steeg et al. 2016;
Potluri et al. 2019).

PREGNANCY

Following the 1918 and 2009 H1N1 pandemics,
studies found pregnant hosts had a greater like-
lihood of hospitalization after influenza infec-
tion versus nonpregnant women (Woolston
andConley 1918; Titus and Jamison1919; Siston
et al. 2010). Strikingly, pregnant women account
for only 1% of the general population, yet expe-
rience an excessive rate of mortality of 5% on
influenza virus infection (Centers for Disease
Control and Prevention 2010). Interactions
betweenhormonesand immunemediators insys-
temiccirculationandat themother–fetal interface
alter influenza pathogenesis in the pregnant host,
as well as contribute to sex-based differences in
the response to infection (Irving et al. 2000; Raj
et al. 2014; van Riel et al. 2016; Littauer and
Skountzou 2018). Other comorbidities, includ-
ing stress, depression, body mass index, aging,
puberty, and exercise state, contribute to poor
infection responses and can compoundmorbid-
ity in pregnant hosts (Christian et al. 2010; Avit-
sur et al. 2011; Soydinc et al. 2012; Christian
2014; Ingersoll 2017;VomSteegandKlein2017).

Pregnant mouse models, including syngenic
mating between like strains of mice and allogen-
ic mating between different strains of mice, yield
insights into the altered influenza pathogenesis
in pregnant hosts. Reduced viral clearance and

eightfold higher viral titers characterize the
lungs of syngeneic and allogenic pregnant
mice infected during mid-gestation, with allo-
genic-mated mice showing more severe disease
caused by fetal tolerance (van Riel et al. 2016;
Engels et al. 2017; Littauer et al. 2017). Increased
disease severity is not strain-specific; increased
viral loads are observed with influenza B–infect-
ed pregnantmice as well (Kim et al. 2014). High-
er viral loads in pregnant mice contribute to
increased lung pathology, severe pneumonitis,
lung edema, cytokine storm, and reduced epi-
thelial regeneration post–acute lung injury
(Chan et al. 2010; Gu et al. 2011; Marcelin
et al. 2011; Engels et al. 2017; Vermillion et al.
2018a). The trend of increasing maternal mor-
tality as pregnancy advances has been recapitu-
lated in murine models with infection during
the third gestational week inducing three times
the mortality versus infection in the first gesta-
tional week (Williams and Mackenzie 1977; Sis-
ton et al. 2010).

Reduced antiviral responses upon influenza
virus infection may promote immune tolerance
to the fetus; however, this can lead to a detrimen-
tal outcome for maternal and fetal health. Re-
duced type I and III IFN responses are seen in
pregnant female–derived human peripheral
blood mononuclear cells (PBMCs) and in allo-
genic and syngenicmatedpregnantmice (Forbes
et al. 2012; Engels et al. 2017; Littauer et al. 2017).
The predominate source of type I IFNs following
infection are circulating plasmacytoid dendritic
cells (pDCs), a cell type that shows reduction in
numbers but heightened Toll-like receptor
(TLR) expression during pregnancy (Cordeau
et al. 2012; Vanders et al. 2013; Koga et al.
2014; Le Gars et al. 2016). Upon infection, infil-
trating pDCs in the maternal decidua—which
itself expresses several TLRs—during pregnancy
may contribute to preterm labor, preeclampsia,
and increasedmaternalmorbidity detected in rat
andmouse pregnancymodels (Beijar et al. 2006;
Ilievski et al. 2007; Koga et al. 2014).

Increased expression of pro-inflammatory
cytokines IL-1α, IL-6, IL-12, TNF-α, G-CSF,
RANTES, and MCP-1, increased immunosup-
pressive cytokines IL-10 and IFN-γ, and type I
and III IFNs reduction together alter the cellular

R. Honce et al.
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microenvironment of the maternal lung and
promote severe immunopathology—alterations
that are compounded as pregnancy advances
(Gonzalez et al. 2009; Chan et al. 2010; Kraus
et al. 2010; Marcelin et al. 2011; Forbes et al.
2012; Kim et al. 2012a; Zheng et al. 2012; Van-
ders et al. 2013). Pregnancy in the ferret model
supports these findings, as increased inflamma-
tory cytokines in the lungs lead to cytokine im-
balance and elevated viral replication compared
with nonpregnant, influenza virus–infected con-
trols (Yoon et al. 2018).

Some reports suggest no differences or even
improvements in antibody levels or T-cell num-
bers and function in influenza virus infected
pregnant animal models (Norton et al. 2010;
Marcelin et al. 2011; Kay et al. 2014); however,
the majority note impairments in adaptive ef-
fector function andmemory due to the pregnant
state. There is a dearth of knowledge on alter-
ations to antibody-mediated immunity and B
cells in influenza infection during pregnancy
in animal models and human cohorts. Influenza
infection in the pregnant ferretmodel does show
reduced IgG-specific B-cell responses after ex-
perimental infection, although it remains to be
determined if this occurs during natural infec-
tion in humans (Yoon et al. 2018). Interestingly,
the complement pathway components C3, C3a,
and C4 show diminished antibody-dependent
neutralization of influenza in pregnant African
green monkeys (Mayer and Parks 2014).

CD8+ and CD4+ T cells are reduced in num-
bers and have heightened exhaustion in preg-
nant women infected with H1N1 (Vanders
et al. 2013). In mice, increased programmed
cell death (PD)-1 expression on paternal anti-
gen–specific T cells promote fetal tolerance
through apoptosis of potentially cytotoxic, fe-
tal-targeted cells. Conversely, up-regulation of
PD-1 during pregnancy is mirrored during in-
fluenza infection, and blocking the PD-1 ligand
improves maternal immunity (Taglauer et al.
2009; Vanders et al. 2015). There is also evi-
dence that pregnancy biases toward a Th2-dom-
inated immunity and results in the reduction of
CD8+ T cells on influenza infection in mouse,
rat, and ferret models (Gu et al. 2011; Vanders
et al. 2015; Yoon et al. 2018).

The fetus can experience adverse outcomes
on influenza infection of the mother. Severe in-
fections are associated with preterm delivery,
increased rates of stillbirth, and low birth weight
(Kim et al. 2014; Härtel et al. 2016; Oboho et al.
2016; Fell et al. 2017; Littauer et al. 2017). Influ-
enza can infect fetal-related tissues, with infec-
tions of the maternal decidua of the greatest
likelihood to support active viral replication
(Takeyama 1966; Rosztoczy et al. 1975; McGre-
gor et al. 1984; Uchide et al. 2006). Infection
of the fetoplacental tissues induces placental
inflammation may precede influenza-induced
abortion, as has been shown in human and sim-
ian tissues and in murine models (Uchide et al.
2002; Christiaens et al. 2008; Xu et al. 2011; Kim
et al. 2012a). Transmittance of influenza infec-
tion to the fetus may be a maternal survival
strategy, as vertical transmission of highly path-
ogenic avian influenza H5N1 to the fetus in-
duced preterm delivery or abortion but partly
evacuated the virus from the pregnant dam
(Xu et al. 2011).

Fewer studies have used the ferret model. An
investigation into influenza virus dynamics in
the mother–infant dyad using influenza-infect-
ed neonatal ferrets found influenza transmission
to maternal lung and mammary gland tissue
results in cessation of milk production and
maternal mortality (Paquette et al. 2015). The
converse condition of maternal infection via
mammary gland inoculation resulted in infant
infection and mortality via breastfeeding, find-
ings that were recapitulated in replication com-
petent primary human breast cells (Paquette
et al. 2015).

AGING

Classically, the age groups at highest risk for
severe influenza disease are the young and the
elderly (Kondrich and Rosenthal 2017; Talbot
2017). This leads to a “U-shaped” age-specific
mortality curve with high mortality in young
and old with young adults and middle-aged in-
dividuals having relatively low mortality (Fig. 2)
(Dauer and Serfling 1961; Glezen 1996). Prepu-
bescent children, especially children with co-
morbidities or children <2 yr of age, are at an
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increased risk for severe complications follow-
ing influenza virus infection (Nair et al. 2011;
Lafond et al. 2016; Guo et al. 2018). In part, the
high risk of severe disease in children is thought
to be caused by a lack of enough preexisting
immunity, resulting in high infection rates
(Ruf and Knuf 2014). The relative lack of sex
hormones in prepubescent individuals also
makes themmore susceptible to severe influenza
disease, as discussed above (Vom Steeg and
Klein 2019). Work in animals has shown that
prepubescent mice are similarly susceptible to
severe disease following influenza virus infec-
tion (Yasui et al. 2004; Sun et al. 2011). However,
young ferrets have decreased fever and weight
loss following influenza virus infection (Huang
et al. 2012), perhaps because of the differences
between the animal models (Thangavel and
Bouvier 2014).

At the other end of the “U-shaped” age-spe-
cificmortality curve, older individuals (>65 yr of
age) also have a higher risk of severe influenza
virus disease (Fig. 2). In otherwise healthy, el-
derly adults, 67% percent of influenza virus–in-
fected individuals become housebound and 25%
become bedbound (Falsey et al. 2005). Despite
numerous exposures to influenza virus via infec-
tion and vaccination, morbidity and mortality

increase with age in the elderly, likely because of
immunosenescence and increasing incidence of
comorbidities (Talbot 2017). Older mice infect-
edwith influenza virus have increasedmorbidity
and mortality associated with increased virus
replication, decreased naive T-cell receptor rep-
ertoire, and delayed resolution of inflammation
(Yager et al. 2008; Gil et al. 2015; VomSteeg et al.
2016; Nikolich-Žugich 2018; Vom Steeg and
Klein 2019). Furthermore, immunosenescence
during influenza virus infection is associated
with lung macrophage alterations, resulting in
decreased phagocytosis and increased pulmo-
nary fibrosis (Samy and Lim 2015; Wong et al.
2017). Immunosenescence is thought to be re-
lated to reproductive senescence. Sex hormones
decrease with age in older individuals, and, as
described above, are important mediators of
protection against influenza virus (Robinson
et al. 2011, 2014; Hall et al. 2016; Peretz et al.
2016; Vom Steeg et al. 2016; Guo et al. 2018).

In contrast to what is seen during seasonal
influenza virus epidemics, there can be an in-
crease in influenza disease severity among
young adults and middle-aged individuals dur-
ing influenza virus pandemics, resulting in a
“W-shaped” age-specific mortality curve (Fig.
2). The 1918 pandemic induced high morbidity
among all ages, but young adults had a dispro-
portionately higher rate of mortality (Morens
et al. 2008; Walters et al. 2016; Taubenberger
et al. 2019) potentially attributed to the virus’s
ability to induce a dysregulated pro-inflamma-
tory immune response, as shown in mice, fer-
rets, and cynomolgus macaques (Kobasa et al.
2004, 2007; Kash et al. 2006; Memoli et al. 2009;
de Wit et al. 2018; Short et al. 2018). During the
influenza virus seasons immediately after pan-
demics, there tends to be a flattening of the
young adult hump in the age-specific mortality
curve back into the “U-shape” (Fig. 2; Simonsen
et al. 1998; Taubenberger et al. 2019). This likely
indicates the selective acquisition of protective
immunity among this age group (Simonsen
et al. 1998). Older adults, especially those aged
30–60, fared better than expected during such
an intense pandemic, likely owning to previous
exposure to H1- and N1-containing viruses that
were circulating in the 19th century (Luk et al.
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Figure 2. Differential severity of pandemic and sea-
sonal influenza viruses by age. Seasonal influenza vi-
ruses cause a “U-shaped” age-specific mortality curve
with the young and old susceptible to severe influenza
virus disease. Pandemic influenza viruses instead
cause a “W-shaped” age-specific mortality curve
with the young, old, and middle-aged having peaks
in influenza virus disease severity.
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2001; Viboud et al. 2013; Short et al. 2018; Tau-
benberger et al. 2019).

Another possible reason for increased sus-
ceptibility to influenza virus infection during
middle and old age is original antigenic sin
(OAS), also known as immune imprinting. First
observed in the 1960s,OASdescribes the process
by which the first antigenic variant of influenza
virus that an individual is exposed to can shape
subsequent humoral responses to influenza
virus infection or vaccination (Francis 1960;
Zhang et al. 2019a). Subsequent exposures to
novel strains boost cross-reactive antibodies, re-
sulting in strong humoral immunity to only a
few antigens of the original strain, regardless of
their effectiveness at neutralizing currently cir-
culating strains. Therefore, after years of influ-
enza virus evolution, novel drift variants can
emerge and escape the highly specific humoral
responses that have been selected, resulting in
adults potentially becoming more susceptible
to seasonal influenza viruses. However, it should
be noted that in some individuals, OAS can lead
to the boosting of antibodies that target con-
served, broadly neutralizing epitopes like those
in the HA stalk protein. Although it is likely
impossible to model the complex influenza im-
mune history of an adult, mice and ferretmodels
have shown that sequential immunization can
concentrate HA stalk antibodies (Krammer
et al. 2013, 2014; Margine et al. 2013; Nachba-
gauer et al. 2016).

OTHER HIGH-RISK STATES

Allergic Airway and Asthma

Clinical observations have shown that asth-
matics and allergy sufferers have increased mor-
bidity on influenza infection. Murine models of
allergic asthma differ in the allergen trigger—
including ovalbumin, house dust mite, and fun-
gal allergens—and severity of resulting allergic
disease (Nials and Uddin 2008; Gold et al. 2015;
Debeuf et al. 2016). Allergic mice show prior
airway inflammation increases resistance to sub-
sequent influenza infection—a phenomenon
opposite of what is seen in epidemiological stud-
ies of human asthmatics (Ishikawa et al. 2012;

Samarasinghe et al. 2014; Furuya et al. 2015;
Kawaguchi et al. 2017). This protection is con-
ferred to secondary bacterial coinfections
caused by heightened TGF-β expression in asth-
matic mice suppressing IFN-γ and promoting
induction of robust antibacterial responses
(Roberts et al. 2019). The protective effects of
the allergic airway ameliorate damage to the ep-
ithelial surface, increase mucus production, and
reduce weight loss on influenza infection during
the peak allergic response and heightens eosin-
ophilic responses capable of viral clearance (Sa-
marasinghe et al. 2014, 2017). Alternatively,
others have suggested enhanced levels of insu-
lin-like growth factor-1 or NK cell activity in
asthmatic mice may mediate protection from
influenza (Ishikawa et al. 2012; Samarasinghe
et al. 2014).

Asthma-induced protection is largely tem-
poral. Influenza infection during remodeling af-
ter an allergic attack is detrimental; increased
IFN levels result in immunopathology (Samar-
asinghe et al. 2014). These time-dependent as-
sociations of exacerbated severity are also ob-
served in a model in which allergy induction
occurred after influenza infection (Kawaguchi
et al. 2017). These models showed a reduction
in the numbers of eosinophils migrating to the
lung, deteriorated lung function, and increased
allergic inflammation (Ravanetti et al. 2017).
The bronchoalveolar lavage fluid from infected
mice with allergic asthma had significantly
higher IL-6, IL-10, TNF-α, IL-5, IFN-α, IFN-β,
and IFN-λ levels than those from infected, non-
asthmatic mice (Hasegawa et al. 2014).

Although these studies provide a mechanis-
tic explanation for the observation that asth-
matics, once hospitalized for influenza, are less
likely to die than other patient groups (Van Ker-
khove et al. 2011), it also remains possible that
different subtypes of asthma display differing
degrees of synergism with influenza virus. Ap-
proximately 40% of adults suffer from allergic
“eosinophilic asthma” modeled in mice by the
different allergen triggers mentioned above; a
large percentage of asthma patients suffer from
nonallergic asthma (asthma is observed in the
absence of allergen-specific IgE), neutrophilic
asthma (eosinophilia cannot be detected), and
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paucigranulocytic asthma (defined by absence
of an inflammatory cell infiltrate in sputum)
(Simpson et al. 2006). Developing suitable ani-
mal models for varying phenotypes will help
determine if asthma subsets display a different
relationship with influenza virus.

Smoking, Chronic Obstructive Pulmonary
Disease, and Emphysema

Active and ex-smokers have increased suscepti-
bility to severe disease upon infection (Kark et al.
1982; Godoy et al. 2018). In mouse models,
chronic cigarette smoke exposure (CSE) leads
to increased lung inflammation and viral titers
on infection compared with mice exposed to
only fresh air (Gualano et al. 2008; Wang et al.
2015; Hong et al. 2018). Earlier CSE heightens
migration of macrophages and neutrophils to
the lungs and blunts the IFN, humoral, and γδ

T-cell responses in infected mice (Gualano et al.
2008; Wang et al. 2015; Hong et al. 2018). Mit-
igating the CSE-induced proinflammatory state
via neutralizing antibodies against IL-1α and IL-
1β improves infection outcomes (Bucher et al.
2017). Conversely, Han et al. (2014) contend the
immunosuppressive effect of nicotine reduces
inflammatory cell migration to the lung, thereby
reducing immunopathology and promoting sur-
vival on influenza infection. These contradictory
findingsmay be due to the duration and intensity
of CSE. Work performed with primary respira-
tory epithelial cells from smokers or nonsmokers
suggests a generally immunosuppressive state, as
smoking reduced antiviral responses via down-
regulation of RIG-I- and TLR-3-mediated IFN
signaling (Wu et al. 2016).

Smoking exacerbates chronic obstructive
pulmonary disease (COPD) and emphysema-
like symptoms, and the interactions among these
chronic states impact influenza pathogenesis
(Leung et al. 2017). CSE has been used to model
the development of emphysema and COPD in
mice (Bauer et al. 2010; Vijayan 2013; Mebratu
et al. 2016). In these mouse models, increased
viral titers, pulmonary inflammation, and re-
duced lung elasticity are reported on influenza
infection (Bauer et al. 2010; Hsu et al. 2015). The
severe inflammatory response is preceded by di-

minished innate immune responses, including
poor mitochondrial antiviral-signaling (MAVS)
and phosphoinositide 3-kinase (PI3K) signaling
in lung epithelium (Hsu et al. 2015, 2017). CSE-
inducedCOPDmice showNKcell hyperrespon-
siveness and enhanced neutrophilic responses,
which further exacerbate viral-induced inflam-
mation (Wortham et al. 2012; Sichelstiel et al.
2014). Experiments using influenza infection
of primary human epithelial cells derived from
donors with COPD support these findings, with
increased viral entry and replication, impaired
IFN responses, and heightened oxidative stress
(Hsu et al. 2015; Aizawa et al. 2018).

Therapeutic strategies aimed at reducing
lung inflammation are effective in improving
antiviral responses in the COPD mouse model.
Targeting signaling pathways to induce in-
creased IFN production early in infection, or
the application of exogenous IFN, can improve
the antiviral response and may improve re-
sponses in other high-risk states as well (Hsu
et al. 2015, 2017). Further, blocking the cytokine
and chemokine signals that heighten NK cell
and neutrophilic inflammation constrain aber-
rant inflammation and preserve lung function
(Botelho et al. 2011; Sichelstiel et al. 2014).

Chronic, Genetic, and Infectious Diseases

Although influenza virus infection is typically
self-limiting, in those with chronic disease se-
vere sequalae can arise (WHO 2018). Type II
diabetes and metabolic syndrome are known
risk factors for severe influenza virus disease
(Allard et al. 2010) and are prevalent among
obese individuals. Type II diabetes results in in-
creased susceptibility to influenza infection as
shown by a lower lethal dose-50 and greater
morbidity on infection in diabetic mice (Ito
et al. 2015). Further, type I diabetics also suffer
greater disease, and models of autoimmune di-
abetes show higher viral titers correlating with
blood glucose levels and impaired viral clear-
ance (Huo et al. 2017). (The impact of type I
and type II diabetes on influenza severity is fur-
ther reviewed in Hulme et al. 2017.)

Cystic fibrosis (CF) is one of the most-stud-
ied genetic disorders that impacts influenza
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pathogenesis, as it increases susceptibility to in-
fluenza infection while also increasing CF com-
plications (Conway et al. 1992; Renk et al. 2014).
Cell culture models of the CF human respira-
tory epithelium report reduced antiviral gene
induction early on in infection, but heightened
inflammatory gene responses late in infection,
contributing to the same pathology seen in
mouse models (Xu et al. 2006). As influenza in-
fection can result in lung edema and pulmonary
fluid imbalance, the CF-related impairments in
ion flux and fluid balance are exacerbated (Wolk
et al. 2008; Brand et al. 2018). Interestingly, CF
transmembrane conductance regulator gene
heterozygotic mice have improved outcomes
postinfection, including reduced acute lung in-
jury, because of increased TGF-β-induced IL-6
production and stimulation of alveolar macro-
phages (Aeffner et al. 2013; Woods et al. 2015).
Murinemodels of other genetic diseases, includ-
ing sickle cell and neurodevelopmental disor-
ders, display increased disease severity and
blunted antiviral immunity, thus supporting
the higher burdens and increased morbidity re-
ported in clinical and epidemiological studies
(Bundy et al. 2010; Strouse et al. 2010; Centers
forDiseaseControl andPrevention2012;Burton
et al. 2014; Cronk et al. 2017; Karlsson et al.
2017b).

Underlying co-infections may also play into
poor immune responses during influenza infec-
tions (Thompson et al. 2012; Sansonetti et al.
2014). Mycobacterium tuberculosis infection is
a leading cause of morbidity and mortality
worldwide, with increased risks of death in those
coinfected with influenza virus (Walaza et al.
2015). In mouse models, earlier exposure to in-
fluenza virus increases mycobacterial growth
and decreases survival caused by enhanced an-
tiviral type I IFN signaling that diminishes the
IFN-γ signaling crucial for mycobacterial con-
trol (Manca et al. 2005; Redford et al. 2014).
Concurrent influenza infections are common
in those already burdened with mycobacteria
and may diminish IFN-γ-dependent CD8+ T-
cell responses needed to clear the bacterium
and increase IL-10 levels (Flórido et al. 2013;
Ring et al. 2019). Improved mycobacterial clear-
ance during influenza coinfection is achieved by

blocking IL-10 receptor signaling (Ring et al.
2019). In HIV-infected hosts, other comorbidi-
ties drive increased susceptibility to influenza
infection (Sheth et al. 2011; González Álvarez
et al. 2016). Age, nutritional status, intravenous
drug use, and CSE can all impact susceptibility
to influenza virus infection and disease severity
in the HIV-positive population (Sheth et al.
2011; Short et al. 2018).

PROTECTING HIGH-RISK POPULATIONS

Seasonal vaccination remains the safest and
most efficacious way to prevent influenza infec-
tion and reduce disease severity, although not all
hosts respond adequately to these preventative
measures (Kennedy et al. 2012; Green and Beck
2017; Zerbo et al. 2017; Dhakal and Klein 2019).
Because of the altered immune system in obese
models, it is not surprising that the influenza
vaccine is less efficacious in obese individuals
(Neidich et al. 2017). Genetically obese mice
vaccinated both with and without adjuvant
were not protected against homologous viral
challenge (Karlsson et al. 2016). Although the
addition of adjuvant improves seroconversion
in genetically obese animals, the breadth and
magnitude of the antibody responses to HA
and NA proteins are decreased, with no discern-
ible impact from increasing antigen amount
(Karlsson et al. 2016). The antibody response
to influenza vaccination also declines faster in
DIOmice versus lean controls. By 3 wk postvac-
cination, antibody titers diminish in obese mice,
whereas they continue to increase in lean mice
(Cho et al. 2016). Influenza vaccination has no
effect on mortality during secondary bacterial
infection, although survival could be improved
by treating obese mice with β-lactam (Karlsson
et al. 2017a). Passive antibody transfer using sera
from lean mice also fails to protect obese mice,
suggesting the obese host response may be more
important than antibody protection (Karlsson
et al. 2016). In mice that model type II diabetes,
vaccination is shown to be effective (Sheridan
et al. 2015), and type I diabetic mice show pro-
tection from viral challenge after vaccination
with multiple-dose or high-dose vaccines (Zhu
et al. 2005; Wu et al. 2010; Kreuzer et al. 2015).
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Vaccination is efficacious during pregnancy
and can also safely protect the neonate (Beigi
et al. 2009; Kennedy et al. 2012). Immunization
during later gestational periods shows higher
maternal immune activation and transmission
to the fetus, but quicker antibody waning in the
mother versus vaccination during the first or
second trimester (Cuningham et al. 2019). For
the fetus and neonate, passive transfer of anti-
bodies via placenta or in breast milk can be pro-
tective; however, maternal vaccination during
early pregnancy may wane and be ineffective
in the neonate (Reuman et al. 1983; Mbawuike
et al. 1990; Honda-Okubo et al. 2014; van der
Lubbe et al. 2017; Cuningham et al. 2019). The
benefits of maternal vaccination on fetal and
neonatal survival is also evident for H5N1 vac-
cination and challenge in mice, highlighting the
benefits of breastfeeding for influenza-infected
neonates and the uptake of vaccines in the preg-
nant cohort (Beigi et al. 2009; Satpathy et al.
2009; Hwang et al. 2010; Steinhoff et al. 2010;
Christian et al. 2017). After infection, adminis-
tration of antivirals can reduce disease severity
and limit the duration of infection, with early
administration crucial for the pregnant host
(Siston et al. 2010; Centers for Disease Control
and Prevention 2011). Unlikewhat was reported
in clinical trials, pregnant women may have in-
creased clearance of peramivir (Clay et al. 2011),
stressing the need for inclusion of pregnant
women in more clinical trials and the use of
pregnant animal models to study the pharma-
cokinetics and efficacy of other antivirals.

Because of the differences in influenza virus
immunity and disease severity between age
groups, there are age-specific influenza vaccina-
tion recommendations worldwide. Because of
their short immune history, young children (6
mo to 8 yr of age) in the United States are rec-
ommended to receive 1–2 doses of influenza
vaccine annually (Neuzil et al. 2006; Campbell
and Grohskopf 2018; Dhakal and Klein 2019).
In the United States and other select countries, a
high-dose influenza vaccine is available for
those individuals ≥65 yr old. This recommen-
dation is supported by observations that aged
mice require higher antigen doses to elicit im-
mune responses comparable to younger mice

because of immunosenescence (Yam et al.
2016). Despite the important role of biological
sex on influenza virus immunity and disease
described above, sex differences in vaccine effi-
cacy decrease in aged mice (Potluri et al. 2019).
Furthermore, the live-attenuated influenza
vaccine is not recommended for individuals
<2-yr-old or >49-yr-old because of their higher
susceptibility to severe influenza virus disease
(Grohskopf et al. 2018). (The role of host factors
in influenza virus vaccination efficacy is further
reviewed in Dhakal and Klein 2019.)

Vaccination proves effective in mice with
allergic airway disease (Jian et al. 2013), but
there are limited animal studies defining how
other comorbidities impact both vaccination ef-
ficacy as well as antiviral efficacy. Further study
on vaccination efficacy caused by the underlying
coinfections and chronic genetic disorders, as
well as understanding the dynamics of all in-
fluenza antiviral classes in high-risk hosts, is of
exceeding importance; however, appropriate an-
imal models must be developed to answer these
targeted questions.

CONCLUDING REMARKS

Differing influenza pathogenesis in comorbid
states and across the life span highlights the
need for a carefully controlled and appropriately
timed immune response to clear the virus and
maintain airway integrity. The severity of an
influenza virus infection represents a complex
interplay between host and viral factors. How-
ever, as the number of people living with one or
more comorbidity continues to increase, the role
of host factors in influenza virus pathogenesis
becomes ever more important (Fig. 3). Animal
models of disease represent a powerful tool to
understand and ultimately prevent severe influ-
enza in vulnerable patient groups. Each animal
model has limitations and caveats, but contin-
ued investigation into influenza infections in
animal models of high-risk hosts represent an
important first step toward reducing the burden
of influenza in the twenty-first century. With
increasing demands for universal influenza vac-
cines, the availability of such animal models will
help ensure that any novel vaccine candidate is
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efficacious not only in healthy adults but also in
those populations most at risk of severe influen-
za (Erbelding et al. 2018; Henry et al. 2018).
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