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Migratory waterfowl of the world are the natural reservoirs of influenza viruses of all known subtypes. However, it is
unknown whether these waterfowl perpetuate highly pathogenic (HP) H5 and H7 avian influenza viruses. Here we
report influenza virus surveillance from 2001 to 2006 in wild ducks in Alberta, Canada, and in shorebirds and gulls at
Delaware Bay (New Jersey), United States, and examine the frequency of exchange of influenza viruses between the
Eurasian and American virus clades, or superfamilies. Influenza viruses belonging to each of the subtypes H1 through
H13 and N1 through N9 were detected in these waterfowl, but H14 and H15 were not found. Viruses of the HP Asian
H5N1 subtypes were not detected, and serologic studies in adult mallard ducks provided no evidence of their
circulation. The recently described H16 subtype of influenza viruses was detected in American shorebirds and gulls but
not in ducks. We also found an unusual cluster of H7N3 influenza viruses in shorebirds and gulls that was able to
replicate well in chickens and kill chicken embryos. Genetic analysis of 6,767 avian influenza gene segments and 248
complete avian influenza viruses supported the notion that the exchange of entire influenza viruses between the
Eurasian and American clades does not occur frequently. Overall, the available evidence does not support the
perpetuation of HP H5N1 influenza in migratory birds and suggests that the introduction of HP Asian H5N1 to the
Americas by migratory birds is likely to be a rare event.
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Introduction

Long-term surveillance of influenza in migratory waterfowl
in North America [1–4] from 1976 to the present and more
intensive surveillance in Europe from 1998 to the present
[5,6] have established the importance of Anseriformes (water-
fowl) and Charadriiformes (gull and shorebird) in the
perpetuation of all known subtypes of influenza A viruses.
The available evidence suggests that each of the 16
hemagglutinin (HA) and nine neuraminidase (NA) subtype
combinations exist in harmony with their natural hosts, cause
no overt disease, and are shed predominantly in the feces.
Although highly pathogenic (HP) influenza viruses have
occasionally been isolated from wild migratory birds, includ-
ing H5N3 A/Tern/South Africa/61 [7] and H7N1 from an
outbreak of HP avian influenza in Italy in 1999–2000 [8], the
usual finding is that each of the HP H5 and H7 lineages that
emerge in gallinaceous poultry originate from different
nonpathogenic precursors—e.g., A/Chicken/Pennsylvania/83
(H5N2) [9], A/Chicken/Mexico/94 (H5N2) [10], A/Chicken/
Netherlands/2003 (H7N7) [11], and A/Chicken/Canada/2004
(H7N3) [12].

There has been overall agreement between the findings of
various influenza surveillance studies in migratory birds in
regard to the role the birds play in the emergence of
pandemics in humans, lower animals, and domestic poultry.
The only significant difference between the findings for
influenza surveillance in aquatic birds in the Americas and in
Europe is the role of shorebirds; in Europe, influenza viruses
to date have rarely been isolated from shorebirds, while in the

Americas, the available evidence supports the notion that
shorebirds carry influenza viruses during their migration
from South America to their North American breeding
grounds each May. Our earlier studies also showed that
shorebirds and gulls in the Americas are more frequently the
source of the potential precursors to HP H5 and H7 avian
influenza viruses [3], while in Eurasia, the precursors of HP
influenza viruses are usually from duck species [13,14].
An important unanswered question is how often the

influenza viruses in wild migratory birds in Eurasia spread
to the Americas and establish lineages on that continent, and
vice versa. This is currently a question of great concern to
both veterinary and public health officials in the Americas.
The continuing circulation of the Asian HP H5N1 in several
countries in Eurasia and the reemergence in the winter of
2006–2007 of HP H5N1 in South Korea, Japan, Thailand,
Vietnam, and China supports the contention that this H5N1
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virus is being perpetuated in this region. One of the many
unanswered questions is whether the HP avian H5N1 virus is
being perpetuated in domestic poultry or in wild bird species.

Examination of the global migratory pathways of migratory
waterfowl shows overlaps between eastern Eurasia and Alaska
and between Europe and eastern North America [15]. This
leads to the question of why the HP H5N1 viruses have not
arrived in the Americas. Phylogenetic analysis of influenza
viruses from migrating birds generally divides them into two
large polyphyletic clades or superfamilies: one in Eurasia, the
other in the Americas [6,16–18]. Whereas most of the known
subtypes of influenza A viruses have been detected in each
hemisphere, the rarely isolated H14 and H15 subtypes have,
to date, been detected only in Eurasia. While influenza viruses
or gene segments have been shown to exchange between parts
of Eurasia and the Americas [19–24], the frequency of
exchange of all eight gene segments of influenza viruses is
unknown. However, based on the clear phylogenetic separa-
tion into two superfamilies [25], it might be predicted that the
exchange of whole influenza viruses would be infrequent.
Here, we utilize the genomic information from 248 complete
influenza virus sequences and 6,767 gene segments [26] to
estimate how often this occurs.

In our studies of influenza surveillance in wild ducks in
Alberta, Canada, and in shorebirds and gulls at Delaware Bay
(New Jersey), United States, between 2001 and 2006, we
confirmed the presence of the H16 subtype in the Americas
and the presence of a high frequency of infection of H7N3
viruses from shorebirds and gulls. We continued to detect H1
through H13 HA subtypes and N1 through N9 subtypes of NA
but not H14 or H15 in ducks, shorebirds, or gulls. We found
no virologic evidence of the HP H5N1 virus in ducks,
shorebirds, or gulls or serologic evidence in ducks sampled

in Alberta. Our genomic analysis of the full sequence of 248
influenza genomes showed no viruses whose entire genome
transferred between the two hemispheres. The size of our
complete-genome virus data set, however, may be too small to
detect a transferred virus before it had opportunities to
reassort.

Results

Virus Isolation and Prevalence
The rapid spread of HP H5N1 influenza from Qinghai

Lake, China, to Europe and Africa raised the possibility that
migratory birds were involved [15]. The reemergence of HP
H5N1 influenza virus in domestic poultry in Japan, South
Korea, and Thailand in January 2007 after successful
eradication of these viruses in 2003 and 2004 raised the
question of the mode of spread and raised the level of
concern for further spread of these viruses. To determine the
prevalence of different subtypes of influenza A viruses at two
sites in North America, virologic surveillance was done in
wild ducks in Alberta and in shorebirds and gulls at Delaware
Bay from 2001 through 2006. Prospective surveillance has
been done for the past 30 years in wild ducks in Alberta and
for 21 years in shorebirds and gulls at Delaware Bay. During
the five years of our study, 590 cloacal samples from wild
ducks yielded 98 influenza A viruses (isolation rate, 16.6%),
while 1970 fecal samples from shorebirds and gulls yielded
114 influenza A isolates (isolation rate, 5.8%). Antigenic
analysis of the influenza virus isolates from ducks, shorebirds,
and gulls established the continuing circulation of HA
subtypes H1 through H13 and NA subtypes N1 through N9
(Figure 1). We also report the isolation of the newly
characterized H16 subtype in shorebirds. Subtypes H2, H4,
and H8 were identified only in ducks, while subtypes H5, H13,
H16, and N2 were recovered only from shorebirds and gulls.
Subtypes that occurred in both ducks and shorebirds, but

with much higher prevalence in shorebirds, were H9, H11,
H12, and N9. In contrast, although they were recovered from
both ducks and shorebirds, N1, N4, and N6 were more
prevalent in ducks.
Five HA subtypes accounted for 75% of the isolates found

in shorebirds: H1 (19.5%), H10 (17.5%), H9 (13.5%), H3
(12.4%), and H7 (11.6%), whereas four HA subtypes
represented 82% of the viruses identified in ducks: H1
(24.0%), H4 (24.0%), H10 (17.7%), and H3 (16.7%). For the
NA subtypes in shorebirds, the N7 (24.7%) and N9 (24.3%)
isolates were dominant, and for ducks, N4 (25.0%) and N6
(25.0%) were the most prevalent subtypes. We isolated only
three H5 viruses, all of which came from shorebirds in 2004
and were paired with either N7 or N8. We identified a total of
49 HA and NA subtypes (out of a possible 144), with 25
subtypes being found in ducks and 31 subtypes being found in
shorebirds. There were 17 subtypes that were isolated only
from ducks and 24 subtypes that were recovered only from
shorebirds. The most highly represented subtypes found in
ducks were H4N6 (21.9%), H1N4 (18.8%), and H10N7
(16.7%), and the most numerous subtypes identified in
shorebirds were H10N7 (17.5%), H1N9 (15.1%), and H7N3
(19.8%). No H5N1 was detected during the study period.
The isolation of high numbers of H7N3 influenza viruses

from gulls and shorebirds in May 2006 was different from the
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Author Summary

Influenza surveillance in wild migratory birds has been done at two
sites in North America: 1) in Alberta, Canada, for the past 31 years,
and 2) along Delaware Bay, United States, for the past 22 years.
These studies support the concept that wild migratory birds are the
reservoirs of all influenza A viruses and that the influenza viruses in
the world can be divided into two distinct superfamilies, one in
Eurasia and the other in the Americas. From time to time these
viruses spread to domestic poultry and to humans and cause
pandemics of disease. Many investigators have expanded these
studies particularly in Europe, Asia, and the Americas. The
emergence of highly pathogenic H5N1 in Asia a decade ago and
the continuing evolution and spread of these H5N1 viruses to the
whole of Eurasia is a continuing problem for veterinary and human
public health. The available evidence from Eurasia is that migratory
birds can be infected and may be involved in local spread of the
highly pathogenic H5N1 virus. The question addressed in the
present study is why the highly pathogenic H5N1 influenza virus has
not yet reached the Americas despite the overlap in migratory bird
pathways, particularly in Alaska. Genomic analysis of influenza
viruses from our repository failed to provide evidence of influenza
viruses with their whole genome originating from Eurasia. However,
we found occasional influenza viruses from North America with
single or multiple genes that originated in Eurasia. Our interpreta-
tion is that while influenza viruses do exchange between the two
hemispheres, this is a rare occurrence. Regardless, enhanced
surveillance should be continued in the Americas in case this rare
event occurs.



results of previous years. These H7N3 viruses are examined in
more detail below.

Serologic Surveillance
To determine the prevalence of infection of wild ducks

with the influenza viruses that are considered more likely to
cause a pandemic in domestic fowl or in humans, hemag-
glutination inhibition (HI) studies were done with H5, H6,
H7, and H9 influenza viruses (Table 1). The influenza viruses
chosen for use were those that were of current relevance in
Asia and the Americas. Low levels of HI antibodies to each of
the viruses tested were detected each year with an overall
higher rate of detection of H9 followed by H5, H6, and H7
antibodies. Most positive sera reacted with HI titers of 1/10 to
1/20, indicating that the birds were probably infected with a
virus of the homologous subtype but probably not with
viruses identical to those used in the test. Studies done yearly
from 2004 through 2006 on adult ducks showed no trend
toward higher numbers of birds infected with H5, H6, H7, or
H9. Thus, serologic studies confirmed the continued circu-
lation of each of the influenza subtypes.

The H16 Influenza Viruses from North America
A new subtype of influenza A viruses from black-headed

gulls in Sweden was recently characterized and designated A/
Black-headed gull/Sweden/2/99 (H16N3) [27]. Large-scale
sequence analysis of avian influenza viruses [26] established

that viruses of the H16 subtype are present in the American
superfamily. The first of these viruses, A/Black-legged
Kittiwake/Alaska/295/75 (H16N3), was isolated in 1975, and
later isolates were detected in shorebirds in 1986 and in
herring gulls in 1988.
In our study, three H16N3 influenza viruses (A/Shorebird/

DE/168/06, A/Shorebird/DE/172/06, and A/Shorebird/DE/195/
06) were isolated from shorebirds. No H16 viruses were
detected in samples from duck species. Phylogenetic analysis
showed that the HA of these viruses could be divided into two
subgroups, one from Europe and the other from North
America (Figure 2). It is noteworthy that A/Black-headed gull/
Sweden/5/99 (H16N3) grouped with the North American H16
isolates, suggesting a possible transfer between North
America and Europe. However, it is not possible to determine
if the HA gene originated in North America or Europe.
Antigenic analysis of the H16 influenza virus isolates from

North America with postinfection ferret sera (Table 2)
showed that the viruses were antigenically distinguishable;
two of the current H16 isolates (SB/DE/172/06 and SB/DE/195/
06) were indistinguishable from each other, but the SB/DE/
168/06 and BHG/Sweden/5/99 reacted to 4-fold lower HI titers
(1/80 versus 1/320). The H16N3 isolate from 1975 also reacted
to a titer of 1/80, while the 1986 and 1988 viruses reacted to a
titer of 1/40. Thus, the H16 viruses showed antigenic and
genetic diversity in their natural hosts.

Figure 1. Comparison of the Frequencies of Influenza A Virus HA and NA Subtypes from Wild Ducks in Alberta, Canada, and Shorebirds in Delaware Bay

(New Jersey), United States

Frequency was determined for each group (i.e., wild ducks or shorebirds) as a percentage of the total number of positive isolates of a subtype per total
number of positive samples for that group.
doi:10.1371/journal.ppat.0030167.g001
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The H7N3 Viruses
Two H7N3 influenza viruses of the American superfamily

of influenza viruses have in the recent past evolved into HP
viruses. One of these HP H7N3 viruses occurred in Chile,
South America, A/Chicken/Chile/4322/02 (H7N3) [28]; the
other was in British Columbia, Canada, A/Chicken/British
Columbia/NS-2035–12/04 (H7N3) [12]. Each of these viruses
evolved from nonpathogenic H7N3 precursor viruses, and the
available evidence indicates they acquired the HP character-
istic by recombination; they inserted additional amino acids
at the cleavage site of the HA [29,30] from one of their other
gene segments.

In 2006, we isolated 24 H7N3, one H7N4, and one H7N5
influenza viruses from shorebirds and gulls at Delaware Bay.
Each of these viruses was passaged once in chicken eggs after
the initial egg isolation, produced high HA titers (1:640–
1:4,096), and 20 of the viruses killed the chicken embryos by
48 h after injection. To determine whether these viruses
could also cause death of chickens, the A/Laughing gull/DE/42/
06 (H7N3) isolate was inoculated into four young adult white
leghorn chickens intranasally, intratracheally, and intraocu-
larly with 108.75 egg infectious doses50 (EID50). The birds
showed no loss of appetite or disease signs; virus was
reisolated from tracheal or cloacal samples of three of the
four chickens (results not shown). The H7N3 isolate induced
high levels of HI antibodies in the inoculated chickens. In HI
tests using postinfection antiserum, the 26 H7 viruses were
antigenically homogeneous with HI titers mostly within 2-fold
of each other (1:160, 1:320, or 1:640). To further evaluate the
pathogenic potential of the viruses, two representative H7N3
isolates (A/Shorebird/DE/22/06 and A/Laughing gull/DE/42/06)
were inoculated intravenously with 108.5 and 108.75 EID50,
respectively, into ten chickens each to determine their
intravenous pathogenicity index (IVPI). Virus was detected
from the cloaca of all the birds on day 3 postinfection.
Although neither of the H7N3 viruses tested were HP, one
bird did die 7 d after inoculation with A/Laughing gull/DE/42/
06, and four of the birds were reported as lethargic with an
IVPI of 0.28. Tissue samples from the dead bird had modest
levels of virus in the pancreas (102.5 EID50/ml) and the highest
levels in the kidney (105 EID50/ml). No virus was detected in
samples from the brain, lung, heart, liver, or spleen of the
dead bird. Repassaging of the virus from the kidney into ten

chickens intravenously did not kill any of the birds. To
determine whether the virus isolated from the dead chicken
was capable of replicating in the absence of exogenous
trypsin, a characteristic of HP viruses, we performed a plaque
assay in MDCK cells with and without trypsin. Plaques were
produced only in the presence of trypsin, indicating that the
virus reisolated from the chicken could not be characterized
as possessing this trait of HP influenza viruses.
Phylogenetic analysis of the HA of the H7N3 viruses from

gulls and shorebirds at Delaware Bay in 2006 shows they
reside on a neighboring branch to that of the HP H7N3
viruses from chickens in British Columbia in 2004 (blue text,
Figure 3). Although the viruses were related to those found in
British Columbia, the connecting peptide of the HA of the
shorebird viruses had the typical sequence of a nonpatho-
genic H7 virus. Phylogenetic analysis of the internal genes
and the NA gene showed that all genes reside in the American
clade, and the PB2, PB1, NP, NA, M, and NS genes are located
on a branch adjacent to the HP H7N3 viruses from British
Columbia (Figure S1).
A BLAST search was performed to determine the similarity

of the shorebird and gull H7N3 viruses with the HP strains
isolated in British Columbia. Nucleotide identity was high—
93.8% to 98.9%—for all genes except PA, which had an
identity of 87.8%.
Even though these H7N3 viruses are classified as non-

pathogenic, they clearly have some potential for replication
in domestic chickens and have the unusual characteristic of
killing chicken embryos.

Exchange of Influenza Genes and Viruses between the
Major Continents
The detection of the HA of the H16 Swedish black-headed

gull influenza virus among the rarely identified H16 viruses
from North America (Figure 2) raised the question of the
frequency of influenza virus transfer between continents. To
investigate this, we examined the 6,767 genome segments of
influenza viruses from wild birds, described previously by
Obenauer et al. [26] (Table 3; Figures S2–S9). These viruses
were generally separable into two large polyphyletic clades,
one made up of viruses from the Americas, the other
composed of viruses from Eurasia (and including Australia
and Africa). In addition, we found a small number of viral
segments isolated in either the Americas or Eurasia that
clustered with strains from the opposing hemisphere (Table
S1). Any remote segment or paraphyletic clade of segments,
which clustered in the above manner, was termed as an
outsider event.
When the 6,767 influenza A gene segments were examined,

3,040 were found have been isolated in the Americas, while
3,727 were isolated in Eurasia (including Australia and Africa)
(Table 3). Among the 3,040 American segments, there were 32
total outsider events, encompassing 101 total segments (Table
S1), of which 30 were from Anseriformes (ducks) and 71 were
from Ciconiiformes (which for our phylogenetic analyses
included Charadriiforms [shorebirds and gulls]) isolated in
Eurasia. Among the 3,727 Eurasian clade segments, there
were 24 outsider events, encompassing 35 total segments, of
which 20 were from Anseriformes and 15 from Ciconiiformes
isolated in the Americas. Among the internal segments (PB1,
PB2, PA, NP, M, and NS) no outsiders were present in all six
segments (Table S1), indicating that, among the viruses

Table 1. Serologic Surveillance for Influenza Virus Infection of
Migratory Ducks, Alberta, Canada

2004 2005 2006 Total

Total tested 326 149 226 701

Total positivea 57 17 32 106

Frequency % 17.5 11.4 14.2 15.1

H5 antibody positiveb 17 5 19 41

H6 antibody positivec 27 6 5 38

H7 antibody positived 1 2 2 5

H9 antibody positivee 32 8 17 57

aSera having an HI titer �1:10 with H5, H6, H7, and/or H9 antigens.
brg-A/Hong Kong/213/2003 (H5N1) antigen.
cA/chicken/CA/1255T/2002 (H6N2) antigen.
drg-A/Canada/RV444/2004 (H7N3) antigen.
eA/duck/Hong Kong/Y280/97 (H9N2) antigen.
doi:10.1371/journal.ppat.0030167.t001
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examined, no entire viral genome from one clade was
detected in the other clade. However, the 24 outsider events
among the internal gene segments were detected in a non-
linked fashion. Outsider events involving American isolated
strains occurred most often with HA and PB1 genes (eight
and seven events, respectively). Fewer events involving
American strains were found with the remaining segments,
ranging from five events (PB2) to zero events (NP). In contrast
to the American outsider events found in Eurasian clades, the
detection of outsider Eurasian events in American clades was
lower. Eurasian virus outsider genes were only detected for
HA (ten events), NA (eight events), PA (three events) and NP
(three events). The overall more frequent detection of the HA
and NA outsider events probably reflects the ability of these
genes to exchange by reassortment and to be maintained in

the population, presumably after the rare occurrence of an
exchange of entire viruses between the continents. Thus,
there does not appear to be a restriction on compatibility of
the HA and NA genes between the two superfamilies. When
the internal genes were compared, PB2, PB1, M, and NS
showed marked differences in the number of outsider
segments detected in American clades compared to the
number of outsider segments found in Eurasian clades. None
of these segments were identified as outsiders in the
American clades; however, the Eurasian clades had seven
PB1 American wild bird outsiders while PB2 had five, M had
three, and NS had four.
When the two types of aquatic birds were compared, the

Ciconiiformes (shorebirds and gulls) more frequently con-
tained outsider gene segments than the Anseriformes (ducks).

Figure 2. Phylogenetic Tree for the HA Gene (Nucleotides 35–1729) of H13 and H16 Influenza A Viruses

The nucleotide sequences were analyzed by PHYLIP 3.66 software [41] using the neighbor-joining method with 100 bootstraps. The tree was rooted
with the A/Duck/Memphis/546/74 (H11) HA sequence.
doi:10.1371/journal.ppat.0030167.g002
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Among all the Ciconiiformes (n ¼ 728), 9.8% of American
virus gene segments were detected in Eurasian clades, and
2.1% of Eurasian virus gene segments resided in American
clades. The frequency of outsider segments among all
Anseriformes (n ¼ 3,436), however, was similar across both
hemispheres: 0.87% of the outsider segments were isolated in
the Americas, whereas 0.58% were isolated in Eurasia. These
figures represent the relative frequency of detection of
outsider gene segments in either the Eurasian or American
clades, but they do not give a measure of the frequency of
exchange of the entire virus (all eight segments) between
continents. In our studies, we failed to detect any complete
genome exchanges among the 248 viruses examined (Table
S2). Thus, the frequency of exchange was less than 0.6%.

Discussion

Virologic surveillance of apparently healthy birds has
established that the waterfowl of the world are the natural
reservoirs of all known influenza A viruses. The Anseriformes
(waterfowl) and Charadriiformes (shorebirds and gulls) are
the major reservoirs in which the 16 HA and nine NA
subtypes are perpetuated. However, a wide range of birds can
support limited replication but do not perpetuate influenza
A viruses.

In this study, we characterized the H16 influenza viruses
from the Americas that were first described in Europe in 2004
[27] and found an unusually high frequency of H7N3
influenza viruses from shorebirds and gulls at Delaware Bay
in 2006. Despite virologic and serologic surveillance in
migratory waterfowl, no evidence of the Asian HP H5N1
influenza virus was found. Continued prospective surveil-
lance at two sites—one in Alberta for ducks and another at
Delaware Bay for shorebirds and gulls—established the
continued circulation of HA subtypes H1 through H13 and
H16 and all nine NA subtypes. However, the rare H14 and
H15 subtypes were not detected.

One frequently mentioned possibility is that wild migratory
birds from Eurasia will carry the Asian HP H5N1 to the

Americas. There are several articles describing the detection
of influenza viruses belonging to Eurasian phylogenetic clades
in the Americas and vice versa [19–24]. Each of these studies
has been based on analysis of single genes (e.g., the HA, M,
etc.). To date, we know of no study that has investigated the
spread between the continents of entire influenza genomes
containing all eight segments. In this study, we examined
6,767 individual gene segments and 248 entire influenza
genomes. Phylogenetic analysis supported the contention
that the influenza viruses are clearly separable into distinct
Eurasian and American superfamilies [6,16–18,20]. We
measured the frequencies of gene segments belonging to
one superfamily occurring among influenza virus isolates in
the other superfamily, defined here as outsider events, and
found low frequencies of inter-hemispheric gene transfer.
The rates varied according to gene segment, ranging from
0.25% for M (three outsider events seen among 1,187
sequences) to 1.77% for HA (18 events among 1,014
sequences). Our analysis of entire influenza genomes con-
taining all eight gene segments revealed no detectable whole-
genome transfers between superfamilies among the 248
viruses examined. After such an event occurs, there are
relatively frequent reassortment events involving the surface
glycoprotein genes (HA and NA), implying that there is no
restriction in compatibility between the internal genes of one
superfamily and the surface glycoproteins of the other
superfamily. The internal genes are exchanged at a lower
frequency and maintained, but there are no obvious patterns
implying linkage of genes. Based on these studies, it is more
likely that the Asian H5N1 viruses will be imported into the
Americas with birds moved legally or illegally by humans. The
available evidence is that at least one of the introductions of
Asian HP H5N1 into Nigeria was with poultry that was
imported either alive or frozen [31].
The recent introduction of HP H5N2 of American lineage

into Japan indicates another mechanism for moving influenza
virus between continents. The close genetic similarity
between the HP H5N2 and the vaccine strain of H5N2 used
in poultry in Central America suggest that this virus was
transferred with smuggled vaccine [32]. Japan has a strict ban
on the use of agricultural vaccines, yet the HP H5N2 of
American lineage was introduced into Japan and caused
lethal disease in poultry. Whether this originated from
improperly inactivated vaccine or from contaminated vac-
cine is unknown.
The earliest H16 in the repository at St. Jude Children’s

Research Hospital is A/Kittiwake/Alaska/295/75 (H16N3),
indicating that this virus has been in the Americas for a
considerable period. It is notable that an H16 virus from a
black-headed gull in Sweden is included in the American
phylogenetic lineage, indicating transfer of the HA between
continents. To date, the H16 viruses have been isolated only
from gulls and shorebirds but not from ducks. The H16
viruses have shown limited antigenic drift from 1975 to 2006
and, to date, have not been associated with disease in any
species.
The detection of a cluster of H7N3 influenza viruses in

shorebirds in May 2006 was not found in previous years and
raises questions about the propensity of these H7N3 viruses
to replicate well in gallinaceous poultry and kill chicken
embryos. In experiments using four H7N3 influenza viruses
isolated from shorebirds and wild ducks between 1977 and

Table 2. Antigenic Analysis of H16N3 Influenza Viruses with
Ferret Antisera

Viruses HI Titer of Postinfection

Ferret Antiserum to:

SB/DE/172/06 Gull/MD/704/77

(H13)

A/Laughing gull/DE/2635/87 H13N2 , 1,280

A/Shorebird/DE/168/06 H16N3 80 ,

A/Shorebird /DE/172/06 H16N3 320 ,

A/Shorebird /DE/195/06 H16N3 320 ,

A/Herring gull/DE/712/88 H16N3 40 ,

A/ Shorebird/DE/840/86 H16N3 40 ,

A/Black-headed

gull/Sweden/5/99 H16N3

80 ,

A/Black-legged

Kittiwake/AK/295/75 H16N3

80 ,

,, HI antibody titer less than 1:40.
The HI titer for the homologous virus and antiserum is indicated by the bold/underline.
doi:10.1371/journal.ppat.0030167.t002
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Figure 3. Phylogenetic Tree for the HA-1 Gene (Nucleotides 76–1026) of H7 Influenza A Viruses

The nucleotide sequences were analyzed by PHYLIP software, version 3.66 [41], using the neighbor-joining method with 100 bootstraps. The tree was
rooted with the A/Equine/London/1416/73 HA sequence.
doi:10.1371/journal.ppat.0030167.g003
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2000, little or no replication of virus was observed in
experimentally infected chickens. In contrast, most of the
H7N3 viruses used in our study replicated to high titers after
oral inoculation in chickens, and 20 of the 24 viruses killed
chicken embryos.

Phylogenetic analyses and sequence homologies of the
genome of this cluster of H7N3 isolates showed that these
viruses are closely related to the H7N3 influenza strain
isolated from poultry in British Columbia in 2004. Taken
together, the data indicate the potential of these H7N3
viruses to replicate in domestic chickens and underline the
importance of biosecurity in commercial poultry raising and
the need to keep such influenza viruses out of commercial
poultry so they do not have the opportunity to evolve into HP
strains.

The continued reemergence of HP H5N1 influenza viruses
from the hypothetical epicenter in Guangdong Province,
China [33,34], over the past ten years raises the question of
whether the HP Asian H5N1 viruses are being perpetuated in
wild birds. Surveillance in migratory waterfowl does show
that many species will support the replication of the HP
H5N1 viruses [35]; however, to date there is no evidence that
the Asian HP H5N1 viruses are being perpetuated in
migratory waterfowl. Although the spread of HP H5N1
viruses from Qinghai Lake, China, to central Asia and Europe
has been attributed to migratory birds [15], there is no
evidence that the HP H5N1 viruses are being perpetuated in
migratory waterfowl.

Although the number of samples collected per year from
migratory ducks in Alberta and shorebirds and gulls at
Delaware Bay are rather modest, they do support the findings
of the recent extensive surveillance done by the Canadian
Cooperative Wildlife Health Center [36] and by the United
States Geological Survey [37]. Surveillance studies in more
than 100,000 wild birds have provided support for the
contentions that (1) waterfowl are a major reservoir of
influenza viruses; (2) low-pathogenic H5 influenza viruses are
present in these wild birds; and (3) the HP H7 viruses
previously found in Canada were not detected. Similarly,
studies done over the 30 years of influenza virus surveillance
in wild birds [3] in the Americas found no evidence for the
perpetuation of HP H5 or H7 influenza viruses in migratory
birds.

The available evidence suggests that the perpetuation of
HP H5N1 Asian influenza viruses occurs through domestic
waterfowl [33,38]. In the cooler months of the year, the virus

load in the infected but apparently healthy domestic water-
fowl spills over into both migratory waterfowl and gallina-
ceous poultry flocks and reignites the spread of HP H5N1
viruses. There is still a paucity of surveillance data from
migratory birds in Asia, but the extensive surveillance of
migratory waterfowl in Europe [6] does not support the
hypothesis that wild migratory birds are perpetuating the
Asian HP H5N1 virus. Thus, the above studies on the low
frequency of exchange of entire influenza virus genomes of
nonpathogenic influenza viruses between Eurasia and the
Americas, plus the absence of evidence of HP H5N1 virus
perpetuation in the influenza viruses found in migratory
waterfowl, make the probability of introduction of HP H5N1
into the Americas by migratory birds an unlikely event.

Materials and Methods

Sample collection and viruses. During 2001–2006, influenza
surveillance in wild ducks that began in Alberta in 1976 was
continued. During the same years, surveillance studies that were
initiated in 1985 in shorebirds migrating through Delaware Bay were
continued annually. Collection sites, collection of specimens, virus
isolation, and characterization of the isolates have been described
previously [3,4]. The A/Black-headed gull/Sweden/5/99 H16N3 virus
used in this study was kindly provided by A. D. M. E. Osterhaus,
Erasmus Medical Center, Rotterdam, The Netherlands.

Duck serology. Healthy adult wild ducks, captured in Alberta by
the Canadian Wildlife Service for banding and tracking migration,
were bled in the field to obtain 3–4 ml of blood from each duck and
were released. Blood was clotted in serologic tubes overnight at room
temperature to separate the serum, and the serum was transferred by
pipette to cryovials and stored in liquid nitrogen for shipment. In
2004, 326 serum samples were collected; in 2005, 149 serum samples
were collected; and in 2006, 226 serum samples were collected. All
sera were treated with receptor destroying enzyme overnight at 37 8C,
inactivated at 56 8C for 30 min, and diluted 1:10 before antigenic
testing. Sera were screened by HI test as previously described by
Palmer [39] for antibodies to four subtypes of influenza antigen:
H5N1, H6N2, H7N1, and H9N2. The representative viruses for each
respective subtype were as follows: rg-A/Hong Kong/213/2003 (H5N1),
A/Chicken/CA/1255T/2002 (H6N2), rg-A/Canada/RV444/2004 (H7N1),
and A/Duck/Hong Kong/Y280/1997 (H9N2).

Phylogenetic analysis. H7N3 and H16N3 phylogenies. Gene sequences
used for construction of phylogenetic trees were either obtained
from the Los Alamos Influenza Sequence Database or from samples
used in this study. The sequences were then aligned, and the ends
were trimmed to equal lengths using BioEdit sequence alignment
editor software, version 7.0.5 [40]. The neighbor-joining algorithm
was applied using PHYLIP software, version 3.66 [41] and 100
bootstrap replicates. The H16N3 tree was rooted using an HA
segment isolated from a distantly related H11 strain as an outgroup,
whereas the H7N3 tree was rooted using an HA segment isolated
from an equine host as its outgroup. The final tree outfile was
visualized using TreeView Win32 software [42].

Table 3. Frequency of Detection of Outsider Events

PB1 PB2 PA HA NP NA M NS Total

Events

Frequency of Outsider

Events by Region

(Events/Segment)

American events in Eurasian clades 7 5 2 8 0 3 3 4 32 1.05%

Eurasian events in American clades 0 0 3 10 3 8 0 0 24 0.64%

Total outsider events 7 5 5 18 3 11 3 4 56

Frequency of outsider events (events/segment) 1.25% 0.85% 0.85% 1.77% 0.44% 1.24% 0.25% 0.32% 0.83%

Total American segments 281 299 280 328 323 367 543 619 3,040

Total Eurasian segments 279 287 305 686 362 516 644 648 3,727

Total segments analyzed 560 586 585 1,014 685 883 1,187 1,269 6,767

doi:10.1371/journal.ppat.0030167.t003
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Outsider analyses. Two sets of phylogenetic trees were constructed
using previously described methods [26] to infer the relationships
among individual avian flu gene segments. The initial set analyzed a
total of 6,767 segments (560 PB1, 586 PB2, 585 PA, 1014 HA, 685 NP,
883 NA, 1187 M, and 1267 NS) that were deposited in GenBank
through April 2006 (Figures S2–S9). The second set of trees included
248 complete flu genomes, deposited into GenBank through February
2007 (Figures S10–S17). Any segment that was subsequently deter-
mined to be a duplicate sequence (as determined by strain name
[Table S3]), isolated from domesticated fowl (Galliformes) or
obtained from a non-avian source (e.g., blow fly or human) was
excluded from further analyses. An outsider event was determined to
have occurred if a strain isolated in one hemisphere was found to be
clustered with a majority of strains from the opposing hemisphere. In
the event that several closely related strains formed a clade within the
strains from the opposing hemisphere, a single outsider event was
determined to have occurred (Table S4). The 136 segments involved
in the 56 outsider events, found in this study, represent 100 viral
strains (Table S1). Only 68 of those strains represent cases where only
a single segment underwent viral transfer; all of the segments,
however, were considered for outsider analyses. Two large poly-
phyletic clades, containing either isolates from the Western Hemi-
sphere or isolates from the Eastern Hemisphere, were generally
identified for each gene segment. The exception to this was with HA
and NA genes. Within both of these genes there are distinct amino
acid sequences, which result in phylogenetically distinct subtypes.
Since there were several cases in which certain subtypes of these
genes were infrequently sequenced, it was decided that individual
subtypes needed to be examined to avoid terming these infrequent
sequences as outsider events (Table S5). In addition to grouping
outsider events by gene segment, strains were additionally grouped by
bird order. Eight known orders of wild birds were identified based on
virus name, with unidentifiable birds grouped as ‘‘undetermined.’’
Because the orders Anseriformes and Ciconiiformes represent the
source of the samples collected for virus isolation in this study, we
selected those orders for more detailed analysis.
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and NS, 41–859.
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Figure S2. PB2 Phylogenetic Tree Used in the Outsider Analysis of
6,767 Avian Influenza A Virus Gene Segments
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Figure S6. NP Phylogenetic Tree Used in the Outsider Analysis of
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Figure S7. NA Phylogenetic Tree Used in the Outsider Analysis of
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Figure S8. M Phylogenetic Tree Used in the Outsider Analysis of
6,767 Avian Influenza A Virus Gene Segments
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Figure S9. NS Phylogenetic Tree Used in the Outsider Analysis of
6,767 Avian Influenza A Virus Gene Segments

Found at doi:10.1371/journal.ppat.0030167.sg009 (3.2 MB PDF).

Figure S10. PB2 Phylogenetic Tree Used in the Outsider Analysis of
248 Complete Avian Influenza A Virus Genomes
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Figure S11. PB1 Phylogenetic Tree Used in the Outsider Analysis of
248 Complete Avian Influenza A Virus Genomes

Found at doi:10.1371/journal.ppat.0030167.sg011 (3.2 MB PDF).

Figure S12. PA Phylogenetic Tree Used in the Outsider Analysis of
248 Complete Avian Influenza A Virus Genomes

Found at doi:10.1371/journal.ppat.0030167.sg012 (3.2 MB PDF).

Figure S13. HA Phylogenetic Tree Used in the Outsider Analysis of
248 Complete Avian Influenza A Virus Genomes

Found at doi:10.1371/journal.ppat.0030167.sg013 (3.6 MB PDF).

Figure S14. NP Phylogenetic Tree Used in the Outsider Analysis of
248 Complete Avian Influenza A Virus Genomes

Found at doi:10.1371/journal.ppat.0030167.sg014 (3.3 MB PDF).

Figure S15. NA Phylogenetic Tree Used in the Outsider Analysis of
248 Complete Avian Influenza A Virus Genomes

Found at doi:10.1371/journal.ppat.0030167.sg015 (3.5 MB PDF).

Figure S16. M Phylogenetic Tree Used in the Outsider Analysis of 248
Complete Avian Influenza A Virus Genomes

Found at doi:10.1371/journal.ppat.0030167.sg016 (3.3 MB PDF).

Figure S17. NS Phylogenetic Tree Used in the Outsider Analysis of
248 Complete Avian Influenza A Virus Genomes

Found at doi:10.1371/journal.ppat.0030167.sg017 (3.2 MB PDF).

Table S1. Summary of Outsider Analysis of 6,767 Gene Segments

Found at doi:10.1371/journal.ppat.0030167.st001 (28 KB XLS).

Table S2. Summary of Outsider Analysis of 248 Complete Genomes

Found at doi:10.1371/journal.ppat.0030167.st002 (29 KB XLS).

Table S3. List of Duplicate Sequences Excluded from the Outsider
Analysis

Found at doi:10.1371/journal.ppat.0030167.st003 (30 KB XLS).

Table S4. Summary of Outsider Events by Gene Segment

Found at doi:10.1371/journal.ppat.0030167.st004 (39 KB XLS).

Table S5. Frequency of Outsider Events in HA and NA Subtypes

Found at doi:10.1371/journal.ppat.0030167.st005 (14 KB XLS).

Table S6. GenBank Accession Numbers of Sequences Not Generated
in this Study and Used for Phylogenetic Analysis of H7N3 Viruses (All
Genes) and H16N3 Viruses (HA Gene)

Found at doi:10.1371/journal.ppat.0030167.st006 (115 KB XLS).

Accession Numbers

Accession numbers for gene sequences produced by this study and
deposited in GenBank (http://www.ncbi.nlm.nih.gov/Genbank/index.
html) are EU030965–EU030988. The accession numbers of gene
sequences that were not generated by this study, but were used for the
analysis of the complete genome of the H7N3 viruses and the HA
gene of the H16N3 viruses, can be found in Table S6.
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