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Abstract. Black carbon (BC) aerosols influence the Earth’s

atmosphere and climate, but their microphysical properties,

spatiotemporal distribution, and long-range transport are not

well constrained. This study presents airborne observations

of the transatlantic transport of BC-rich African biomass

burning (BB) smoke into the Amazon Basin using a Single

Particle Soot Photometer (SP2) as well as several comple-

mentary techniques. We base our results on observations of

aerosols and trace gases off the Brazilian coast onboard the

HALO (High Altitude and LOng range) research aircraft dur-

ing the ACRIDICON-CHUVA campaign in September 2014.

During flight AC19 over land and ocean at the north-

eastern coastline of the Amazon Basin, we observed a BC-

rich layer at ∼ 3.5 km altitude with a vertical extension of

∼ 0.3 km. Backward trajectories suggest that fires in African

grasslands, savannas, and shrublands were the main source

of this pollution layer and that the observed BB smoke had

undergone more than 10 d of atmospheric transport and aging

over the South Atlantic before reaching the Amazon Basin.

The aged smoke is characterized by a dominant accumula-

tion mode, centered at about 130 nm, with a particle concen-

tration of Nacc = 850±330 cm−3. The rBC particles account

for ∼ 15 % of the submicrometer aerosol mass and ∼ 40 %

of the total aerosol number concentration. This corresponds

to a mass concentration range from 0.5 to 2 µg m−3 (1st to

99th percentiles) and a number concentration range from 90

to 530 cm−3. Along with rBC, high cCO (150 ± 30 ppb) and

cO3 (56 ± 9 ppb) mixing ratios support the biomass burning

origin and pronounced photochemical aging of this layer.

Upon reaching the Amazon Basin, it started to broaden and

to subside, due to convective mixing and entrainment of the

BB aerosol into the boundary layer. Satellite observations

show that the transatlantic transport of pollution layers is

a frequently occurring process, seasonally peaking in Au-

gust/September.

By analyzing the aircraft observations together with the

long-term data from the Amazon Tall Tower Observatory

(ATTO), we found that the transatlantic transport of African

BB smoke layers has a strong impact on the northern

and central Amazonian aerosol population during the BB-

influenced season (July to December). In fact, the early BB

season (July to September) in this part of the Amazon ap-

pears to be dominated by African smoke, whereas the later

BB season (October to December) appears to be dominated

by South American fires. This dichotomy is reflected in pro-

nounced changes in aerosol optical properties such as the

single scattering albedo (increasing from 0.85 in August to

0.90 in November) and the BC-to-CO enhancement ratio (de-

creasing from 11 to 6 ng m−3 ppb−1). Our results suggest

that, despite the high fraction of BC particles, the African BB

aerosol acts as efficient cloud condensation nuclei (CCN),

with potentially important implications for aerosol–cloud in-

teractions and the hydrological cycle in the Amazon.

1 Introduction

Biomass burning (BB) in the African and South American

tropics and subtropics represents a globally significant source

of atmospheric aerosol particles and trace gases (Andreae,

1991; Andreae et al., 1988; Barbosa et al., 1999; Ichoku and

Ellison, 2014; Kaiser et al., 2012; Reddington et al., 2016;

van der Werf et al., 2017). A major constituent of BB smoke

is black carbon (BC), which is co-emitted along with organic

aerosols and inorganic salts in proportions that depend on

the fuel type and fire phase (Allen and Miguel, 1995; An-

dreae, 2019; Andreae and Merlet, 2001; Jen et al., 2019;

Levin et al., 2010; Reid et al., 2005). The BC aerosol is a

key component in the climate system as it significantly in-

fluences the Earth’s radiative budget through the so-called

direct, semi-direct, and indirect aerosol effects (Bond et al.,

2013; Boucher et al., 2016; Brioude et al., 2009; Koch and

Del Genio, 2010; IPCC, 2013). Recent studies have classi-

fied BC as the second largest contributor to global warm-

ing and estimated its direct radiative forcing to be as high as

+1.1 W m−2, with 90 % uncertainty bounds spanning from

+0.17 to +2.1 W m−2 (Bond et al., 2013, and references

therein). This large uncertainty arises from our poor under-

standing of the BC microphysical properties and its spa-

tiotemporal distribution in the atmosphere (Boucher et al.,

2013; Andreae and Ramanathan, 2013). During their typical

atmospheric lifetime of several days, BC particles undergo

photochemical aging, creating internally mixed BC aerosols

via the condensation of low and semi-volatile compounds,

coagulation, and cloud processing (Bond et al., 2013; Cubi-

son et al., 2011; Konovalov et al., 2017, 2019; Schwarz et al.,

2008; Willis et al., 2016). The formation of non-absorbing

or semi-transparent coatings on the BC cores changes the

particles’ optical properties (Fuller et al., 1999; Moffet and

Prather, 2009; Pokhrel et al., 2017; Schnaiter, 2005; Zhang

et al., 2015) as well as their ability to act as cloud condensa-

tion nuclei (CCN) (Laborde et al., 2013; Liu et al., 2017;

Tritscher et al., 2011), which influences their atmospheric

transport and lifetime.

The Amazonian atmosphere is strongly influenced by the

yearly north–south oscillation of the Intertropical Conver-

gence Zone (ITCZ) (Andreae et al., 2012; Martin et al., 2010;

Pöhlker et al., 2019), which causes a pronounced seasonal-

ity in aerosol concentrations (e.g., BC and CCN) and other

aerosol properties (e.g., single scattering albedo) (Roberts et

al., 2001; Roberts, 2003; Martin et al., 2010; Artaxo et al.,

2013; Rizzo et al., 2013; Andreae et al., 2015; Pöhlker et al.,

2016; Saturno et al., 2018b). This makes the central Ama-

zon Basin an ideal environment to study atmospheric and

biogeochemical processes as a function of the highly vari-

able aerosol population. During the wet season (February to

May), trace gas and aerosol emissions from the regional bio-

sphere predominantly regulate atmospheric cycling, precip-

itation patterns, and regional climate (Pöhlker et al., 2012;

Pöschl et al., 2010). Average wet season black carbon (BC)
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mass concentrations, MBC, are ∼ 0.07 µg m−3, and MBC ap-

proaches zero during pristine episodes (Andreae and Gelenc-

sér, 2006; Pöhlker et al., 2018). In contrast, the dry season

(August to November) is characterized by intense and per-

sistent BB emissions, changing substantially the atmospheric

composition and cycling (Artaxo et al., 2013; Rizzo et al.,

2013). Average dry season BC mass concentrations (MBC)

in central Amazonia are ∼ 0.4 µg m−3, with peaks reaching

∼ 0.9 µg m−3 (Pöhlker et al., 2018; Saturno et al., 2018b),

while in the southern hotspot regions of agriculture-related

burning, the average MBC can be as high as ∼ 2.8 µg m−3

(Artaxo et al., 2013).

Several studies have found that the long-range transport

(LRT) of long-lived species from Africa plays a major role

in the Amazonian atmospheric composition. The transport of

dust from distant sources into the heart of the Amazon Basin

was first observed in 1977, although Africa was not identi-

fied as the source region at the time (Lawson and Winch-

ester, 1979). Subsequently, the plume-wise LRT of African

dust and smoke during the Amazonian wet season has been

well documented (Ansmann et al., 2009; Baars et al., 2011;

Barkley et al., 2019; Moran-Zuloaga et al., 2018; Swap et

al., 1992; Talbot et al., 1990; Wang et al., 2016). The LRT

of aerosols occurs also during the Amazonian dry season,

when smoke from the intense African BB plays a substan-

tial role. The earliest observations of such pollution layers in

the free troposphere over the Brazilian coast can be found in

ozone (O3) soundings made from Natal, on the eastern coast

of Brazil (5.8◦ S, 35.2◦ W), where mixing ratios of ∼ 70 ppb

were measured with a maximum in the month of September

(Kirchhoff et al., 1983; Logan and Kirchhoff, 1986). These

measurements were continued over a 10-year period (1978–

1988), confirming the climatological presence of a tropo-

spheric O3 maximum over the Brazilian coast, centered at

the 500 hPa pressure level and peaking in the September–

October period (Kirchhoff et al., 1991).

The first comprehensive airborne measurements off the

South American coast, made in 1989 near Natal, could also

attribute these pollution layers to LRT of African BB emis-

sions (Andreae et al., 1994). Additional aircraft campaigns

in southern Africa, the tropical South Atlantic, and the Ama-

zon Basin have found pollution layers in the free troposphere

with similar characteristics (e.g., Andreae et al., 1988; Diab

et al., 1996; Thompson et al., 1996; Bozem et al., 2014;

Marenco et al., 2016). Recent studies in the central basin,

at the Amazon Tall Tower Observatory (ATTO) and at the

northeastern edge of the Amazon, found indications of a

significant abundance of African smoke during the Amazo-

nian dry season (Barkley et al., 2019; Pöhlker et al., 2019,

2018; Saturno et al., 2018b; Wang et al., 2016). However, ro-

bust quantitative data from observations and/or models (e.g.,

African BC and CCN fractions in the Amazon Basin) have

remained sparse.

This study focusses on the transatlantic transport of

African BB smoke into the Amazon Basin by combining in

situ aircraft observations, modeling results, and remote sens-

ing data. The core of this work is aircraft observations made

within a defined African pollution layer upon its arrival at

the South American coast during the ACRIDICON-CHUVA

campaign over Amazonia in September 2014 (Wendisch et

al., 2016). We focus primarily on the spatiotemporal distri-

bution and advection dynamics of the BB smoke layers by

analyzing (i) aerosol and trace gas concentration profiles,

(ii) backward trajectories and African BB source regions,

(iii) the seasonality of the pollution transport, (iv) the hor-

izontal and vertical extents of the transported layers, and

(v) the convective mixing and smoke entrainment from the

layers into the planetary boundary layer as they are trans-

ported from the ocean into the South American continent.

Note that a detailed characterization of the microphysical

aerosol properties within the BB smoke layers (e.g., the BC

core diameters and mixing state) is beyond the scope of the

present work and will be the subject of a separate follow-up

study. As a final step of the present study, we integrate its

main results into the broader picture of the long-term aerosol

observations at the central Amazonian ATTO site to estimate

the relevance of African pollution for the aerosol lifecycle in

the dry season.

2 Materials and methods

2.1 The ACRIDICON-CHUVA campaign

The data presented here were obtained during flight AC19

of the ACRIDICON-CHUVA aircraft campaign (Machado

et al., 2018; Wendisch et al., 2016), which took place over

the Atlantic Ocean and the Amazon Basin on 30 Septem-

ber 2014. The main objective of ACRIDICON-CHUVA was

to study the interactions between aerosol particles, deep con-

vective clouds, and atmospheric radiation using a broad set of

instruments for airborne observations of aerosol physical and

chemical properties, trace gases, radiation, and cloud. The

measurements were conducted onboard the German HALO

(High Altitude and LOng range) research aircraft, operated

by the German Aerospace Center (DLR), covering a wide

geographic area of the Amazon Basin and probing differ-

ent pollution states by means of highly resolved atmospheric

profiles (altitudes up to 15 km).

2.2 Airborne measurements of aerosol, trace gas, and

meteorology during ACRIDICON-CHUVA

Navigation and basic meteorological data (e.g., air pressure,

temperature, humidity, and water vapor mixing ratio) were

obtained from the BAsic HALO Measurement And Sensor

System (BAHAMAS) at 1 s time resolution. BAHAMAS

acquires data from air flow and thermodynamic sensors as

well as from the aircraft avionics and a high-precision iner-

tial reference system to derive basic meteorological param-

eters like pressure, temperature, and the 3-D wind vector,
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as well as aircraft position and attitude. Water vapor mixing

ratio and further derived humidity parameters are measured

by SHARC (Sophisticated Hygrometer for Atmospheric Re-

searCh) based on direct absorption measurement by a tunable

diode laser (TDL) system. Typical absolute accuracy of the

basic meteorological data is 0.5 K for temperature, 0.3 hPa

for pressure, 0.4–0.6 m s−1 for wind, and 5 % (+1 ppm) for

water vapor mixing ratio. All aerosol concentration data were

normalized to standard temperature and pressure (STP, T0 =
273.15 K, p0 = 1013.25 hPa). Most of the aerosol sampling

was conducted through the HALO aerosol submicrometer in-

let (HASI), which provides up to 30 L min−1 sample air flow

divided over four sample lines. The air stream sampled on top

of the fuselage is aligned with the inlet using a front shroud

and decelerated by a factor of approximately 15, providing

near-isokinetic sampling to the aerosol instruments mounted

inside the aircraft cabin (Andreae et al., 2018).

The characterization of refractory black carbon (rBC) par-

ticles at high time resolution was conducted using an eight-

channel Single Particle Soot Photometer (SP2, Droplet Mea-

surement Techniques, Longmont, CO, USA) (Stephens et

al., 2003; Schwarz et al., 2006). The instrument measures

the time-dependent scattering and incandescence signals pro-

duced by single aerosol particles when crossing a Gaussian-

shaped laser beam (Nd:YAG; wavelength λ = 1064 nm)

(Schwarz et al., 2006). The avalanche photo-diode (APD) de-

tectors measure at high and low gain stages the aerosol par-

ticle light scattering and incandescence in two wavelength

ranges (λ = 350–800 nm and λ = 630–880 nm). All particles

scatter the laser light with an intensity that is proportional to

their optical size, from which the optical diameter (Do) is de-

termined. The instrument detects purely scattering particles

in the size range of 200 nm < Do < 400 nm. Particles con-

taining sufficient mass of rBC absorb the laser light and are

heated to their vaporization temperature (∼ 4000 ◦C), emit-

ting incandescence light. The peak intensity of the incandes-

cence signal is linearly proportional to the mass of rBC in

the particle, which is determined after applying a calibration

factor (Laborde et al., 2013). Assuming a void-free density

of 1.8 g cm−3, the mass-equivalent diameter (DMEV) of rBC

cores is calculated from the measured rBC mass (Laborde

et al., 2013). The SP2 measurements are sensitive to rBC

cores in the nominal size range of 70 nm < DMEV < 500 nm.

The SP2 incandescence signal was calibrated at the begin-

ning, during, and at the end of the campaign, using size-

selected fullerene soot particles. The scattering signal was

calibrated using spherical polystyrene latex spheres (208,

244, and 288 nm) and ammonium sulfate particles with di-

ameters selected by a differential mobility analyzer (DMA,

Grimm Aerosol Technik, Ainring, Germany). The results of

all calibrations agreed within their uncertainty ranges, con-

firming good instrument stability throughout the campaign.

The concentration of condensation nuclei, NCN, was mea-

sured using a butanol-based condensation particle counter

(CPC, Grimm Aerosol Technik) with a nominal lower cutoff

particle diameter of 4 nm. Due to losses in the inlet lines, the

effective cutoff diameter was ∼ 10 nm at lower atmospheric

levels and ∼ 20 nm in the upper troposphere. Accordingly,

total aerosol concentrations will be represented by NCN,20.

An additional CPC with the same cutoff diameter was con-

nected to a thermodenuder, which heats a segment of the

sample line to 250 ◦C. The thermodenuder is used to evap-

orate the volatile aerosol constituents, such as organics and

ammonium sulfate salts, allowing one to quantify the non-

volatile (or refractory) particles (e.g., mineral dust, black

carbon, sea salt) (Clarke, 1991; Weinzierl et al., 2011). In

addition, the particle number size distributions (PNSD) of

aerosols in the size range of Dp = 90–600 nm were obtained

from an Ultra-High Sensitivity Aerosol Spectrometer (UH-

SAS; Droplet Measurement Technologies, Longmont, CO,

USA) (Cai et al., 2008). In this paper, we refer to the to-

tal number concentration measured by the UHSAS as the

accumulation-mode number concentration, Nacc. The ultra-

fine fraction (ffine) is obtained as the difference between the

CPC particle counts, NCN,20, and the Nacc obtained by the

UHSAS, divided by NCN,20. Likewise, the volatile fraction

(fvol) is obtained from the difference between aerosol counts

measured by the two CPCs (with and without a thermode-

nuder) divided by NCN,20.

The CCN concentration, NCCN, was measured with a two-

column CCN counter (CCNC, model CCN-200, DMT, Long-

mont, CO, USA) (Krüger et al., 2014; Roberts and Nenes,

2005; Rose et al., 2008). In this study, we used only the mea-

surements at constant supersaturation (S = 0.52 ± 0.05 %).

The activated fraction, fCCN,0.5, was calculated as NCCN,0.5

divided by NCN,20.

A compact time-of-flight aerosol mass spectrometer (C-

ToF-AMS, Aerodyne Research, Inc., Billerica, MA, USA)

measured the mass concentration of four chemical species

(i.e., organics, sulfate, nitrate, and ammonium) of the sub-

micrometer aerosol with a time resolution of 30 s (Drewnick

et al., 2005; Schulz et al., 2018). A complete description of

the instrument and its operation during the ACRIDICON-

CHUVA campaign is given in Schulz et al. (2018) and An-

dreae et al. (2018).

A dual-cell ultraviolet (UV) absorption detector (TE49C,

Thermo Scientific) operating at a wavelength of λ = 254 nm

was used to measure O3 with a precision of 2 % or 1 ppb. The

CO mixing ratio was detected with a fast-response fluores-

cence instrument (AL5002, Aerolaser, Garmisch, Germany)

(Gerbig et al., 1999). NO and total reactive nitrogen, NOy ,

were measured by a modified dual-channel chemilumines-

cence detector (CLD-SR, Ecophysics) in connection with a

gold converter (Baehr, 2003; Ziereis et al., 2000). More de-

tails on the measurement techniques can be found in Andreae

et al. (2018).

The rBC enhancement ratio relative to CO (EnRBC,M =
1MrBC/1cCO, where 1 is the difference between the con-

centration of the species in the plume and in the back-

ground atmosphere) was obtained by applying a bivariate fit

Atmos. Chem. Phys., 20, 4757–4785, 2020 www.atmos-chem-phys.net/20/4757/2020/
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to the rBC and CO correlation within individual pollution

plumes. Analogously, CCN and rBC enhancement ratios rel-

ative to total CPC particle counts (1NCCN,0.5/1NCN,20 and

1NrBC/1NCN,20) were obtained by applying a bivariate fit

between the respective quantities. Note that the best fit for the

cCO vs. MrBC correlation was obtained after multiplying the

cCO by a factor such that their means are numerically equiv-

alent and then multiplying the resulting fit parameter by the

same factor to obtain the EnRBC,M .

2.3 Ground-based aerosol and trace gas measurements

at ATTO

The ATTO site was established in 2010/2011 as a research

platform for in-depth and long-term measurements of aerosol

particles and trace gases as well as meteorological and eco-

logical parameters in the central Amazon rain forest (An-

dreae et al., 2015). The research site is located 150 km north-

east of Manaus, in a region characterized by periodic pris-

tine atmospheric conditions during parts of the wet season

vs. strong BB pollution during the dry season (Pöhlker et

al., 2016, 2018; Saturno et al., 2018b). The present study

includes ATTO data of the aerosol absorption coefficient at

λ = 637 nm, σap, using the Multiangle Absorption Photome-

ter (MAAP, model 5012, Thermo Electron Group, Waltham,

USA) and the aerosol scattering coefficients, σsp, using a

nephelometer (model Aurora 3000, Ecotech Pty Ltd., Knox-

field, Australia), respectively. The MBCe was calculated us-

ing a mass absorption cross section of 12.3 m2 g−1 for the

dry season, as obtained by Saturno et al. (2018b). The single

scattering albedo (SSA), which characterizes the absorption

properties of an aerosol population, is defined as scattering

divided by total extinction (absorption + scattering). All data

were normalized to standard temperature and pressure (STP,

T0 = 273.15 K, p0 = 1013.25 hPa). The CCN concentrations

at a supersaturation of 0.5 %, NCCN,0.5, were calculated us-

ing long-term scanning mobility particle sizer (SMPS) data

and the κ-Köhler parametrization as described in Pöhlker et

al. (2016). For more details about the aerosol optical prop-

erties’ characterization and CCN observations, we refer the

reader to Saturno et al. (2018b) and Pöhlker et al. (2016,

2018), respectively. Further details on CO measurements

conducted at the ATTO site can be found in Winderlich et

al. (2010) and Andreae et al. (2015). Daily EnRBC was cal-

culated by applying a bivariate regression fit to 30 min aver-

ages of 1BCe and 1CO. The 5th percentiles of the BCe and

CO measurements of the corresponding month were used as

background values.

2.4 Satellite and ground-based remote sensing

In this study, we used the vertically resolved extinction co-

efficients (LIDAR Level 2 Version 3 Aerosol Profile prod-

uct with 5 km horizontal resolution) of the Cloud-Aerosol

Lidar with Orthogonal Polarization (CALIOP) lidar system,

onboard the Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observations (CALIPSO) satellite (Winker et al.,

2009). The CALIPSO algorithms detect and classify aerosol

layers based on their observed physical and optical proper-

ties into the subclasses polluted continental, biomass burn-

ing (smoke), desert dust, polluted dust, clean continental, and

marine aerosol (Omar et al., 2009).

To obtain CO concentrations between the 400 and 600 hPa

pressure levels, we used the Atmospheric Infrared Sounder

(AIRS) onboard the NASA Aqua satellite available from

the Giovanni online data system (https://giovanni.gsfc.nasa.

gov/giovanni/, last access: 13 June 2019). Daily averages

of aerosol optical depth (AOD) at 550 nm with an origi-

nal grid resolution of 1◦ × 1◦ were obtained from Moder-

ate Resolution Imaging Spectroradiometer (MODIS) aerosol

products from the NASA Terra and Aqua satellites (Re-

mer et al., 2005). Finally, AOD at 500 nm (level 2.0) was

obtained by direct sun measurements in Ascension Island

(7.976◦ S, 14.415◦ W), using the CIMEL sunphotometer of

the AErosol RObotic NETwork (AERONET, https://aeronet.

gsfc.nasa.gov/, last access: 12 March 2019) (Holben et al.,

1998).

2.5 Direct radiative forcing at the top of the

atmosphere

In this study, we used the library for radiative transfer (Li-

bRadtran) (Emde et al., 2016) with the uvspec tool to calcu-

late the direct radiative forcing at the top of the atmosphere

(DRF-TOA) by aerosol particles in the BB layer in the region

of the South Atlantic Ocean. To solve the radiative transfer

equation, we chose the Discrete Ordinate Radiative Transfer

solver (DISORT) 2 (Evans, 1998; Stamnes et al., 2000). The

setup for the atmosphere was based on the standard tropi-

cal profile (Anderson et al., 1986), which was modified with

measurement data. The vertical profiles of the mean aerosol

extinction coefficient were calculated based on multi-year

(2012–2018) CALIPSO retrievals. The extraterrestrial spec-

trum was used as described in Gueymard (2004). A wave-

length range from 300 to 4000 nm was considered. The ocean

was set as the underlying surface. The AOD of the plume was

calculated by integrating the mean extinction coefficient over

the altitude band of the pollution layer (1–5 km). A SSA of

0.84 was assumed for the smoke layer based on Zuidema et

al. (2016) and Sect. 3.5 of the present study. An asymmetry

parameter of 0.7 was used based on the typical BC value pre-

sented in Cheng et al. (2014). With the above parametriza-

tion, we obtained the mean daily value for the DRF-TOA

along different longitudes.

2.6 Backward trajectory modeling and fire intensities

The HYbrid Single-Particle Lagrangian Integrated Trajec-

tory (HYSPLIT) model (Stein et al., 2015) was used to ob-

tain systematic and multi-year sets of backward trajectories
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(BTs) for the ATTO site as outlined in detail in Pöhlker et

al. (2019). The time series of cumulative fire intensity along

the BTs (CFBT) was calculated based on (i) an ensemble of

filtered 3 d HYSPLIT BTs, started every hour in the time

frame between 1 January 2013 and 31 December 2018, at

a starting height of 200 m, and (ii) daily georeferenced fire

intensity maps, in W m−2, from the Global Fire Assimilation

System (GFAS). The GFAS fire intensity maps were obtained

as NetCDF3 files with a spatial resolution of 0.1◦ latitude

by 0.1◦ longitude (0.1◦ equals roughly 11 km). Only those

segments of the individual BTs in convective exchange with

the surface/fires (i.e., BT segments with heights < 1000 m)

and encountering en route convection (i.e., BT segments with

sun fluxes > 50 W m−2) were included in the calculation of

CFBT. In addition, the individual BTs were terminated upon

en route occurrence of rain (i.e., for rainfall > 2 mm). De-

tails of the BT data set and filtering can be found in Pöhlker

et al. (2019).

We calculated the cumulative fire intensity for each trajec-

tory as follows: every two consecutive points of the original

trajectory (1 h time step) build one linear segment of a tra-

jectory with length (Li) 1 < i < 72 h (see Fig. S1 in the Sup-

plement). For each trajectory segment, the collection of grid

cells (m,n) that the trajectory passes through is computed:

this is done by finding all locations along the trajectory for

which either the latitude or longitude coordinate is an integer

multiplied by 0.1◦. To account for the residence time of air

mass at each grid cell, the length (li,j ) of the trajectory path

within the cell (m,n) is calculated, divided by the length of

the trajectory segment (Li) and multiplied by the fire inten-

sity (Fm,n) corresponding to the grid cell (m,n). This results

in the fire intensity weighted by the residence time of the

air parcel along the segment. The cumulative fire intensity

(cumFire) along every individual BT is calculated by sum-

ming up Fm,n over the whole trajectory length. Note that as

we used 3 d BTs, each trajectory was mapped to the raster of

fire intensities of the 3 corresponding days (see the example

in Fig. S2). Finally, we summed up the cumulative fire in-

tensities over the 24 BTs for each day in order to obtain the

CFBT time series with 1 d time resolution.

The method described above is summarized in the follow-

ing equations. Let F be a matrix containing fire intensities of

size M × N . Let T be a list of K trajectories.

cumFire =
∑

j

72
∑

i=1

Fm,n ·
li,j

Li

, (1)

and li,j is the path of trajectory segment within cell Fm,n,

calculated as follows:

li,j =

√

(

(xm+1 − xm) · cos

(

yn+1 + yn

2

))2

+ (yn+1 − yn)
2. (2)

Finally, for the ensemble of 24 trajectories at each day,

CFBT =
24
∑

k=0

cumFire(Tk). (3)

2.7 GIS data products and analysis

The analysis of geographic information system (GIS) data

sets was conducted with the QGIS software package (Las

Palmas version 2.18.2, QGIS development team). The GIS

data sets were handled using the coordinate reference of

the World Geodetic System from 1984 (WGS84). The fol-

lowing GIS data sets were used in this study: (i) maps

of global water bodies obtained from the European Space

Agency (ESA) (https://www.esa-landcover-cci.org/?q=node/

162, last access: 4 July 2019), (ii) wind fields from the

Modern-Era Retrospective analysis for Research and Appli-

cations Version 2 model (Merra-2, https://gmao.gsfc.nasa.

gov/reanalysis/MERRA-2/, last access: 4 July 2019) ob-

tained through the Giovanni online data system, (iii) land

cover maps obtained from ESA (http://maps.elie.ucl.ac.be/

CCI/viewer/index.php, last access: 4 July 2019), and (iv) a

map of global biomes according to Olson et al. (2001). For

further details, we refer the reader to Pöhlker et al. (2019).

3 Results and discussion

The flight track of AC19 followed the direction of the Ama-

zon River from Manaus towards the coast and included

cloud-profiling maneuvers over the Atlantic Ocean (Fig. 1).

A remarkable observation during AC19 was the strong strat-

ification of the troposphere over the ocean with vertically

well-defined and horizontally extended layers, with varying

degrees of pollution. Based on contrasting aerosol concen-

trations, size ranges, and composition, we distinguished an

upper and a lower pollution layer (UPL and LPL) with a hor-

izontal clean air mass layer (CL) in between. The layers were

discernible visually from the aircraft cockpit (Fig. 2).

In this study, we present the tropospheric stratification for

the lowest 5 km of the atmosphere, focusing primarily on

aerosol and trace gas properties within the UPL, and contrast

them with the properties of the CL, LPL, and marine bound-

ary layer (MBL). Aerosol properties in the upper troposphere

during ACRIDICON-CHUVA have been characterized in

previous studies (Andreae et al., 2018; Schulz et al., 2018).

Upon ascent and descent, the UPL was probed six times at

offshore locations1, right before it reached the South Amer-

ican continent, and two times onshore ∼ 200–400 km from

the coastline (blue squares in Fig. 1). The eight UPL penetra-

tions were several hundred kilometers apart from each other,

underlining the large horizontal extent of the layer. Later on

the route back to Manaus airport, we observed an active fire

1Note that we count the two passages through the layer over the

Amazon River delta as offshore.
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Figure 1. ACRIDICON-CHUVA flight AC19 on 30 Septem-

ber 2014. The squares represent the locations at which the aircraft

ascended or descended through the upper pollution layer (UPL)

(blue: offshore profiles, orange: inshore profiles). The yellow and

blue segments of the flight track correspond to the inshore and off-

shore sections that were averaged to obtain the profiles in Fig. 3.

Red markers indicate fire spots on 30 September 2014 as obtained

from INPE (http://www.inpe.br/queimadas/bdqueimadas/, last ac-

cess: 17 April 2019), and the dark green square represents the loca-

tion where a fresh BB plume was probed at ∼ 1 km altitude.

plume northwest of Belém (green square in Fig. 1, photo of

plume in Fig. S3). This plume was probed at ∼ 1 km above

the fire and is expected to be only a few minutes old. Selected

aerosol properties at this local, fresh BB plume are contrasted

with the UPL aerosol properties.

3.1 Offshore aerosol particle and trace gas profiles

The pronounced tropospheric stratification observed over the

Atlantic Ocean near the northeastern margin of the Amazon

Basin is illustrated by selected meteorological, trace gas, and

aerosol profiles in Fig. 3. In Fig. 3a, the profiles of water

vapor mass mixing ratio, q, and potential temperature, θ ,

show rather small interquartile ranges, indicating compara-

ble q and θ conditions where profiling maneuvers were con-

ducted along the flight track. In relation to q and θ , a well-

defined layering – particularly the UPL – clearly emerges

in the aerosol particle and trace gas properties (Fig. 3, Ta-

ble 1). Generally, the profile of θ indicates rather stable con-

ditions along the entire profile, with the UPL being centered

at ∼ 3.5 km altitude. For comparison, radiosonde profiles at

Belém airport for the same day as flight AC19 are shown in

Fig. S4. The stable conditions presumably prevented the pol-

lution from being mixed downwards and further suggest that

the UPL is decoupled from the air masses above and below,

facilitating an efficient horizontal transport pathway for the

pollutants. Moreover, the distinct properties of the UPL, CL,

and LPL as outlined below suggest that the corresponding

Figure 2. View from the HALO cockpit during flight AC19 on

30 September 2014, showing (a) the layering of the troposphere

with clearly visible pollution layers as well as a clean layer in be-

tween at an offshore location (17:09 UTC) and (b) the brownish

pollution layer arriving at the Brazilian coastline (16:55 UTC).

air masses originated from different sources and/or processes

and probably reflect different atmospheric aging times (see

also Sect. 3.2). For example, shallow convection (or Scu) can

increase aerosol at the top of clouds through detrainment.

In terms of aerosol properties, the UPL is character-

ized by a relative maximum in total number concentra-

tions, NCN,20 = 970 ± 260 cm−3 (mean ± 1 SD, Fig. 3b).

Aerosol particles in the accumulation mode dominate the

UPL aerosol, as Nacc = 850 ± 330 cm−3 accounts for most

of NCN,20 (∼ 85 %). This corresponds to a significant drop

in the ultrafine particle fraction with ffine ≈ 15 % within the

UPL (Fig. 3b). The aerosols in the UPL are further char-

acterized by a low fraction of volatile particles, fvol, as

shown in Fig. 3c. In the atmospheric column, fvol reaches its

minimum of 16 ± 9 % within the UPL and generally shows

a similar profile to ffine, indicating a rather aged plume

(Grieshop et al., 2009; Zhou et al., 2017). The particle num-

ber size distributions of the UPL aerosol – in comparison
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Figure 3. Vertical profiles of selected meteorological, aerosol, and trace gas parameters measured off the Brazilian coast during flight AC19:

(a) potential temperature, θ , and water vapor mass mixing ratio, q; (b) total aerosol particle number concentration, NCN,20, and ultrafine

particle number fraction, ffine; (c) accumulation-mode particle number concentration, Nacc, and volatile particle number fraction, fvol;

(d) CCN number concentration at S = 0.5 %, NCCN,0.5, and activated fraction at S = 0.5 %, fCCN,0.5; (e) rBC number concentration, NrBC,

and rBC number fraction, frBC,N ; and (f) rBC mass concentration, MrBC; (g) carbon monoxide, cCO; (h) ozone, cO3
; (i) total reactive

nitrogen, cNOy
; and (j) nitrogen monoxide, cNO, mole fractions measured off the Brazilian coast during flight AC19. The black lines and

shadings represent the median and inter-quartile range calculated for 150 m altitude bins during the flight section off the Brazilian coast (16:50

to 19:07 UTC, blue line in Fig. 1). The brown shaded area represents the approximate vertical location of the upper pollution layer (UPL).

The altitudes of the lower pollution layer (LPL), the clean layer (CL), and the marine boundary layer (MBL) are indicated on the right-hand

side of the plot. The precise time windows when the UPL, CL, LPL, and MBL were probed are shown in Table S1 of the Supplement.

to the LPL, CL, MBL, and fresh BB aerosols probed dur-

ing AC19 – are shown in Fig. 4 and summarized in Ta-

ble 2 (see Fig. S5 for individual PNSDs). A modal diame-

ter of 132 nm was observed for the UPL aerosol, whereas

the fresh BB aerosol showed a clearly smaller modal diam-

eter of 124 nm. Further note that the modal diameter in the

UPL is smaller than the 220 nm observed directly off the

African coast (Weinzierl et al., 2011). The CCN concentra-

tions at S = 0.5 %, NCCN,0.5, show a maximum within the

UPL with NCCN,0.5 = 560±180 cm−3 as well as a high CCN

fraction, fCCN,0.5 = 60 ± 6 % (Fig. 3d).

The Nacc within the UPL is lower than at the ATTO site

under strongly BB-influenced (Nacc,BB ≈ 3400 cm−3) and

average dry season conditions (Nacc,dry ≈ 1300 cm−3), yet

still substantially higher than under an average wet season

at ATTO (Nacc,wet ≈ 150 cm−3) or pristine rain forest con-

Atmos. Chem. Phys., 20, 4757–4785, 2020 www.atmos-chem-phys.net/20/4757/2020/
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Figure 4. Particle number size distributions (PNSD) measured by

the UHSAS for the UPL, CL, LPL, and MBL, as defined in Fig. 3,

and the fresh BB plume probed during AC19 (see Fig. 1). The data

points (black dots) are fitted by log-normal functions between 90

and 500 nm (Heintzenberg, 1994).

Table 2. Fit parameters of UHSAS-derived aerosol size distri-

butions in Fig. 4, representing different conditions (i.e., layers,

plumes) during AC19. A log-normal function (Heintzenberg, 1994)

was used to fit a mono-modal size distribution to the mean data

points: dN
dlndp

= A√
2π lnσg

exp

(

− (lndp − lnd0)
2

2 ln(σg)
2

)

.

UPL CL LPL MBL BB

A 2920 970 2890 680 13 930

d0 (nm) 132 90 105 143 124

σg 1.55 1.58 1.65 1.40 1.50

r2 1.00 0.99 1.00 1.00 1.00

ditions (Nacc,PR ≈ 90 cm−3) (Pöhlker et al., 2016, 2018).

Remarkably, rBC particles represent a dominant species of

the UPL aerosol population in terms of number concen-

tration with NrBC = 280 ± 110 cm−3, corresponding to an

rBC number fraction of frBC,N = 28±5 % relative to NCN,20

(Fig. 3e). The ratio 1NrBC/1NCN,20 ≈ 40 % in the UPL is

much higher than 1NrBC/1NCN,20 ≈ 5 % in the fresh BB

plume (Fig. 5a). Visually, the dark color of the layer ob-

servable in Fig. 2 corresponds to the high rBC fraction. For

comparison, rBC number fractions of 0 %–15 % relative to

NCN,20 were observed in megacity pollution (Laborde et al.,

2013) and frBC,N ≈ 6 % in wildfire plumes injected into the

lowermost stratosphere in the Northern Hemisphere (Ditas et

al., 2018).

In terms of absolute mass concentrations, rBC within the

UPL, with MrBC = 1.0 ± 0.4 µg m−3 (ranging from 0.5 to

2 µg m−3), approaches the highest BC levels observed at

ATTO (MBCe up to 2.5 µg m−3; Pöhlker et al., 2018; Sat-

urno et al., 2018b). Figure 6 shows the fractions of rBC mass

Figure 5. Correlation between (a) rBC particle number concentra-

tions (NrBC) and total aerosol (NCN,20); and between (b) CCN at

S = 0.5 % (NCCN,0.5) and total aerosol (NCN,20) in the UPL (blue)

and in the fresh biomass burning plume (green). The dashed lines

are bivariate linear regressions applied to the data sets.

relative to the other main constituents of the submicrometer

aerosol (Mtotal = non-refractory + rBC) in the UPL in com-

parison to the CL, LPL, MBL, and fresh BB values. Organic

matter – comprising co-emitted primary as well as secondar-

ily formed organics – accounts for the dominant mass frac-

tions in all layers, with forg,M ≈ 50 % in the UPL, CL, and,

LPL, and as much as 72 % in the fresh BB plume. Gener-

ally, the dominance of organic matter is in agreement with

previous studies performed at different locations and seasons

in the Amazon region (e.g., Brito et al., 2014; Chen et al.,

2015; Fuzzi et al., 2006; Martin et al., 2010, 2017; de Sá et

al., 2019; Schneider et al., 2011; Schulz et al., 2018; Shrivas-
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tava et al., 2019; Talbot et al., 1990). For example, in the

southwestern region of the Amazon, which is heavily im-

pacted by BB, organics account for forg,M > 90 % in the dry

season (Brito et al.2014). Note that the thermal stability of

some organic species and tar balls in BB plumes can lead

to an underestimation of the forg,M measured by the C-ToF-

AMS (Adachi et al., 2018). Further, the organic matter in the

UPL is significantly more oxidized than the fresh BB smoke,

as shown in Fig. S6. This can be associated with the long

aging times and the elevated O3 mixing ratio in the UPL

(Fig. 3h) (Martin et al., 2017). The rBC mass fractions ac-

count for frBC,M = 15 % in the UPL and frBC,M = 12 % in

the BB plume. A clear difference was observed for the mass

fractions of the inorganic constituents sulfate (SO2−
4 ), ammo-

nium (NH+
4 ), and nitrate (NO−

3 ), which in sum account for

finorg,M = 35 % in the UPL and finorg,M = 16 % in the BB

plume. The increased finorg,M in the UPL can probably be

explained by aging-related condensation of the secondarily

formed species SO2−
4 , NH+

4 , and NO−
3 . On the other hand,

the lower forg,M in the UPL compared to the fresh Ama-

zonian BB is related to the evaporation of organics due to

fragmentation during the aging over the Atlantic. Note that,

despite the higher 1NrBC/1NCN,20 in the UPL compared to

the fresh BB (Fig. 5a), the UPL shows a higher CCN acti-

vated fraction (1NCCN,0.5/1NCN,20 = 66 %, Fig. 5b). The

high CCN efficiency is likely due to internal mixing of rBC

with sulfate, nitrate, and highly oxygenated organic aerosol.

These findings, in combination with the UPL’s large geo-

graphic extent, suggest that it represents an aerosol and CCN

reservoir of particular significance for the Amazonian cloud

cycling and rainfall formation – i.e., cloud droplet formation

and growth.

Regarding trace gases, Fig. 3g–j show absolute max-

ima in the UPL for the mole fractions of carbon monox-

ide (cCO), ozone (cO3 ), and total reactive nitrogen (cNOy )

as well as a secondary maximum for nitrogen monoxide

(cNO). The elevated cCO = 150 ± 30 ppb along with the high

MrBC indicates that the UPL air masses originated from

BB emissions. Moreover, the ratio between these two co-

emitted species can be used as a tracer for the origin and

age of BB plumes (Darbyshire et al., 2019; Guyon et al.,

2005; Saturno et al., 2018b). The aged UPL is character-

ized by a higher rBC enhancement ratio, EnRBC,M = 14.7 ±
0.6 ng m−3 ppb−1, compared to fresh Amazonian BB with

EnRBC,M of 6.3 ± 0.2 ng m−3 ppb−1 (Fig. S7). Recent air-

craft measurements of African BB pollution over Ascension

Island have found similar EnRBC,M = 11–17 ng m−3 ppb−1

in the free troposphere (Wu et al., 2020). The ozone as a sec-

ondary pollutant also presents a maximum within the UPL

(cO3 = 56±9 ppb) and appears to be anti-correlated with NO

(cNO = 0.10±0.02 ppb). Therefore, the fact that O3 and NOy

(cNOy = 2.5 ± 0.8 ppb) are strongly enhanced in the pollu-

tion layers reflects the high photochemical age of the plume.

Overall, the trace gas mole fractions within the UPL are con-

sistent with previous aircraft measurements. Over the At-

Figure 6. Cumulative mass concentrations of non-refractory submi-

crometer species (i.e., organic (Org), sulfate (SO2−
4 ), nitrate (NO−

3 ),

ammonium (NH+
4 )) and rBC (a); and mass fractions of the respec-

tive species to the total mass (Mtotal = MOrg + MSO4
+ MNO3

+
MNH4

+MrBC) in the UPL, CL, LPL, and MBL, as defined in Fig. 3,

and the fresh BB plumes probed during AC19 (see Fig. 1) (b). Note

that no C-ToF-AMS data were available from 17:27 to 19:05 UTC

during the offshore section of flight AC19 and, therefore, a reduced

number of measurements points are included in the averages. The

concentration of organics was below the detection limit in the MBL.

lantic, off the city of Natal, Brazil, Andreae et al. (1994)

found similar pollution layers with cO3 and cCO up to 90

and 210 ppb, respectively. The mean mole fraction of NOy

in these plumes was extremely high: 4.4 ± 3.1 ppb, with en-

hancement ratios, EnRNOy , in the range 0.018 to 0.108. The

EnRNOy in the UPL (0.019) lies in the lower part of this

range. Over Ascension Island, cO3 can be as high as 80 ppb

in the lower troposphere (Thompson et al., 1996).

Below the UPL, the atmospheric vertical profile off the

Brazilian coast shows a second maximum in aerosol con-

centrations in the LPL (NCN,20 = 1300 ± 200 cm−3; Nacc =
650 ± 140 cm−3) at altitudes between ∼ 2.3 and 3.0 km

(Fig. 3). The properties of the UPL and LPL, however,

are remarkably different. The LPL shows rather lower con-

centrations of rBC (MrBC = 0.36 ± 0.11 µg m−3 and NrBC =
110 ± 20 cm−3), CO (cCO = 105 ± 5 ppb), and O3 (cO3 =
45 ± 2 ppb), which decreases with decreasing altitude. NOy

actually reaches the highest concentrations in this layer, with

values up to 3.0 ppb. We assume that the pyrogenic species

found in the LPL are also advected from Africa; however,

possible influences from urban emissions in Africa and/or

South America, for example, should not be neglected. This

possibility is supported by the relatively high sulfate con-

tent of the aerosol in this layer, which at an average value

of 0.79 ± 0.02 µg m−3 accounts for 23 % of the total aerosol

mass concentration (Fig. 6). Sulfur-rich anthropogenic emis-
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sions from fossil-fuel combustion may have become mixed

with BB emissions by cloud venting over the Gulf of Guinea

region (Dajuma et al., 2019).

One interesting aspect of the LPL is that the ultrafine frac-

tion accounts for about half of the aerosol number concen-

tration (d0 = 105 nm; see PNSD in Fig. 4). Likewise, in the

LPL the fvol is higher than in the other atmospheric levels.

One possible explanation for this is that new particle forma-

tion occurs in the detrainment regions around the shallow

cumulus, which brings air masses from the marine bound-

ary layer (MBL), containing dimethyl sulfide and SO2, into

the LPL. This phenomenon has previously been reported by

several authors (Hegg et al., 1990; Kerminen et al., 2018;

Perry and Hobbs, 1994). Direct convective transport of ultra-

fine particles from the MBL into the LPL is unlikely to be an

important source of such particles, as their concentration in

the MBL is only about 200 cm−3, well below their concen-

tration in the LPL of about 700 cm−3. In the MBL (with its

top at ∼ 600 m a.s.l.), the total and accumulation-mode par-

ticle concentrations are somewhat lower than in the layers

aloft (NCN,20 = 420±160 cm−3 and Nacc = 230±50 cm−3)

and present larger diameters (d0 = 143 nm). The MBL ap-

pears to be only weakly influenced by the African BB, with

MrBC = 0.17 ± 0.07 µg m−3 and NrBC accounting for only

10 % of the NCN,20. Additionally, the aerosol population in

the MBL appears less efficient as CCN, with only 20 % of

particles being activated at S = 0.5 % (Fig. 3d).

In between the UPL and LPL, the ∼ 200 m thick CL was

found centered at ∼ 3.2 km altitude with relatively dry air as

represented by a sharp decrease in q. Such clean layers have

been previously observed in the dry season over the African

continent and adjacent oceans, specifically in the southeast-

ern Atlantic Ocean, with a few hundred (up to 1 km) me-

ters thickness (Hobbs, 2003). Within the CL, the combustion

tracer concentrations MrBC, NrBC, and cCO sharply decrease

to 0.09±0.05 µg m−3, 30±12 cm−3, and 83±4 ppb, respec-

tively. We further found NCN,20 = 500 ± 60 cm−3, which is

comparable to NCN = 500 cm−3 in another CL as reported

by Hobbs (2003). Within the CL, the aerosol size distribu-

tion is substantially shifted towards the Aitken mode (d0 =
90 nm, Fig. 4). The cO3 shows a slight decrease to 48±2 ppb.

Hobbs (2003) proposed that the CL derived from the ultra-

clean upper tropospheric air.

In the vicinity of the western African coast, similar tropo-

spheric stratification was observed in a recent aircraft cam-

paign. Aerosol and trace gas profile measurements over the

Gulf of Guinea in July 2016, measured under the influence

of aged BB plumes originating in central Africa, revealed

two distinct aerosol layers, where the upper one, centered

at 3.8 km altitude, was enriched in rBC (∼ 0.3 µg m−3), CO

(∼ 340 ppb), and organics (∼ 65 µg m−3) (Denjean et al.,

2019; Flamant et al., 2018). Moreover, Weinzierl et al. (2011)

reported fvol = 26 % (13 %–52 %, p3–p97) for BB plumes

near the western African coast in 2008 during SAMUM-

2, which are larger than the fvol within the UPL in this

study. Typically, organic aerosol becomes less volatile dur-

ing atmospheric aging, concurrent with an increase in its

O/C ratio (Grieshop et al., 2009; Isaacman-VanWertz et al.,

2018; Slowik et al., 2012; Zhou et al., 2017). More recently,

from comprehensive measurements on Ascension Island in

the middle of the South Atlantic, Zuidema et al. (2018) de-

scribed a smoke layer over a stratocumulus cloud deck where

“shortwave-absorbing aerosol emanating from biomass burn-

ing in continental Africa advects westwards over the South

Atlantic for approximately one third of the year, from June to

October”. These previously reported results suggest that the

discrete rBC-enriched layer reported here likely formed in

the vicinity of the African coast and tapered as it approached

the South American continent. In addition, the atmospheric

stability facilitated the transport across the South Atlantic to-

wards the Amazon. Further, ongoing studies suggest the ex-

istence of a low-level jet with a maximum around 800 hPa

(∼ 3 km) induced by changes in boundary layer height dur-

ing the day (Anselmo et al., 2020). The low-level jet may be

the main mechanism transporting the African pollution from

the Atlantic Ocean into the Amazon Basin.

3.2 Backward trajectories and potential source regions

in Africa

Based on BTs, which reflect the large-scale trade wind cir-

culation patterns, we investigated the origin and age of the

UPL up to 10 d prior to its observation. Figure 7a com-

pares BT ensembles – started in the relevant offshore area

(i.e., 3◦ N to 3◦ S; 52 to 44◦ W) and during the time pe-

riod of the UPL observation by the aircraft (i.e., 30 Septem-

ber 2014 18:00 UTC) – for the starting heights at 500 m (rep-

resenting near-surface conditions), 2500 m (peak of LPL),

3500 m (peak of the UPL), and 5000 m above ground level

(well above the UPL). The comparison of the different BT

starting heights shows clear differences in air mass advec-

tion patterns: specifically, the UPL BTs indicate rather fast

and directed air mass movements from easterly directions,

whereas the LPL BTs indicated more curvilinear movement

from east-southeasterly directions. The fact that the BT pat-

terns diverge is consistent with the different trace gas and

aerosol properties shown in Fig. 3, underlining that LPL and

UPL represent air masses of different origin and/or atmo-

spheric aging history. Furthermore, the wind fields at about

3500 m illustrate the large-scale meteorology at the UPL al-

titude. The transatlantic transport time of the UPL air masses

was about 10 d according to the BT ensembles.

The fire map in Fig. 7a helps to identify potential source

regions of the UPL aerosol. It includes fires within a 5 d

window (15 to 20 September 2014) of when the BB-laden

air masses likely originated in the African source regions

and then started their ∼ 10 d journey across the Atlantic

Ocean until the aircraft observation on 30 September. Several

hotspots of fire activity in central and southern Africa can be

found in Fig. 7a1. All of them are located in tropical and
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Figure 7. Composite maps combining backward trajectories (BTs) and satellite data products characterizing atmospheric conditions (a1) dur-

ing flight AC19 on 30 September 2014 in comparison to (b) the averages of September observations during multiple years. Panel (a1) shows

HYSPLIT 10 d BTs starting at different altitudes (500, 2500, 3500, 5000 m a.g.l.) at 18:00 UTC on 30 September 2014 (similar time and

location to the UPL observations during flight AC19). Note that the altitudes where the BTs were initiated include the heights of the sam-

pled UPL and LPL. The fire radiative power (FRP) density (mW m−2), retrieved by the Global Fire Assimilation System (GFAS v1.0)

averaged from 15 to 20 September 2014, is also shown as a fire map with 0.1◦ × 0.1◦ grid resolution. The orbits of two CALIPSO pas-

sages on 30 and 16 September 2014 as shown in Fig. 9 as well as the geographic locations of the ATTO site and Ascension Island are

also illustrated. Panel (a2) shows multiple clearly visible fire plumes in the African source region. Panel (b) shows multi-year averages

of all Septembers for (i) HYSPLIT BT ensembles starting at ATTO (1000 and 4000 m a.g.l.) from 2005 to 2018. Contour lines repre-

sent the fraction of occurrence of overpassing trajectories in a specific region as described in Pöhlker et al. (2019). (ii) AIRS-derived

CO data products (400 to 600 hPa atmospheric levels) from 2005 to 2018 and (iii) TRMM precipitation from 2005 to 2018. For gen-

eral illustration, animations (https://climate.nasa.gov/climate_resources/146/video-simulated-clouds-and-aerosols/, last access: 4 July 2019;

https://gmao.gsfc.nasa.gov/research/aerosol/modeling/nr1_movie/, last access: 4 July 2019) of the Goddard Earth Observing Model (Version

5, GEOS-5) show that aerosol particles are transported efficiently from Africa to South America and to a lesser extent from South America

to Africa (Colarco et al., 2010; Yasunari et al., 2011).
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subtropical grasslands, savannas, and shrublands according

to Olson et al. (2001). Particularly, the Miombo woodlands

are well known as a region of frequent and intense fire ac-

tivities, mostly driven by human activities (Andela and van

der Werf, 2014; Barbosa et al., 1999; Earl et al., 2015). For

the time frame of 15 to 20 September 2014, satellite-based

natural color reflectance images show the high fire activity

through a larger number of clearly visible smoke plumes

in the hotspot areas (one example is shown for 19 Septem-

ber 2014 in Fig. 7a2). Note that at the same time, the fire ac-

tivity in South America is still comparatively low (Fig. 7a1).

Overall, the fires, wind field, and BTs in Fig. 7a1 show a co-

herent picture and suggest that the shown grassland, savanna,

and shrubland fires represent the sources for the UPL at the

Brazilian coast.

It has been generally assumed – though not shown in de-

tail and quantified yet – that African smoke accounts for a

significant fraction of pollution input into the Amazon Basin

(Saturno et al., 2018b). Therefore, we complemented the

case-specific map in Fig. 7a1, which focuses on the precise

time window of flight AC19, by a seasonally averaged map

in Fig. 7b, presenting the multi-year September averages of

CO (the complete yearly cycle is shown in Fig. S8). The

map in Fig. 7b emphasizes the large extent of the African

smoke plume (here represented by CO) over the Atlantic

area. It further shows good agreement between the CO plume

pattern and BT ensembles at the central Amazonian ATTO

site, indicating that transatlantic smoke transport is a gen-

eral and seasonally recurring phenomenon beyond the spe-

cific case of the analyzed layer in September 2014. This is

supported by in situ measurements made during the Atmo-

spheric Tomography mission (ATom) 2016–2018 flight mis-

sions, which showed elevated concentrations of BB aerosols

(about 0.1 to 1 µg m−3) over most the of the southern tropi-

cal Atlantic in July to October (Schill et al., 2019). Biomass

smoke particles were the dominant aerosol fraction in this

region between the surface and 4 km altitude. Further note

that precipitation rates over the South Atlantic are compar-

atively low, as shown in Fig. 7b. Accordingly, rain-out and

wash-out mechanisms likely do not substantially reduce the

BB aerosol population during transport.

3.3 Geographic extent of pollution layers over the

Atlantic and direct radiative effects

Satellite-based observations resolve the transatlantic trans-

port of the pollution layers. Figure 8 illustrates the movement

of the African aerosol particles across the Atlantic by means

of the burning tracer CO, where individual plumes during

the dry season of 2014 can be identified. This includes the

plume probed at the Brazilian coast during AC19 (marked

by a dashed line), which appears to be coincidentally the

strongest plume in 2014. Beyond this particular event, sev-

eral weaker plumes were also observed. Based on Fig. 8,

a characteristic transport velocity of ∼ 380 km d−1 can be

Figure 8. Hovmöller plot of the daily AIRS-derived carbon monox-

ide (400 to 600 hPa) distributed over the South Atlantic region

(60◦ W to 20◦ E) from August to October 2014, averaged over the

latitudinal band of 10◦ S to 5◦ N, corresponding to the region of

interest (ROI) highlighted in Fig. 7a1. Several events of transat-

lantic transport of aerosol from Africa towards South America can

be identified. The black dashed line highlights a particularly strong

plume originating around 10 September 2014 and arriving in the

observational area of AC19 on 30 September.

obtained and, therefore, an aging time of ∼ 10 d. Similarly,

satellite-based AOD observations can be used to resolve the

plume movement as shown in Fig. S9.

The transatlantic transport of the particular BB plume that

was probed during AC19 was temporally and geographically

close to that of a volcanogenic sulfate-rich plume, whose ori-

gin was related to a period of strong activity of the Nya-

muragira volcano in the eastern Democratic Republic of

the Congo. The associated major SO2 emissions were ox-

idized to sulfate during the transatlantic passage (Saturno

et al., 2018a). The plume of sulfate-rich aerosols was ob-

served airborne during ACRIDICON-CHUVA flight AC14

on 21 September 2014 in the region from 200 to 400 km

south of Manaus as well as by ground-based measurements

at ATTO from 21 to 30 September 2014. Importantly, the

BB plume probed during AC19 and the volcanogenic plume

probed during AC14 were distinct events (i.e., did not occur

in the same air masses) since the volcanogenic plume (i) oc-

curred ∼ 1 week earlier, (ii) was observed to be strongest

between 4 and 5 km, in contrast to 3 to 4 km for the BB
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Figure 9. CALIPSO-derived lidar profiles for 16 and 30 September 2014, where African BB plumes were identified over the South Atlantic

Ocean. The first profile near the South American coast shows the aerosol layer at similar altitudes to those observed during flight AC19.

Satellite orbits for both profiles are shown in Fig. 7a1.

plume, and (iii) showed a very low rBC mass concentra-

tion. However, the volcanogenic plume can be regarded as

a “reference case of the dynamics and conditions of transat-

lantic aerosol transport from southern Africa to South Amer-

ica” (Saturno et al., 2018a). The temporal coincidence of

the volcanogenic and BB plumes suggests that transatlantic

aerosol transport was particularly efficient in the second half

of September 2014. Moreover, the observation that the single

volcanogenic plume significantly influenced the aerosol par-

ticle chemical composition, hygroscopicity, and optical prop-

erties at ATTO (Saturno et al., 2018a) suggests that the more

frequent and presumably stronger African BB plumes likely

have a similarly profound impact on the central Amazonian

aerosol population, at least during the dry season.

The African BB plumes (particularly the strong event at

the end of September) were also observed by the vertically

resolved aerosol extinction measurements by the CALIPSO

satellite, revealing elevated and vertically defined smoke lay-

ers over the South Atlantic. Figure 9 shows two selected

CALIPSO passages on 16 and 30 September 2014 (the day

of the AC19 flight). More examples of similar layers over

the Atlantic Ocean in September 2016 are shown and dis-

cussed in Barkley et al. (2019). These passages show ex-

emplary snapshots of the elevated smoke layers at different

longitudinal locations: on 16 September 2014 a layer was

probed relatively close to the southern African coast, whereas

on 30 September 2014 a layer was observed halfway be-

tween Ascension Island and the Amazon River delta. For

the overpass on 30 September 2014, the layer’s N–S ex-

tension was about 1200 km and its altitude between 3 and

4 km, which agrees well with the altitude of the UPL obser-

vation during flight AC19. For the passage on 16 Septem-

ber 2014, the layer’s N–S extension was about 4◦ N to 20◦ S

(∼ 2800 km) and its altitude between 2 and 5 km. In this

context, a dedicated study of Adebiyi and Zuidema (2016)

has shown that 45 % of the forward trajectories of satellite-

detected smoke plumes in southern Africa exit the continent

westwards between 5 and 15◦ S and are transported west-

ward by the Southern African Easterly Jet (AES-J), overly-

ing a semi-permanent marine stratocumulus deck. Moreover,

Fig. 9 suggests that the layer’s latitudinal extent decreases as

it approaches the South American continent.

In order to constrain the seasonal and vertical aspects of

the transatlantic transport, we analyzed the satellite-retrieved

aerosol profiles over the South Atlantic Ocean during the

dry season of multiple years (2012 to 2018). Figure 10a–c

show the extinction coefficients of all CALIPSO overpasses

within the region of interest (ROI, as defined in Fig. 7a) av-

eraged over the months of August, September, and October.

High aerosol loadings (up to 5 km altitude) in the longitude

band from 10 to 20◦ E correspond to BB emissions over the

African continent. Likewise, comparably high extinction co-

efficients (up to 3 km altitude) are observed due to BB fires in

South America (60 to 40◦ W). Over the South Atlantic from

40◦ W to 10◦ E, the maximum extinction coefficient is ob-

served at two different levels of the atmosphere, separated

by a relatively clean layer in between. The lower layer (alti-

tude < 1 km) with a pronounced extinction coefficient rep-
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Figure 10. Curtain plot showing the columnar aerosol extinction

coefficient at 532 nm, based on multi-year CALIOP data from 2012

to 2018 (only nighttime data). Panels represent monthly averages

for the months of (a) August, (b) September, and (c) October within

the latitude band from 10◦ S to 5◦ N, corresponding to the ROI indi-

cated in Fig. 7a1. The grey shaded area represents the mean surface

elevation and depicts boundaries of the African and South Ameri-

can continents. Panel (d) shows the daily mean of the direct radia-

tive forcing at the top of the atmosphere (DRF-TOA) exerted by the

pollution layer over the South Atlantic Ocean, calculated using the

LibRadTran radiative transfer model.

resents the MBL, which is presumably dominated by the

(coarse-mode) marine aerosols and is clearly visible through-

out the 3 months in Fig. 10. On the other hand, the higher

layer (altitudes between 1 and 5 km) represents the African

BB aerosol being transported westwards over the Atlantic

all the way to South America. The transport pattern stands

out in the months of August and September, but is weak-

ened in October, when the remaining BB plumes appear to

be mostly/completely removed from the atmosphere halfway

before reaching South America. The injection height of BB

aerosol in Africa is relatively high due to the AEJ-S, which

induces an upward motion directly below the jet, enhancing

updrafts over land that lift up BB aerosols to altitudes where

they can be efficiently transported over the South Atlantic

(Adebiyi and Zuidema, 2016). The vertical location of pollu-

tion plumes in the atmosphere is an important parameter, as it

can considerably influence its atmospheric lifetime. Aerosol

lifted up to higher altitudes tends to be advected over larger

distances due to less efficient removal mechanisms (i.e., wet

deposition). When leaving the African coast, the smoke layer

is present at altitudes between 1.5 and 5 km, but becomes

more restricted to higher altitudes (3–5 km) as it moves to-

wards South America. Figure 10 suggests a pronounced thin-

ning of the layer during its movement westwards due to dilu-

tion.

The transatlantic transport pattern of African BB, as pre-

sented here, is not well represented by the state-of-art atmo-

spheric models. The simulations of the transatlantic transport

of BB aerosol by several global aerosol models are able to

capture the vertical distribution of aerosol over the African

continent, but diverge from the satellite observations as it

moves westward over the Atlantic Ocean (Das et al., 2017).

In the models, BB aerosol plumes quickly descend to lower

levels just off the western African coast, while our obser-

vations suggest that they are transported at high altitudes

(< 5 km) well above the MBL all the way to the Amazon

Basin. After reaching the Brazilian coast, the smoke layer

gradually subsides, likely being entrained into the cloud layer

below or more deeply mixing into the boundary layer. The

effects of the aged pollution plume on radiative and cloud-

nucleation properties over the Atlantic and upon arrival in

the Amazon Basin are still uncertain.

In order to estimate the direct radiative effect that the

African BB layer exerts along its transport over the Atlantic,

we used the mean CALIPSO profiles to obtain information

about the vertical extent of the plumes. Figure 10d shows

the longitudinal profile of DRF-TOA calculated for different

AOD values and atmospheric conditions as daily mean val-

ues for 3 different months. We observed a decrease in the

warming effect of the aerosol towards South America. Near

the African coast, a positive DRF-TOA was observed, reach-

ing values as high as +0.6 W m−2 in August, +0.4 W m−2 in

September, and +0.17 W m−2 in October. On the other hand,

negative DRF-TOA, ranging from −0.03 to −0.10 W m−2,

was found through the 3 months for lower AOD values (lon-

gitudes < 5◦ E). The change in sign of the DRF-TOA is

mostly a result of the high amount of absorption assumed

for the aerosol layer in the simulations (single scattering

albedo of 0.84). At higher optical depths, the absorption in

the layer dominates, thus causing a positive forcing (warm-

ing) at TOA. At low AOD values, on the other hand, the

absorption is weaker and the back-scattered radiation dom-

inates the radiative effect, resulting in a negative aerosol ra-

diative forcing at the TOA. Sensitivity cases for different as-

sumptions about aerosol and surface properties are shown in

Fig. S10. Our results suggest that the transport of BB smoke

across the Atlantic has strong direct effects on the regional

radiative balance, which changes from warming to cooling

along the way from southern Africa to South America.

3.4 Transport of the pollution layer into the Amazon

Basin

An important question for the aerosol cycling in the Amazo-

nian troposphere is how the UPL evolves as it moves from
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Figure 11. Vertical profiles of selected meteorological, aerosol, and trace gas parameters measured inshore and offshore of the Brazilian coast

during AC19: (a) potential temperature, θ ; (b) water vapor mass mixing ratio, w; (c) CCN (S = 0.5 %) number concentration, NCCN,0.5;

(d) rBC mass concentration, MrBC; and (e) carbon monoxide mole fraction, cCO. The figure shows the medians calculated for 150 m altitude

bins over the flight sections inshore (yellow) and offshore (blue) of the Brazilian coast (as indicated in Fig. 1). The grey shaded area represents

the approximate vertical location of the upper pollution layer (UPL) and the grey dashed line the lower limit of the clean layer (CL) observed

exclusively during the offshore profiles.

the Atlantic Ocean into the South American continent. With

the data available from flight AC19 (six offshore and two on-

shore penetrations of the UPL, Fig. 1), at least some con-

clusion can be drawn for the first ∼ 400 km of UPL (as

well as CL and LPL) transport over land. Figure 11 over-

lays onshore vs. offshore vertical profiles of selected mete-

orological, aerosol, and trace gas parameters. Meteorologi-

cally, the θ profiles show some divergences between inshore

and offshore in the well-mixed continental boundary layer

(up to ∼ 1.5 km altitude) and in the UPL altitude band. Even

stronger differences were found in the q profiles, which show

the broadening of the upper dry layer from offshore to on-

shore profiles. Regarding the CL, the characteristic trace gas

and aerosol concentration minima in the offshore profiles

mostly disappeared onshore (e.g., for CCN, MrBC, and cCO,

Fig. 11c, d, e). This fading of the CL minimum appears to

be linked to the evolution of the UPL’s vertical structure,

which mostly remains intact, showing however a tendency

to broaden and subside into the altitude range of the CL (i.e.,

3.1 to 3.3 km), likely because of the onset of deeper vertical

convective mixing over land. In addition, the inshore profiles

also suggest that some BB emissions have been added, as the

air masses moved inland because the increased concentra-

tions of CCN, rBC, and CO in the LPL cannot be explained

by downward mixing from the UPL alone. This is consis-

tent with the presence of scattered fires in the coastal region

(Fig. 1).

In this context note that a pronounced UPL was exclu-

sively observed during flight AC19 (the only flight over

the northeastern basin), whereas no comparable stratification

was found during the other 13 flights in the central and west-

ern parts of the basin (Wendisch et al., 2016). Also, upon

ascent after take-off and descent before landing of AC19 at

Manaus International Airport, the altitude range (i.e., 3 to

4 km) was probed; however, no clear indications of an UPL

were found. This suggests that the UPL started broadening

over the first 400 km over the continent and faded away when

the air masses reached the central basin in the region of Man-

aus (∼ 1200 km from the coast). Accordingly, we conclude

that convective mixing by the abundant cumulus that typ-

ically reaches up to 4–6 km over the Amazon prevented a

well-defined UPL from being preserved far into the central

basin. As a result, the aerosol brought in by the UPL is mixed

downwards through convection and then transported further

westwards with the boundary layer air masses. Similar down-

ward mixing of BB emissions by convection over land has

been reported from the south of western Africa (Dajuma et

al., 2019).

3.5 Estimated relevance of the pollution layer for

central Amazonian aerosol cycling

Considering the large horizontal extension of the pollu-

tion layer, it presumably accounts for an important input of

aerosols and trace gases into the Amazon Basin, with poten-

tially strong impacts for cloud microphysics as well as the

atmospheric radiative budget. Here we put the experimen-

tal results outlined so far into a broader context of multi-

ple years of observations at the central Amazonian ATTO

site to estimate the relevance of the pollution layer input for
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Figure 12. Seasonality of aerosol and trace gas properties based on long-term observations (2013–2018) at Ascension Island (a) and at the

ATTO site (b–g). The plot shows (a) fine-mode aerosol optical depth (AODfine) at 500 nm retrieved by the AERONET sunphotometer at

Ascension Island; (b) cumulative fire intensity along the backward trajectories (CFBT) of air masses arriving at the ATTO site (for details,

see Sect. 2.6); (c) black carbon mass concentration MBCe
; (e) CCN concentrations and activated fraction at S = 0.5 %; (e) CO mole fraction;

(f) single scattering albedo, SSA; and (g) BC enhancement ratio, EnRBC. The boxplots represent weekly statistics with the mean (red

markers), the median (segment), and the 5th and 75th percentiles (lower and upper box edges) of the long-term daily measurements. The

green and red shaded areas represent the wet and dry seasons, with transition periods in between, as defined in Pöhlker et al. (2016). On the

top of the figure, markers indicate periods within the BB-influenced part of the year that ATTO is dominated either by the LRT of African

BB or by the South American BB.

the central Amazonian aerosol lifecycle. Therefore, Fig. 12

combines the seasonal variability of relevant parameters to

assess the interplay of African vs. South American BB emis-

sions for the observed aerosol abundance and properties at

ATTO. The influence of African BB transport into the basin

is represented by the fine-mode AOD at Ascension Island,

AODfine,ASC, based on ∼ 20 years of AERONET observa-

tions. Note that Ascension Island is located in the main BT

path of the transatlantic pollution transport and therefore a

well-located observational site en route (Fig. 7a1). The in-

fluence of South American BB for the ATTO observations is

represented by a BT data product, CFBT, based on pixel-wise

accumulation of fire intensities along individual ATTO BTs

over a multi-year period.

Generally, the Amazonian atmosphere is strongly influ-

enced by BB aerosols during the dry season and to a some-

what lower extent during the flanking transition periods,

causing significant increases in scattering and absorption

coefficients (Rizzo et al., 2013; Saturno et al., 2018b). In

Fig. 12, the long-lasting BB influence can be seen by means

of the broad seasonal maxima in MBCe , NCCN,0.5, and cCO.

The BB-impacted part of the year in the Amazon, includ-

ing dry season and transition periods, will be called hereafter

the BB season. Remarkably, the African BB influence (repre-
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Table 3. Characteristic aerosol and trace gas concentrations during the African vs. South American dominated periods of the BB season at

the ATTO site: arithmetic mean ± SD, median and inter-quartile range of daily averages from 2013 to 2018.

African dominated BBb South American dominated BBc

mean SD median 25th perc 75th perc mean SD median 25th perc 75th perc

NCN,20 (cm−3) 1350 550 1300 900 1700 2000 1000 1800 1400 2300

NCCN,0.5 (cm−3) 1100 500 1090 750 1400 1800 900 1600 1200 2000

MBCe
(µg m−3) 0.36 0.12 0.33 0.26 0.42 0.41 0.17 0.36 0.29 0.48

cCO (ppb) 140 30 131 120 150 190 70 170 150 200

fCCN,0.5 (%) 83 6 84 80 87 87 04 88 84 90

EnRBC
a (ng m−3 ppb−1) 11 6 10 7 14 6 4 5 3 7

SSA (637 nm) 0.85 0.02 0.85 0.84 0.86 0.90 0.03 0.90 0.89 0.93

a Daily EnRBC (from 2013 to 2018) was calculated by applying a bivariate fit to 30 min averages of MBCe and cCO measurements (see Sect. 2.3). b To calculate the African
BB dominated state, periods with South American fire influences (CFBT > 50th percentile of CFBT,dry) and with clean atmospheric conditions (MBCe < 50th percentile of

MBCe,dry) were excluded. c To calculate the South American BB dominated state, we selected periods with South American fire influences (CFBT > 50th percentile of
CFBT,dry) and with polluted atmospheric conditions (MBCe > 50th percentile of MBCe,dry).

sented by AODfine,ASC) vs. the South American BB influence

(represented by CFBT) shows contrasting and complemen-

tary seasonal cycles: AODfine,ASC has its onset in July, peaks

in September, and drops again in October (see also Figs. 8

and 10), whereas CFBT has its onset in September, peaks in

October/November, and drops towards the beginning of De-

cember. The seasonal cycles in MBCe , NCCN,0.5, and cCO vs.

AODfine,ASC and CFBT in Fig. 12 suggest that the Amazonian

BB season can be regarded as consisting of an African-smoke

dominated period in the first half and an South American-

smoke dominated period in the second half of this season. In

fact, differences between the first and second halves of the

BB season have been found and are summarized in Table 3.

In the first half of the BB season, under predominant

African influence, seasonally averaged BB tracer concen-

trations of MBCe = 0.36 ± 0.12 µg m−3 and cCO = 140 ±
30 ppb were observed, whereas in the second half un-

der predominant South American influence, MBCe = 0.41 ±
0.17 µg m−3 and cCO = 190±70 ppb were somewhat higher.

The CCN concentrations increase throughout the dry sea-

son, with NCCN,0.5 = 1100 ± 500 cm−3 in the African-BB

and NCCN,0.5 = 1800±900 cm−3 in the South American-BB

dominated states. In both periods, the BB-derived aerosol

particles show high CCN efficiency, with 83 % and 87 %

of particle activation at S = 0.5 % during the first and sec-

ond halves of the BB season, respectively. Clearer differ-

ences between the two BB properties in the dry season

were observed, however, for the SSA and the BC enhance-

ment ratio, EnRBC (Fig. 12 and Table 3). The aerosol was

strongly absorbing in August, with a minimum SSA of

about 0.85 ± 0.02. Subsequently, the absorption properties

decreased towards November with a relative maximum in

SSA at about 0.90 ± 0.03. These results are consistent with

the large 1NrBC/1NCN,20 of ∼ 40 % in the African UPL vs.

the rather low 1NrBC/1NCN,20 of ∼ 5 % in an exemplary

Amazonian BB plume (Sect. 3.1, Fig. 5a). Moreover, Saturno

et al. (2018b) have shown that the brown carbon (BrC) con-

tribution to total absorption becomes increasingly important

towards the end of the dry season. This is a further indication

of the predominance of regional fires towards the later BB

season, given that BrC is quickly photodegraded in the atmo-

sphere after emission, with a typical lifetime of a few days

to weeks (Fleming et al., 2020; Wong et al., 2019), compara-

ble to the transport times of African BB emissions across the

Atlantic.

In the Amazonian dry season, the EnRBC values span

from 3 to 14 ng m−3 ppb−1 (daily values), with the high-

est values occurring under the influence of African plumes

and associated with lower SSA (see also Saturno et al.,

2018b). The EnRBC decreases from its peak of 11 ±
6 ng m−3 ppb−1 in July–September to a relative minimum of

6 ± 4 ng m−3 ppb−1 around November (Fig. 12g). The high

EnRBC in African plumes can be attributed to more flaming

combustion in the comparatively dry grassland, savanna, and

shrubland vegetation, in contrast to more smoldering com-

bustion of Amazonian deforestation fires in the moist trop-

ical forests. For comparison, Darbyshire et al. (2019) re-

ported, from the SAMBBA aircraft campaign over the south-

ern Amazon Basin, EnRBC of 3 ng m−3 ppb−1 in the west

associated with more smoldering combustion of pasture and

forested areas, in contrast to EnRBC of 12 ng m−3 ppb−1 in

the eastern part influenced by cerrado fires. Note that dif-

ferences between ground-based (this section) and aircraft

(Sect. 3.1) EnRBC presented in this paper are due to re-

moval processes, combustion phase, and, possibly, the use

of different measurement techniques. However, the indepen-

dent ground-based observations do show a clear decrease in

EnRBC from African- to Amazonian-BB dominated states,

which is consistent with the aircraft measurements.
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4 Summary and conclusions

In this study, we probed an event of African BB being ad-

vected into the Amazon Basin with a comprehensive set of

instruments for aerosol and trace gas measurements onboard

the HALO aircraft during the ACRIDICON-CHUVA cam-

paign in September 2014. Vertical profiles over the Atlantic

Ocean and inshore over the northeastern Amazon Basin re-

vealed a horizontally extended rBC-enriched layer (referred

to as the UPL) of about 300 m thickness at ∼ 3.5 km alti-

tude, which showed strongly elevated aerosol and trace gas

concentrations compared to the other atmospheric levels be-

low 6 km. The plume was dominated by aerosol particles in

the accumulation-mode size range (Nacc = 850±330 cm−3),

peaking at ∼ 130 nm diameter, and consisting mostly of par-

ticles containing non-volatile material. Remarkably, rBC par-

ticles appeared to be a dominant species, with mean num-

ber and mass concentrations of NrBC = 280 ± 110 cm−3 and

MrBC = 1.0 ± 0.4 µg m−3, respectively. This accounts for ∼
40 % of the total aerosol number and 15 % of the submi-

crometer aerosol mass concentrations. The UPL also shows

high mass fractions of organics (50 %), sulfate (17 %), am-

monium (8 %), and nitrate (10 %). Along with rBC, high

cCO (150 ± 30 ppb) indicated that the layer originated from

biomass burning. Moreover, the advanced photochemical ag-

ing of the plume was indicated by the elevated cO3 (56 ±
9 ppb) and by the very high f44 measured by the AMS. De-

spite the large fraction of rBC, the aerosol in the UPL ap-

peared to be very CCN efficient due to internal mixing of

rBC with sulfate, nitrate, and oxygenated organic aerosol,

with ∼ 70 % of particles activated at S = 0.5 %.

Backward trajectory analysis and remote sensing observa-

tions showed that the layer originated from BB in African

grasslands, savannas, and shrublands. Therefore, the aerosol

in the pollution layer upon arrival in South America, as

probed by aircraft, has experienced at least 10 d of atmo-

spheric aging over the African continent and the Atlantic

Ocean. Moreover, multi-year remote sensing observations

showed that layered atmospheric structures, and also the

westward advection of African BB plumes, are a rather com-

mon phenomenon over the South Atlantic during the Ama-

zonian dry season, peaking each year in August and Septem-

ber. Near the African coast, the vertical extent of the layer

is a few kilometers, and it narrows down to only a few hun-

dred meters while transported to South America. Based on

the remote sensing data, we further calculate the DRF-TOA

exerted by the pollution layer as a function of longitude. We

found that the aging of the plume leads to a change in the

DRF-TOA from a positive (warming) to a negative (cooling)

effect as it moves westwards over the Atlantic. While the lay-

ered structure prevails all the way across the Atlantic for sev-

eral days, it becomes quickly mixed vertically just a few hun-

dreds of kilometers after reaching the South American conti-

nent. The aerosol particles in the layer are subsequently en-

trained into the continental boundary layer by convection and

large-scale subsidence. We propose that long-range transport

of such layers is the main pathway supplying African CCN

and highly aged BC into the Amazonian atmosphere.

Long-term (2013–2018) ground-based aerosol measure-

ments at the ATTO site in central Amazonia have demon-

strated that long-range transported BB from Africa has a pro-

nounced impact on aerosol particle properties within the dry

season. From July to December, the Amazonian atmosphere

is strongly influenced by BB aerosols, with corresponding

increases in scattering and absorption coefficients (Saturno

et al., 2018b; Rizzo et al., 2013), as well as the BB trac-

ers, BC and CO. The interplay of African vs. South Amer-

ican BB emissions at ATTO is expressed by defined sea-

sonal cycles of SSA, which increased from 0.85 in August

to 0.90 in November, while EnRBC decreased from 11±6 to

6 ± 4 ng m−3 ppb−1.

This study highlights the importance of the transatlantic

transport as a source of highly aged rBC and CCN-active

particles to the Amazonian atmosphere, especially the north-

eastern regions, which are less impacted by anthropogenic

pollution and regional fires. This process clearly merits fu-

ture modeling investigations to assess its effects on regional

radiative forcing as well as cloud properties and lifecycle.
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Appendix A: List of frequently used symbols and

acronyms

Description Acronym

Aerosol optical depth AOD

Aerosol Robotic Network AERONET

Aerosol, Cloud, Precipitation, And Radiation Interactions And Dynamics Of Convective Cloud Sys-

tems Campaign

ACRIDICON-

CHUVA

Amazon Tall Tower Observatory ATTO

Atmospheric Infrared Sounder AIRS

Backward trajectory BT

Basic HALO Measurement And Sensor System BAHAMAS

Biomass burning BB

Black carbon BC

Clean layer CL

Cloud condensation nuclei CCN

Cloud-Aerosol Lidar And Infrared Pathfinder Satellite Observations CALIPSO

Condensation particle counters CPC

Coordinated Universal Time UTC

Compact Time-of-Flight Aerosol Mass Spectrometer C-ToF-AMS

Fire radiative power FRP

Long-range transport LRT

Lower pollution layer LPL

Marine boundary layer MBL

Mass Absorption Aerosol Photometer MAAP

Moderate Resolution Imaging Spectroradiometer MODIS

Particle number size distributions PNSD

Refractory black carbon rBC

Region of interest ROI

Single Particle Soot Photometer SP2

Single scattering albedo SSA

Ultra High Sensitivity Aerosol Spectrometer UHSAS

Upper pollution layer UPL
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Lavrič, J. V., Ma, N., Ming, J., Paulsen, H., Pöhlker, M. L.,

Rizzo, L. V., Schlag, P., Su, H., Walter, D., Wolff, S., Zhang,

Y., Artaxo, P., Pöschl, U., and Andreae, M. O.: Black and

brown carbon over central Amazonia: long-term aerosol mea-

surements at the ATTO site, Atmos. Chem. Phys., 18, 12817–

12843, https://doi.org/10.5194/acp-18-12817-2018, 2018b.

Schill, G. P., Froyd, K. D., Bian, H., Brock, C. B., Ray, E., Horn-

brook, R. S., Hills, A. J., Apel, E. C., Chen, M., Colarco, P.,

and Murphy, D. M.: The ubiquity of dilute, aged smoke in the

global remote troposphere and its effect on climate, Nat. Geosci.,

in preparation, 2019.

Schnaiter, M.: Absorption amplification of black carbon internally

mixed with secondary organic aerosol, J. Geophys. Res., 110,

D19204, https://doi.org/10.1029/2005JD006046, 2005.

Schneider, J., Freutel, F., Zorn, S. R., Chen, Q., Farmer, D. K.,

Jimenez, J. L., Martin, S. T., Artaxo, P., Wiedensohler, A.,

and Borrmann, S.: Mass-spectrometric identification of primary

biological particle markers and application to pristine submi-

cron aerosol measurements in Amazonia, Atmos. Chem. Phys.,

11, 11415–11429, https://doi.org/10.5194/acp-11-11415-2011,

2011.

Schulz, C., Schneider, J., Amorim Holanda, B., Appel, O., Costa,

A., de Sá, S. S., Dreiling, V., Fütterer, D., Jurkat-Witschas, T.,

Klimach, T., Knote, C., Krämer, M., Martin, S. T., Mertes, S.,

Pöhlker, M. L., Sauer, D., Voigt, C., Walser, A., Weinzierl, B.,

Ziereis, H., Zöger, M., Andreae, M. O., Artaxo, P., Machado,

L. A. T., Pöschl, U., Wendisch, M., and Borrmann, S.: Aircraft-

based observations of isoprene-epoxydiol-derived secondary or-

ganic aerosol (IEPOX-SOA) in the tropical upper troposphere

over the Amazon region, Atmos. Chem. Phys., 18, 14979–15001,

https://doi.org/10.5194/acp-18-14979-2018, 2018.

Schwarz, J. P., Gao, R. S., Fahey, D. W., Thomson, D. S., Watts,

L. A., Wilson, J. C., Reeves, J. M., Darbeheshti, M., Baum-

gardner, D. G., Kok, G. L., Chung, S. H., Schulz, M., Hen-

dricks, J., Lauer, A., Kärcher, B., Slowik, J. G., Rosenlof, K.

H., Thompson, T. L., Langford, A. O., Loewenstein, M., and

Aikin, K. C.: Single-particle measurements of midlatitude black

carbon and light-scattering aerosols from the boundary layer

to the lower stratosphere, J. Geophys. Res.-Atmos., 111, 1–15,

https://doi.org/10.1029/2006JD007076, 2006.

Schwarz, J. P., Gao, R. S., Spackman, J. R., Watts, L. A., Thomson,

D. S., Fahey, D. W., Ryerson, T. B., Peischl, J., Holloway, J. S.,

Trainer, M., Frost, G. J., Baynard, T., Lack, D. A., de Gouw, J. A.,

Warneke, C., and Del Negro, L. A.: Measurement of the mixing

state, mass, and optical size of individual black carbon particles

in urban and biomass burning emissions, Geophys. Res. Lett., 35,

1–5, https://doi.org/10.1029/2008GL033968, 2008.

Shrivastava, M., Andreae, M. O., Artaxo, P., Barbosa, H. M. J.,

Berg, L. K., Brito, J., Ching, J., Easter, R. C., Fan, J., Fast, J. D.,

Feng, Z., Fuentes, J. D., Glasius, M., Goldstein, A. H., Alves, E.

G., Gomes, H., Gu, D., Guenther, A., Jathar, S. H., Kim, S., Liu,

Y., Lou, S., Martin, S. T., McNeill, V. F., Medeiros, A., de Sá, S.

S., Shilling, J. E., Springston, S. R., Souza, R. A. F., Thornton,

J. A., Isaacman-VanWertz, G., Yee, L. D., Ynoue, R., Zaveri, R.

A., Zelenyuk, A., and Zhao, C.: Urban pollution greatly enhances

formation of natural aerosols over the Amazon rainforest, Nat.

Commun., 10, 1046, https://doi.org/10.1038/s41467-019-08909-

4, 2019.

Slowik, J. G., Wong, J. P. S., and Abbatt, J. P. D.: Real-

time, controlled OH-initiated oxidation of biogenic sec-

ondary organic aerosol, Atmos. Chem. Phys., 12, 9775–9790,

https://doi.org/10.5194/acp-12-9775-2012, 2012.

Stamnes, K., Tsay, S.-C., Wiscombe, W., and Laszlo, I.: DISORT, A

General-Purpose Fortran Program for Discrete Ordinate-Method

Radiative Transfer in Scattering and Emitting Layered Media:

Documentation of Methodology, Tech. rep., Dept. of Physics and

Engineering Physics, Stevens Institute of Technology, Hoboken,

NJ 07030, 2000.

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Co-

hen, M. D., and Ngan, F.: NOAA’s HYSPLIT Atmospheric

Transport and Dispersion Modeling System, B. Am. Meteo-

rol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-

00110.1, 2015.

Stephens, M., Turner, N., and Sandberg, J.: Particle identification by

laser-induced incandescence in a solid-state laser cavity, Appl.

Optics, 42, 3726–36, https://doi.org/10.1364/AO.42.003726,

2003.

Swap, R., Garstang, M., Greco, S., Talbot, R., and Kallberg, P.:

Saharan dust in the Amazon Basin, Tellus B, 44, 133–149,

https://doi.org/10.1034/j.1600-0889.1992.t01-1-00005.x, 1992.

Talbot, R. W., Andreae, M. O., Berresheim, H., Artaxo, P., Garstang,

M., Harriss, M., Beecher, K. M., and Li, S.-M.: Aerosol Chem-

istry During the Wet Season in Central Amazonia?: The Influ-

ence of Long-Range Transport, J. Geophys. Res., 95, 16955–

16969, 1990.

Thompson, A. M., Diab, R. D., Bodeker, G. E., Zunckel, M., Coet-

zee, G. J. R., Archer, C. B., McNamara, D. P., Pickering, K. E.,

Combrink, J., Fishman, J., and Nganga, D.: Ozone over southern

Africa during SAFARI-92/TRACE A, J. Geophys. Res.-Atmos.,

101, 23793–23807, https://doi.org/10.1029/95JD02459, 1996.

Tritscher, T., Jurányi, Z., Martin, M., Chirico, R., Gysel, M.,

Heringa, M. F., DeCarlo, P. F., Sierau, B., Prévôt, A. S. H., Wein-

gartner, E., and Baltensperger, U.: Changes of hygroscopicity

and morphology during ageing of diesel soot, Environ. Res. Lett.,

6, 034026, https://doi.org/10.1088/1748-9326/6/3/034026, 2011.

Atmos. Chem. Phys., 20, 4757–4785, 2020 www.atmos-chem-phys.net/20/4757/2020/

https://doi.org/10.1029/2000GL012585
https://doi.org/10.5194/acp-8-1153-2008
https://doi.org/10.5194/acp-8-1153-2008
https://doi.org/10.5194/acp-18-10391-2018
https://doi.org/10.5194/acp-18-10391-2018
https://doi.org/10.5194/acp-18-12817-2018
https://doi.org/10.1029/2005JD006046
https://doi.org/10.5194/acp-11-11415-2011
https://doi.org/10.5194/acp-18-14979-2018
https://doi.org/10.1029/2006JD007076
https://doi.org/10.1029/2008GL033968
https://doi.org/10.1038/s41467-019-08909-4
https://doi.org/10.1038/s41467-019-08909-4
https://doi.org/10.5194/acp-12-9775-2012
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.1364/AO.42.003726
https://doi.org/10.1034/j.1600-0889.1992.t01-1-00005.x
https://doi.org/10.1029/95JD02459
https://doi.org/10.1088/1748-9326/6/3/034026


B. A. Holanda et al.: Influx of African biomass burning aerosol during the Amazonian dry season 4785

Wang, Q., Saturno, J., Chi, X., Walter, D., Lavric, J. V.,

Moran-Zuloaga, D., Ditas, F., Pöhlker, C., Brito, J., Car-

bone, S., Artaxo, P., and Andreae, M. O.: Modeling investi-

gation of light-absorbing aerosols in the Amazon Basin dur-

ing the wet season, Atmos. Chem. Phys., 16, 14775–14794,

https://doi.org/10.5194/acp-16-14775-2016, 2016.

Weinzierl, B., Sauer, D., Esselborn, M., Petzold, A., Veira, A.,

Rose, M., Mund, S., Wirth, M., Ansmann, A., Tesche, M., Gross,

S., and Freudenthaler, V.: Microphysical and optical proper-

ties of dust and tropical biomass burning aerosol layers in the

Cape Verde region-an overview of the airborne in situ and li-

dar measurements during SAMUM-2, Tellus B, 63, 589–618,

https://doi.org/10.1111/j.1600-0889.2011.00566.x, 2011.

Wendisch, M., Pöschl, U., Andreae, M. O., MacHado, L. A. T.,

Albrecht, R., Schlager, H., Rosenfeld, D., Martin, S. T., Abdel-

monem, A., Afchine, A., Araujo, A. C., Artaxo, P., Aufmhoff,

H., Barbosa, H. M. J., Borrmann, S., Braga, R., Buchholz, B.,

Cecchini, M. A., Costa, A., Curtius, J., Dollner, M., Dorf, M.,

Dreiling, V., Ebert, V., Ehrlich, A., Ewald, F., Fisch, G., Fix,

A., Frank, F., Futterer, D., Heckl, C., Heidelberg, F., Huneke, T.,

Jakel, E., Jarvinen, E., Jurkat, T., Kanter, S., Kastner, U., Ken-

ntner, M., Kesselmeier, J., Klimach, T., Knecht, M., Kohl, R.,

Kolling, T., Kramer, M., Kruger, M., Krisna, T. C., Lavric, J. V.,

Longo, K., Mahnke, C., Manzi, A. O., Mayer, B., Mertes, S.,

Minikin, A., Molleker, S., Munch, S., Nillius, B., Pfeilsticker,

K., Pohlker, C., Roiger, A., Rose, D., Rosenow, D., Sauer, D.,

Schnaiter, M., Schneider, J., Schulz, C., De Souza, R. A. F.,

Spanu, A., Stock, P., Vila, D., Voigt, C., Walser, A., Walter, D.,

Weigel, R., Weinzierl, B., Werner, F., Yamasoe, M. A., Ziereis,

H., Zinner, T., and Zoger, M.: Acridicon-chuva campaign: Study-

ing tropical deep convective clouds and precipitation over ama-

zonia using the New German research aircraft HALO, B. Am.

Meteorol. Soc., 97, 1885–1908, https://doi.org/10.1175/BAMS-

D-14-00255.1, 2016.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T.

T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton,

D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global

fire emissions estimates during 1997–2016, Earth Syst. Sci. Data,

9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.

Willis, M. D., Healy, R. M., Riemer, N., West, M., Wang, J.

M., Jeong, C.-H., Wenger, J. C., Evans, G. J., Abbatt, J. P.

D., and Lee, A. K. Y.: Quantification of black carbon mixing

state from traffic: implications for aerosol optical properties, At-

mos. Chem. Phys., 16, 4693–4706, https://doi.org/10.5194/acp-

16-4693-2016, 2016.

Winderlich, J., Chen, H., Gerbig, C., Seifert, T., Kolle, O., Lavrič,
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