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The discovery of new pharmaceutical drugs is one of the preeminent tasks—scientifically,

economically, and socially—in biomedical research. Advances in informatics and

computational biology have increased productivity at many stages of the drug discovery

pipeline. Nevertheless, drug discovery has slowed, largely due to the reliance on small

molecules as the primary source of novel hypotheses. Natural products (such as plant

metabolites, animal toxins, and immunological components) comprise a vast and diverse

source of bioactive compounds, some of which are supported by thousands of years

of traditional medicine, and are largely disjoint from the set of small molecules used

commonly for discovery. However, natural products possess unique characteristics

that distinguish them from traditional small molecule drug candidates, requiring new

methods and approaches for assessing their therapeutic potential. In this review, we

investigate a number of state-of-the-art techniques in bioinformatics, cheminformatics,

and knowledge engineering for data-driven drug discovery from natural products. We

focus on methods that aim to bridge the gap between traditional small-molecule drug

candidates and different classes of natural products. We also explore the current

informatics knowledge gaps and other barriers that need to be overcome to fully leverage

these compounds for drug discovery. Finally, we conclude with a “road map” of research

priorities that seeks to realize this goal.

Keywords: drug discovery, methods, cheminformatics, bioinformatics, ontologies, translation, natural products

1. INTRODUCTION

Drug discovery is the process by which new pharmaceutical drugs are identified, and along with
drug development (validating, testing, and marketing a new drug), it comprises one of the most
substantial activities in pharmaceutical science. A 2018 analysis showed that roughly 20% of the
US National Institutes of Health (NIH) budget for the years 2010–2016 funded the discovery
and development of 210 new molecular entities (Cleary et al., 2018). Since the advent of modern
medical science, most systematic drug discovery has focused on small molecule candidates—for
example, over 86% of the drugs (both approved and experimental) in the DrugBank database are
comprised of small molecules (Wishart et al., 2017). This is due to many reasons, including relative
ease of synthesis, generally high chemical stability, and more straightforward characterization of
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reactivity (Drews, 2000). The pervasiveness of small molecules in
drug discovery is even reflected in Lipinski’s “rule of five,” which
defines a set of common best-practice guidelines for filtering
potential orally-active drug candidates: “Good” compounds
should have a molecular mass <500, no more than five hydrogen
bond donors, and no more than 10 hydrogen bond acceptors,
among other principles (Lipinski, 2004).

In recent decades, the ubiquity of computers and
computational methods in science has extended to drug
discovery (Sliwoski et al., 2014). Cheminformatics, for example,
is the application of computer science to understanding and
characterizing molecular attributes and chemical behavior of
specific compounds. These methods have generated massive
libraries of small molecules to screen against specific therapeutic
processes (Blaney and Martin, 1997). Once candidates are
identified, other cheminformatics methods can be used to
generate libraries of compounds structurally and chemically
similar to the identified “hits,” in order to optimize stability,
toxicity, and kinetics. Complementarily, bioinformatics
techniques can be used to discover how candidate drugs cause
therapeutic activity within the human body, which can include
predicting interactions between drugs and proteins, analysis of
impact on biological pathways and functions, and elucidating
genomic variants that can alter drug response (Drews, 2000).

Despite these technological advances in drug discovery, the
approval of new therapeutic drugs has slowed considerably in
recent years. For example, between 1996 and 2007, the number of
new molecular entities approved by the US FDA has fallen from
53 to 17 per year—the same rate as over 50 years ago (FitzGerald,
2008; Munos, 2009). This seems to be due to many factors,
including the following:

1. The “lowest hanging fruits” in terms of small molecule
drug candidates have been extensively investigated, and
computational challenges hinder extension of traditional
methods to more complex structures. Researchers refer to
“rediscovering the sweet spot” in the discovery process (Brown
and Superti-Furga, 2003), and have devoted a great
amount of effort to producing new, targeted screening
libraries that leverage anticipated characteristics of lead
compounds (Welsch et al., 2010; Cheng et al., 2012).

2. Many remaining diseases of top clinical priority have highly
complex etiologies, and are accordingly difficult to associate
with potential drug targets (Ramsay et al., 2018).

3. Model organisms may not provide adequate templates
for testing treatments of more complex diseases, due
to inter-species variations that are crucial to therapeutic
action (Hunter, 2008; Ehret et al., 2017).

A natural way to address the first two challenges is to focus on
new classes of potential drugs outside of small molecules. Natural
products (NPs) may serve this need by returning to the sources
of therapeutic compounds that have treated illness for thousands
of years (Dias et al., 2012). Although rigorous pharmaceutical
science is young in comparison to the historical use of NP
drugs, many cutting-edge advances have emerged with the
promise of “modernizing” this field (Harvey, 2008). Along with
a renewed interest for NP drugs within the biomedical research

community, this has already resulted in substantial developments
in the pharmaceutical industry—a comprehensive enumeration
by Newman and Cragg shows that 41% (646/1562) of all new
drug approvals between 1981 and 2014 are NPs or derived from
NPs (Newman and Cragg, 2016). Several recent reviews provide
excellent summaries of NP drugs and the broad spectrum of
techniques that have been used both for their identification and
characterization (Katz and Baltz, 2016; Rodrigues et al., 2016),
particularly from the perspective of bench research techniques
and state-of-the-art developments in biotechnology. Considering
the aforementioned trends in new computational methods and
advances in classical informatics for translational applications
of these methods, these reviews can be complemented by a
dedicated discussion restricted to in silico approaches for NP
drug discovery.

Another trend in drug discovery enabled by informatics and
computational methods is an increasing shift toward a data
driven drug discovery (Tatonetti et al., 2012; Lusher et al.,
2014). Traditionally, drug discovery has been performed as
follows: basic scientists first find a target structure in the human
body related to a disease or illness, followed by screening for
“lead” compounds that show affinity for the target. Subsequently,
the list of candidates is narrowed down (using some of the
methods described in this review) to find the most promising
leads, which then go through the development process to assess
safety and efficacy in model organisms and, eventually, humans.
A detailed description of these steps can be found in other
reviews (Hughes et al., 2011). Failure at any stage in this
workflow can—and usually does—necessitate starting over from
the beginning, contributing to the estimated cost of 2.6 billion
USD to bring a new drug to market (Avorn, 2015). Data-
driven drug discovery turns the process on its head, by using
data mining on large data repositories of candidate compounds
and disease knowledge to generate novel therapeutic hypotheses
systematically rather than hoping for a single therapeutic
hypothesis to deliver actionable results. Aside from avoiding
systematic biases present in the hypothesis-driven model, this
additionally helps to improve the return rate on subsequent
manual experimentation and validation of lead compounds,
ultimately lowering costs and increasing productivity (Jorgensen,
2004). Data-driven drug discovery leverages new data types that
were previously inaccessible, and relies heavily upon computers
and informatics techniques to produce increasingly accurate
results (Butte and Ito, 2012).

In this review, we first discuss various major classes of natural
products based both on source organism and their biological
functions. In addition, we provide examples of specific members
of those classes with demonstrated therapeutic potential. We
then explore several major disciplines based upon informatics
and computational methods—cheminformatics, bioinformatics,
and semantic (or “knowledge-based”) informatics—and their
associated methods that can be used specifically for NP
drug discovery. These methods are summarized graphically in
Figure 1. Finally, we conclude with a recap of the major gaps
currently facing the field of computational NP drug discovery,
and suggest actions for the future that could help to resolve
these problems.
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FIGURE 1 | Informatics methods for natural product drug discovery covered in this review. Numbers preceding methods correspond to section/subsection numbers

in the manuscript describing the method. Dashed lines indicate inferred links between various data resources.

2. CLASSES OF THERAPEUTIC NATURAL
PRODUCTS

There is no definitive consensus on what groups of substances
comprise “natural products,” with some authors restricting them
to small molecule secondary metabolites (Nature Publishing
Group, 2007), and others more broadly stating that an NP is
any chemical substance produced by a living organism (National
Center for Complementary and Integrative Health, 2017). For
the purpose of this review, we adopt the latter of these
two definitions: that natural products include all classes of
chemical substances that are produced or recruited by living
organisms, and have the ability to be isolated and reused by
humans. This definition includes an incredibly diverse range
of compound types; therefore, it is crucial to understand the
different subgroups of NPs, along with their characteristics.
These classes of NPs frequently overlap and have vaguely defined
boundaries, but they are nevertheless useful for understanding
the methods that can be applied to them.

2.1. Phytochemicals
Phytochemicals—chemicals synthesized by plants—encompass
a broad range of NPs, including members of many of the
other classes described later in this section. Phytochemicals
can be toxic, they can provide important dietary nutrients
(such as amino acids, antioxidants, and dietary fiber), or
they can be inert in humans. For most research purposes,
however, phytochemicals are limited to primary and secondary

metabolites in plants, which can be generally divided into
phenolic acids, stilbenes, and flavonoids (which, themselves,
can be further subdivided into more specific subclasses), all
of which are small molecules (rather than macromolecules,
which tend to be prevalent in many of the other classes we
discuss) (Harborne, 1999). These chemicals have been the source
of many traditional and modern medicines, famous examples
of which include the analgesic acetylsalicylic acid (aspirin),
the heart medication digoxin, and the chemotherapy drug
paclitaxel (Molyneux et al., 2007).

2.2. Fungal Metabolites
Fungal metabolites serve a relatively similar role to plant
metabolites, so much so that they share some of the same
subclasses (perhaps most notably the flavonoid compounds).
Like plant metabolites, fungal metabolites can treat a wide
variety of diseases and conditions, but they are perhaps
most famous as a source of many successful antibiotics.
Other areas of successful application include antimalarials
(antiamoebin), immunosuppressants (ciclosporin), statins
(mevastatin, lovastatin), and more (Thomford et al., 2018).

2.3. Toxins
Toxins are substances that can potentially harm or kill. They
include poisons and venoms, and are (by definition) produced
by living organisms. Poisons are toxins that cause harmful effects
when swallowed, inhaled, or absorbed through the surface of the
skin, while venoms are toxins that cause harm when actively
injected via a sting or a bite.
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Poisons are produced by members of many major clades of
organisms, including plants, fungi, bacteria, and most groups
of animals. Natural poisons are usually used for defensive
purposes, although some species have adapted them for more
complex roles (Klaassen and Watkins, 1996). They can include
members of all classes of molecules, and although many tend to
consist of relatively small molecular structures, macromolecules,
such as proteins, large carbohydrates, and lipids can be
poisonous as well. NP poisons include many chemotherapy
drugs, particularly when their toxic effects act more selectively on
cancer cells than healthy cells. Some examples include paclitaxel
(from Taxus brevifolia) and vinblastine (from Catharanthus
roseus) (Thomford et al., 2018).

Venoms are complex mixtures of chemicals produced by
animals for either defensive or offensive purposes (or, sometimes,
both in the same species). An individual species’ venom can
include hundreds of unique chemical compounds, many of
which are proteins that act on specific molecular targets.
Venoms are highly evolutionarily optimized to fit organisms’
biological niches (Daltry et al., 1996), but due to interspecies
homology, the effects of individual venom components have led
to numerous therapeutic applications, including FDA-approved
treatments for hypertension, diabetes, neuropathic pain, and
more (Lewis and Garcia, 2003). Like poisons, venoms have also
demonstrated potent anti-cancer effects, and their high target
specificity has made them of particular interest for applications
of precision medicine, particularly for rare or aggressive cancer
types (Romano and Tatonetti, 2016; Yang et al., 2018).

2.4. Antibodies
Components of the immune system—particularly antibodies—
have long been attractive for drug discovery and design.
Their primary function is recognition and inactivation of
pathogens, including bacteria and viruses, but biotechnologists
have repurposed them for many “unintended” uses, including
the targeted treatment of various diseases. One approach, known
as immunotherapy, involves the design and application of
monoclonal antibodies that bind specifically to certain cells or
proteins related to the disease of interest. Naturally, these are
often autoimmune diseases, such as rheumatoid arthritis (Seo
et al., 2004) and allergies (Jutel et al., 1995), but they have also
been applied to diverse diseases, such as viral infections (Letvin
and Walker, 2003) and multiple sclerosis (Hohlfeld, 1997).
Recently, substantial attention has been given to immunotherapy
treatments for cancer, exemplified by the 2018 Nobel Prize
in Medicine being awarded for research in this area (Ishida
et al., 1992; Leach et al., 1996; Rosenberg et al., 2004). The
second approach involves using antibodies as delivery agents
for therapeutic compounds, which is also being explored
extensively for cancer, due to its capacity to mitigate off-target
effects (Awwad and Angkawinitwong, 2018). Interestingly, this
delivery method has attracted specific attention for the delivery
of chemotherapeutics that are, themselves, NPs (Mann, 2002).

It should be noted that—in spite of the substantial
accomplishments described above—antibodies have failed to
deliver on several therapeutic applications that originally held
promise, often for characteristics that are inherent to antibodies

in general. One example involves the treatment of Alzheimer
Disease (AD) using monoclonal antibodies. Antibody-based
treatments for AD performed strongly in mouse models (Bard
et al., 2000) and in early-phase clinical trials (Hock et al.,
2003), but in phase-2 trials and beyond, they have failed to
deliver (Tayeb et al., 2013). Multiple theories have been posed,
but the two leading hypotheses for failure have been that
(1) antibodies are limited in their ability to cross the blood-
brain barrier, and (2) certain degenerative diseases require
early treatment for antibodies to be effective, far before
patients begin to show symptoms (Sperling et al., 2011). Other
failures in antibody therapy are related to the activity of
antibodies themselves—drugs like theralizumab (designed to
treat leukemia and rheumatoid arthritis) failed in human trials
due to inciting a life-threatening “cytokine storm” in all healthy
volunteers (Eastwood et al., 2010). Nonetheless, much research
on new antibody therapies is being conducted to treat the same
diseases associated with these early failures (Sevigny et al., 2016).

2.5. NPs With Limited Therapeutic Potential
The classes of NPs described above cover substantial breadth.
However, to provide a more complete image of drug discovery in
terms of NPs, it is also important to consider classes with only
limited—or at least presently unknown—therapeutic potential.
For the purposes of this review, we focus on whether a compound
is reactive enough in living systems to potentially perturb that
system. If it is, then there exists an opportunity to exploit the
perturbations for potentially therapeutic outcomes. The largest
group of NPs that falls short in this regard is those with purely
structural purposes, including materials like wood, biopolymers,
and excretions like spider silk, which suggests that the drug
discovery methods discussed in subsequent sections of this
review are unlikely to generate many new lead compounds.

Nonetheless, biology is rife with exceptions to every rule, and
even these groups of NPs have occasionally yielded compounds
with therapeutic use. Wood creosote has been used for centuries
as a treatment for diarrhea, and is currently marketed in
Japan under the trade name Seirogan (Hiramoto et al., 2012).
Biopolymers have not resulted in drugs themselves, but have
been used many times to successfully deliver drugs within
living systems (Nitta and Numata, 2013). Even spider silk has
shown potential in drug delivery (Spiess et al., 2010), and
has been bioengineered to have antibiotic properties (Harvey
et al., 2017). For this reason, we hesitate to say that any
class of NPs has no therapeutic potential. In a practical sense,
these observations are most useful in a cost-benefit analysis
scenario, when it is necessary to balance research budget with
scientific risk, highlighted by Dickson and Gagnon as one of the
major factors influencing the total output of the pharmaceutical
industry (Dickson and Gagnon, 2004).

3. CHEMINFORMATICS METHODS

Cheminformatics methods can generally be classified according
to the types of characteristics they exploit: either direct measures
of chemical activity (e.g., chemical constants, reactive groups,
or ADME measurements), or indirect measures (e.g., structural
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motifs, compound class membership, or other higher-order
observations). These techniques can be further subdivided; for
example, structural comparisons can be applied either before
or after promising chemical activity is known (which we refer
to here as prospective and retrospective structure mining,
respectively). Prospective structure mining is conducted in a
supervised manner, where known chemical activity of well-
characterized compounds is compared to the structures of
query compounds to predict the therapeutic potential of the
queries. Retrospective structure mining, on the other hand, is
more analogous to unsupervised learning techniques, where
other screening techniques first identify a compound of interest
(referred to as a “hit”), and then seek to expand the number of
candidate compounds by searching for structures that are similar
to the hit compound.

3.1. Cheminformatics and Natural Products
Many traditional cheminformatics methods are challenging to
adapt to certain classes of NPs, particularly when the NPs
consist of large chemical structures (like venoms, antibodies,
or other protein-based NP drug candidates). For example,
generating combinatorial libraries of large polypeptides is
currently intractable, due to the massive search space. However,
additional characteristics that are unique to these classes
of NPs enable either simplifying assumptions to be made
or the invention of entirely new approaches for predicting
bioactivity (Huang et al., 2016). Here, we divide cheminformatics
into 3 major categories of methods that have been used to
success with NPs, providing discussion of the caveats that must
be considered for NPs in particular.

3.1.1. Natural Product QSAR Analysis
Quantitative Structure Activity Relationship (QSAR) analysis
is a widely used—if often ambiguously defined—technique in
cheminformatics for predicting a response variable given a set of
structural, chemical, and or physical input variables (known as
molecular descriptors). Generally, the goal is to learn a function
of the form

ŷ = f (x)+ ǫ

where x = (x1, . . . , xN) is the vector of N input variables, ŷ
is the estimated response (continuous in the case of regression,
and integer-valued in the case of classification), and ǫ is an error
term. f can be any appropriate model; common choices include
logistic regression, support vector machines, random forest,
artificial neural networks, and others. Recently, deep learning
has shown to be particularly effective for predicting a wide
variety of responses, including solubility, probe-likeness, and
others (Korotcov et al., 2017). A number of free and commercial
software implementations of QSAR are available for a variety
of use cases (Benfenati et al., 2011; Tosco and Balle, 2011), and
approaches for adapting generic statistical and machine learning
models for QSAR are readily available (Lavecchia, 2015).

QSAR has been applied fairly widely to different classes
of NPs, where specific classes tend to dictate the chosen
molecular descriptors. Typical choices for non-NP applications
include symbolic (1- or 2-D) descriptors, 3-D spatial

organization, higher-order (e.g., time-dependent or ligand-
bound) conformational characteristics (Polanski, 2009),
experimental measurements (partition coefficient, polarizability,
refractivity, etc.), and many others. For a detailed review of
these and similar descriptors, see Cherkasov et al. (2014).
Additional characteristics that can be used for small-molecule
NPs include categorical (“one-hot”) variables indicating class
membership (e.g., alkaloid, terpenoid), species of origin (or
more general taxonomic clades), and other biological features.
Macromolecular NPs are substantially more restricted in terms
of the types of descriptors that can be used effectively. Generally,
3-D conformational descriptors and binding data function
best for these NPs, and yield good results (Mladenović et al.,
2017; Dhiman et al., 2018). QSAR has performed adequately for
predicting binding affinity of antibodies to proteins—Mandrika
et al. describe a model consisting of 26 physicochemical
descriptors (covering hydrophobicity, polarity, electronegativity,
etc.) at each amino acid position in a library consisting of single
chain monoclonal antibodies (Mandrika et al., 2007). While this
model has not yet been applied to NP drug discovery, it seems to
be a feasible way forward.

3.1.2. Molecular Docking and Dynamics
QSAR is a useful statistical method for predicting potentially
therapeutic interactions, but it is often desirable to directly model
the chemical or physical interaction that is being investigated.
Molecular docking is an approach that seeks to predict if and how
two compounds (usually a target and a ligand) physically interact.
This is usually performed in two steps: (1) searching for potential
conformational fits, and (2) scoring those fits. Molecular
dynamics is a particular simulation technique that can be applied
to docking, and is popular in drug development. From a high
level, molecular dynamics performs a computational simulation
of the atoms and molecules (often including solvents) present
in a putative reaction, and allows the molecules to interact
for a period of time. The technical details and algorithms for
docking and dynamics are well-summarized elsewhere (Karplus
and McCammon, 2002; Pagadala et al., 2017)—we will instead
focus on broad caveats, issues, and innovations in applying these
to NPs.

The class of NP compound tends to dictate the role (target
vs. ligand) that the compound plays in docking simulations.
Typically, small molecule NPs and relatively short polypeptides
(e.g., peptide toxins and venom components) act as ligands, while
larger proteins and protein complexes act as targets (although
exceptions are common). This distinction is important, especially
when the goal is screening many candidate compounds: usually,
the target is held fixed, while the ligand can be drawn from
libraries of many compounds. Therefore, it is computationally
feasible to perform docking of many small molecule compounds
when a specific molecular target is already known (Khan et al.,
2009; Lee et al., 2011; Ma et al., 2011). Conversely, if a
macromolecular NP is suspected of interacting with endogenous
small-molecule metabolites (e.g., in human cancer cells), docking
simulations can be used to mine which metabolites could
bind to the NP (Pithayanukul et al., 2009). If both a target
and a ligand are already predicted by other means (e.g.,
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QSAR or other methods described in this review), docking is
commonly used as a secondary validation method. In spite
of their large molecular weight, antibodies are relatively easy
to screen in large numbers via docking, due to their specific
structural and binding constraints that can substantially reduce
computational complexity of simulations (Walls and Sternberg,
1992; Abagyan and Totrov, 2001).

Molecular dynamics is an important technique for
characterizing physical interactions of putative drugs with their
targets, but due to computational challenges it cannot be used
with current technologies in a data-driven manner to screen very
large numbers of NPs against similarly large numbers of potential
targets simultaneously (Salmaso and Moro, 2018). However, it
has proven incredibly valuable in uncovering specific therapeutic
mechanisms of NPs (venom proteins in particular). An early
and influential example of this came in 1995, when Albrand
et al. combined molecular dynamics with NMR to explain how
Toxin FS2 (from Black Mamba venom) blocks L-type calcium
channels, causing potent cardiotoxic effects (Albrand et al.,
1995). Additionally, there are noteworthy success stories that
have emerged from screening relatively small NP databases
against specific drug targets: The compound ellagic acid—which
has shown both antiproliferative and antioxidant properties—
was identified by Moro et al. by screening a proprietary database
of 2,000 NPs against the oncoprotein casein kinase 2 (Cozza
et al., 2006). Similarly, Fu et al. identified Jadomycin B—another
molecule with anticancer effects—by screening 15,000 microbial
small molecule metabolites against the oncoprotein Aurora-B
kinase (Fu et al., 2008). These examples illustrate the feasibility
of molecular dynamic studies for discovering new therapeutic
NPs, and suggest that overcoming associated computational
challenges will enable their widespread application in diverse
and data-driven contexts.

3.1.3. Computational Mutagenesis and Library

Construction
One of the most common techniques for identifying drug
candidates is to generate massive libraries of compounds that can
be screened in parallel, with the understanding that only a very
small fraction will result in “hits” (potential therapeutic activity).
There are many ways such libraries are generated, many of which
fall under the umbrella term of combinatorial chemistry (i.e.,
enumerating chemical structures using combinatorics) (Terrett
et al., 1995). NPs provide some advantages over traditional (non-
NP) classes of candidate compounds, namely that such “libraries”
already exist in nature. General purpose online databases of
chemical compounds (such as PubChem and ChEMBL) (Li et al.,
2010; Gaulton et al., 2016) contain many NPs that are annotated
by compound class, while other, more specific databases (such
as ArachnoServer, VenomKB, and the Dictionary of Marine
Natural Products) provide even more granular annotations
for aggregating NP libraries with various characteristics of
interest (Pineda et al., 2017; Romano et al., 2018).

Computational mutagenesis is a related class of techniques
that has shown efficacy in certain classes of NPs. This method
involves specifying a template (e.g., a certain antibody with
putative therapeutic activity that requires optimization), and

then sequentially mutating locations in the template’s structure
to generate a library of candidate compounds. These libraries
can then be screened in silico (e.g., using molecular docking
simulations as described in section 3.1.2) to find structures
that can be engineered in the lab. Antibodies, in particular,
are particularly well-suited to computational mutagenesis, by
modifying amino acids in binding regions (Sivasubramanian
et al., 2009; Wollacott et al., 2019). The feasibility of mutagenesis
techniques in the context of NP drug discovery was demonstrated
by Chen et al., who generated a library of analogs of the 7-
residue NP peptide HUN-7293 to optimize its inhibitory effects
on cell-adhesion (Chen et al., 2002).

It should be noted that one of the advantages of working with
NPs is the potential of avoiding library screening entirely, under
the assumption that nature has optimized it for biological activity.
This point is expanded on in section 4.1.3.

4. BIOINFORMATICS METHODS

Bioinformatics methods for drug discovery include anything
related to the biological function of potential drug candidates,
including sequence-based characteristics, interactions with body
structures (metabolites, proteins, cells, tissues, etc.), pathway
perturbations, and toxicity, among others. Multi-omics and
high-throughput sequencing are also major areas within
bioinformatics. Most subdisciplines of bioinformatics can be
applied in some way to the drug discovery process (Wishart et al.,
2017; Thomford et al., 2018).

4.1. Bioinformatics and Natural Products
In the case of NPs, researchers are able to make use of an
entire range of techniques related to the organisms that produce
the compounds. In particular, phylogenetics and evolution
provide many routes for various drug discovery activities.
Closely related organisms often produce similar proteins and
metabolites, so when one natural compound with promising
activity has an unsuitable therapeutic index for human use,
libraries of similar compounds can be easily constructed by
searching in organisms within the same genus. However, these
techniques must be applied with caution: members of some
groups of natural compounds (such as venom proteins) are
heavily optimized to fit a very particular biological niche, so even
members of the same species may have entirely unique metabolic
profiles with respect to compounds of interest. One prominent
example of this was found in the rattlesnake species Crotalus
oreganus helleri, where members of the species living on different
sides of a mountain range produced entirely separate venom
profiles (Sunagar et al., 2014).

4.1.1. Gene Expression Perturbation
The rise of multi-omics approaches to uncovering mechanisms
of disease has led to multitudes of ways to assess the
effect that putative drugs have on cells. In particular, gene
expression perturbation—quantified using RNA-sequencing
and transcriptomics—has led to a number of innovative
breakthroughs in drug discovery for diseases associated with
gene disregulation, including cancers and various other diseases
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with complex genetic etiologies (Sirota et al., 2011; Subramanian
et al., 2017). Along with environmental exposures, structural
abnormalities, and other influencing factors, these diseases often
can be attributed in part to abnormalities in gene expression,
including the systems-level effects of expression perturbation in
the larger context of cell signaling and metabolic networks (Nica
and Dermitzakis, 2008; Cookson et al., 2009). More accurately,
differential expression can be treated as a phenotypic signal that
arises from underlying disease etiology. Accordingly, drugs and
drug candidates that effectively invert such deleterious effects are
potential therapies for these diseases.

This technique is particularly well-adapted for use in NP drug
discovery, as vast numbers of compounds from all classes of
NPs are specifically optimized to have roles in cell signaling
or metabolic networks, and are already known to be relatively
biologically stable (Lewis and Garcia, 2003). Compounds used
in Traditional Chinese Medicine (TCM) have been particularly
well-utilized in this area. In a 2014 study, researchers uncovered
likely mechanisms by which the TCM compound berberine
exhibits anti-cancer activity, using publicly-available expression
data for berberine-perturbed human cells taken from the
Connectivity Map (CMap) project (Lee et al., 2014). Another
important recent example by Lv et al. provides differential gene
expression profiles in response to 102 different TCM compounds,
presented as a framework from which to base future systematic
research on the activities of TCMs (Lv et al., 2017).

A separate but related approach involves analysis of
differential expression in the organisms producing the NPs
(rather than the organisms that NPs act upon). An investigation
by Amos et al. discovered previously unknown NPs—as
well as putative mechanisms describing their functionality—by
comparing transcriptome profiles of different bacterial species
in the genus Salinispora (Amos et al., 2017), underscoring
the diversity of emerging multi-omics techniques that can be
employed within NP drug discovery.

4.1.2. Modeling Protein Structure and Function
Although the size and complexity of proteins is often prohibitive
to structure-based analyses designed for small molecules, other
drug discovery approaches leverage the unique characteristics
of proteins and other macromolecules to perform discovery in
ways that are otherwise impossible. Since many classes of NPs are
comprised of proteins, these techniques can often be adapted to
NP drug discovery with relative ease.

Some methods use supervised machine learning algorithms
trained on protein structures (and motifs) with known activity
to predict activity in new, uncharacterized proteins—this is
essentially traditional QSAR designed to work on proteins. The
FEATURE framework (Halperin et al., 2008) does this using 3-
dimensional spatial orientation of atoms to predict activity at
numerous “microenvironments” within a larger macromolecule,
and is therefore generalizable to diverse proteins with conserved
functional activity. Other research teams have designed similar
frameworks based on other machine learning models, including
deep learning models like convolutional neural networks (Torng
and Altman, 2017; Thomas et al., 2018). For further details on

learning protein function from structure, we refer the reader
to Pérez et al. (2018).

Still other protein functional modeling approaches rely on
input variables that behave like “abstractions” of raw molecular
characteristics, including amino acid or DNA structure (along
with sequence alignment algorithms) (Vyas et al., 2012), ontology
annotations (see section 5 for more details) (Mutowo et al., 2016),
and biomarker response (Frank and Hargreaves, 2003).

4.1.3. Using Evolution to Discover Drug Candidates
The fact that NPs are derived from living organisms implies
that they either serve a specific purpose in the context of that
organism, or they are a byproduct of an important process (Stone
and Williams, 1992). Therefore, we can use evolution and
taxonomy as tools for both discovering new compounds and
their effects, as well as for generating libraries of similar natural
products (Maplestone et al., 1992).

The simplest—and most common—use of phylogenetics in
natural product drug discovery revolves around the axiom that
closely related species produce similar NPs. This can be used
to predict the structures of NPs, given structures for similar
NPs in related species are already known (Ziemert and Jensen,
2012). Following a pattern akin to QSAR modeling (described
in section 3.1.1), phylogenetics can also be repurposed to
predict other characteristics of closely related NPs, including
molecule classes, toxicity, stability, and others, where instead
of using molecular descriptors as observed features of the
NP, you instead use evolutionary characteristics to build a
predictive model. A noteworthy example is given by Malhotra
et al., who used discriminant function analysis (DFA) to classify
and predict functions of over 250 phospholipase A2 proteins
from viperid snakes, where aligned amino acid sequences
alone were used to construct the input features for the DFA
model (Malhotra et al., 2013).

Other uses of evolution in drug discovery employ
phylogenomics to discover associations across more distantly
related species (e.g., between humans and microbes). This
includes efforts to catalog the entire breadth of various classes
of natural products to create comprehensive NP class libraries
(see section 3.1.3 for more details) (Rønsted et al., 2012). In
2016, Rudolf et al. showed that comparative genomics in diverse
microbial species could identify 87 distinct gene clusters across
78 bacterial species corresponding to a class of putative NP
anticancer drugs known as enediynes (Rudolf et al., 2016).
By finding instances of NP coevolution in distantly related
species, studies have uncovered compounds that play keystone
roles in metabolic processes, leading to therapeutic solutions in
analogous processes in humans. A noteworthy and sophisticated
example is shown in the CSMNA method (Zhang et al., 2016),
which is based on the hypothesis that similarities between
human and plant metabolic networks can be used to guide
phytochemical drug discovery. The authors validate their drug
discovery algorithm by showing that similarities between the
plant Halliwell-Asada (HA) cycle and the human Nrf2-ARE
pathway underlie antioxidant activity of HA cycle molecules on
proteins in the Nrf2-ARE pathway.
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Some caveats need to be kept inmindwhen using evolutionary
approaches. Certain classes of NPs are under evolutionary
pressures that complicate phylogenetic analysis. Venom proteins,
in particular, can be highly divergent even among species
within the same genus (Calvete et al., 2014), a phenomenon
attributed to the high metabolic cost of venom production, and
the highly targeted nature of many venom proteins to specific
prey species.

5. SEMANTIC (KNOWLEDGE-BASED)
METHODS

Cheminformatics and bioinformatics are both major
subdivisions of biomedical informatics, and comprise two
of the primary disciplines involved in translational research
and drug discovery. We now turn our focus to a set of methods
that emerged from semiotics, linguistics, and library science,
but have been adapted to serve broad functions in computer
science and artificial intelligence—known as knowledge-based
or semantic (i.e., relating to human-interpretable meaning)
methods. In general, these are methods involving the application
of various knowledge representations, such as ontologies and
structured terminologies. Some activities within this group
include rule-based natural language processing, certain types
of clinical data mining, knowledge extraction, semantic data
normalization, and others. Especially in the context of drug
discovery, knowledge-based methods are frequently applied
in coordination with bioinformatics and/or cheminformatics
methods, and serve as one of the main approaches to combining
and unifying findings and intermediate results spread across
separate research activities.

Perhaps the most well-utilized resource in knowledge-based
approaches to drug discovery is the Gene Ontology (Ashburner
et al., 2000), which classifies conceptual biological entities into 3
groups: molecular functions, cellular components, and biological
processes (each of which is important in various stages of the
drug discovery process). Researchers have created multitudes of
data resources to assist in drug discovery, and many of these are
mapped to the Gene Ontology to assist with in silico aggregation
and preliminary validation of putative hypotheses. Some of
these linked resources include DrugBank (Wishart et al., 2017),
UniProtKB/Swiss-Prot (and associated annotation programs like
ToxProt) (Jungo et al., 2012), and ChEMBL (Gaulton et al.,
2016), all of which catalog compounds that may confer some
therapeutic effect.

Still other tools have been created to map unstructured data
relevant to drug discovery (such as journal article abstracts
in PubMed) to more structured representations. MetaMap,
SemRep, and Semantic Medline from the National Library
of Medicine, as well as the NCBO Annotator from the
National Center for Biomedical Ontology identify ontology
and terminology terms within free text (usually pulled from
journal articles) at various levels of abstraction. These tools
have been used to successfully perform ontological inference
across multiple levels of evidence for many discovery tasks,
including drug discovery. For further details, we refer the

reader to the original paper describing Swanson’s Fish Oil-
Raynaud’s Syndrome hypothesis (Swanson, 1986), which explains
how structured knowledge and graph algorithms can be used to
discover informative associations fragmented across otherwise
unrelated publications (Cameron et al., 2013).

Other levels of knowledge representation (e.g., not formally
controlled at the concept level) also have important roles in drug
discovery; tools like OMIM can be used to map newly discovered
drug-gene associations to diseases that are modulated by that
gene or set of genes. For comprehensive listings of the various
ontologies, knowledge representations, and similar tools with
proven roles in drug discovery, we refer the reader to a number
of existing reviews (Gardner, 2005; Vazquez-Naya et al., 2010;
Thomford et al., 2018).

5.1. Semantic Methods and Natural
Products
While the number of ontologies and similar resources relevant to
drug discovery are vast, advanced applications of these resources
are relatively scarce. This trend is even more striking in regards
to NP drug discovery. As of now, most therapeutic associations
between NPs and disease are discovered serendipitously rather
than through systematic, rigorous applications, although earlier
sections of this review describe notable exceptions to this trend.
In light of the fact that advanced use of semantic methods is rare
in NP drug discovery, we will additionally consider applications
of ontologies and terminologies used for drug discovery that
could be applied to NPs, based on current knowledge.

5.1.1. Literature Mining
Literature mining—the process of performing text mining on
scientific literature databases—is one of the most common
usages of semantic biomedical knowledge resources. The
MEDLINE/PubMed database contains over 26 million
biomedical text citations, many thousands of which
contain knowledge related to NPs, and possibly describing
characteristics of those NPs that provide direct or indirect
evidence of therapeutic activity. There are generally two ways
to automatically extract such knowledge from biomedical
publications: (1) Using existing ontology/terminology
annotations, or (2) using natural language processing (NLP)
techniques that discover such annotations.

Medical Subject Headings (MeSH) are one terminology
resource designed to structure the content of PubMed articles,
and are applied manually by expert annotators at the US
National Library of Medicine (NLM) to new articles shortly
after indexing in PubMed (Lipscomb, 2000). MeSH terms
cover a diverse range of biomedical concepts, arranged in a
hierarchical fashion, and cover various classes of NPs. MeSH
can be used to aggregate PubMed articles describing certain
types of NPs, and can be refined using additional terms (e.g.,
“Drug Discovery”) or qualifiers (e.g., “/therapeutic
use”). MeSH terms can link journal entities to structured
external databases by either using cross-mappings [including
via the NLM’s Unified Medical Language System (UMLS)] or
annotations in external databases directly to MeSH terms (Ruau
et al., 2011). MeSH terms have been used to summarize
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components of plant genomes (Beissinger and Morota, 2017),
demonstrating potential paths forward in discovering novel
NPs (rather than using the terms to gather knowledge
about known NPs).

A limited number of databases provide access to curated sets
of articles describing NPs. VenomKB provides articles annotated
to venom components as well as literature predictions describing
the putative therapeutic effects of those components and
mappings to other external databases (Romano and Tatonetti,
2015). Similarly, NPASS presents chemical characteristics of a
broader range of NPs and provides references to PubMed entries
describing manually-curated biological activity measurements in
a range of organisms (including humans) (Zeng et al., 2017).
Other databases, including MarinLit and NAPRALERT, provide
commercial and paid access to curated NP literature data.

5.1.2. Electronic Health Record Mining
Similarly to literature mining, we can apply knowledge retrieval
techniques to observational data sources. As far as drug discovery
is concerned, observational data provides a method for assessing
the effects compounds have on humans in the absence of
rigorously controlled clinical research studies. This style of
data analysis offers several major advantages over clinical trials,
including avoidance of exposing new patients to potentially
harmful treatments, and mitigating certain types of bias
associated with eligibility and patient selection. Observational
data can often produce larger cohorts than clinical trials. Various
sources of observational data can be utilized for drug discovery,
but here we will focus on electronic health records (EHRs), due
to their prevalence and proven utility for many translational
research tasks. Although privacy concerns, data fragmentation,
and standardization have traditionally hampered access to EHR
data—particularly for research teams without clinical expertise
or affiliation with a large academic medical center—rapidly
growing efforts, such as Observational Health Data Sciences and
Informatics (OHDSI) (Hripcsak et al., 2015) and the Electronic
Medical Records and Genomics (eMERGE) network (McCarty
et al., 2011) are breaking these barriers in ways that will increase
access to data covering the breadth of the translational spectrum.

EHR data are complex, multimodal, and subject to many
unique biases and ethical/legal constraints (Weiskopf and
Weng, 2013). In addition to free text (recorded by health
care providers), a number of structured data types are also
present (including claims data, medication orders, laboratory
measurements, patient demographics, and others). As of now,
no major applications of EHR data mining to NP drug
discovery have been reported, but a number of related areas
provide hints as to its feasibility. A review by Yao et al.
highlights 3 specific ways that EHRs can aid drug discovery:
(1) Finding relationships between diseases for the purposes
of drug repurposing, (2) evaluating the usage patterns and
safety of drugs and/or drug candidates, and (3) discovering
phenotype–genotype associations that can lead to the discovery
of new drug targets for specific diseases (Yao et al., 2011).
Relevant caveats of each of these can be discussed from the
perspective of NP drug discovery, including specific advantages

and disadvantages that NPs provide when compared to non-NP
drugs and drug candidates.

Drug repositioning involves taking an existing drug and
using it to treat a different disease than what it is currently
intended for Ashburn and Thor (2004). EHRs have been used
for a number of drug repositioning approaches. The most
common repositioning strategy involves discovering similarities
between diseases, and then using those similarities to imply
new treatments. This is based on the assumption that diseases
with similar etiologies will produce similar signals in the
EHR, and that similar etiologies may imply similar treatments.
An important example by Rzhetsky et al. showed unexpected
similarity between bipolar disorder and breast cancer (Rzhetsky
et al., 2007). Recently, it has been demonstrated that the breast
cancer drug tamoxifen may be useful for treating the symptoms
of bipolar disorder (Kulkarni et al., 2006).

EHR data can also be used to assess the safety of drugs
(or putative drugs), by determining whether exposure to the
drug increases risk of adverse effects (Schuemie et al., 2012;
Tatonetti et al., 2012). This is easiest for approved drugs that have
coded representations in the EHR software (e.g., those with ATC
codes or similar—experimental and unapproved drugs generally
do not have a structured representation in EHR databases),
but natural language processing can identify experimental and
putative drugs with reasonable efficacy (Björne et al., 2013).
This suggests that NP drug-candidate safety surveillance could
be performed on free-text notes in the EHR, especially when
treated as environmental exposures rather than physician-
prescribed interventions. The feasibility of this approach was
demonstrated by Zhang et al., who showed that herbal and
natural supplements (which are usually considered NPs) could be
identified in medication lists using natural language processing,
and quantified the gap between structured drug representations
and these compounds (Zhang et al., 2015). Two of the main
gaps in need of resolution to realize this goal include specifying
a standardized nomenclature for NPs (Dewick, 2002), and
identifying where (geographically) hospital patients may be
exposed to the NPs being investigated.

Discovering new drug targets is not strictly the same thing as
drug discovery, but it does provide an essential starting point for
identifying new drug leads. Recent decades have seen a steady
decline in the discovery of new targets, and previous reviews on
the topic have called for new and innovative strategies to address
this issue (Lindsay, 2005; Spedding, 2006). Using EHR data and
clinical biobanks to conduct Genome Wide Association Studies
(GWASs) and Phenome Wide Association Studies (PheWASs)
are touted as solutions (Yao et al., 2011), by providing associative
links between diseases and specific genetic loci, which can then
be used as targets for new precision drug therapies (McCarty and
Wilke, 2010;Wilke et al., 2011). NPs, in particular, come into play
when considering their unique abilities to target certain genes
and gene products that are poorly targeted by small molecules.
Both monoclonal antibodies and protein-based therapeutics are
known for their ability to target individual cell types, especially
useful in cancers with specific genetic signatures (Adams and
Weiner, 2005; Cox et al., 2016). GWAS and PheWAS are
relatively new compared to the drug discovery and development
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timeline, but we will likely see many NP drugs emerging from
clinical trials that used EHR- and biobank-enabled analyses for
target discovery in the coming decades (Thomford et al., 2018).

5.1.3. Linking HTS Data to Putative Disease

Treatments
Until now, we have discussed ways that ontologies and
terminologies can be used to retrieve and structure knowledge,
but another important role semantic techniques play in
biomedicine is integrating disparate data sources in ways that
otherwise require massive amounts of manual interpretation
and annotation to apply at scale. This is important for many
reasons, including experimental validation, increasing statistical
power and inferential capacity, and even to discover new
knowledge entirely. A particular application that has experienced
rapid growth and major methodological advancements in drug
discovery is linking new types of high-throughput sequencing
(HTS) data to clinically-meaningful associations. Previously
mentioned techniques, such as gene expression perturbation
(section 4.1.1) yield results consisting of signals that have
biological meaning, but no explicit connection to clinical
phenotypes. Important early examples of data-driven drug
discovery from gene expression formed therapeutic associations
between cimetidine and lung adenocarcinoma (Sirota
et al., 2011), as well as topiramate and inflammatory bowel
disease (Dudley et al., 2011), but these examples required manual
curation of many phenotype-linked expression profiles from
which discovery could be performed. Knowledge representations
provide a method for making these connections automatically,
when correctly leveraged.

Successful knowledge integration of this type requires links
to be formed between (a.) sets of genes (or, more specifically,
groups of probe sets) and metabolic pathways, as well as
(b.) links between pathways and phenotypes. A number of
well-established and richly annotated gene-pathway databases
(including Reactome and KEGG) (Fabregat et al., 2015; Kanehisa
et al., 2016) already exist, and are used widely by the biomedical
research community. Resources linking pathways to phenotypes
are considerably less prevalent (and less complete), due largely
to a limitation of available, relevant data, but ongoing efforts
in the translational bioinformatics community are changing
this. Integrating differences in gene expression and phenotypic
response at the cell- and tissue-level with pathway data has
shown particular promise in this area (Hao and Tatonetti,
2016; Hao et al., 2018). A recent review by Oellrich et al.
outlines emerging and established tools for computational
phenotyping (Oellrich et al., 2015).

Similar studies are, however, nearly absent from the realm
of NP drug discovery. The unique characteristics of different
NP classes (especially those described earlier in this review) can
facilitate the phenotyping process. Metabolomics data provides
clues as to NPs’ original functions in their source organisms,
which can often be extended to their effects when applied
to humans (Xie et al., 2008; Yan et al., 2015; Zhang et al.,
2016). Phylogenomics can highlight similarities between the
genetic epidemiologies of complex diseases in humans vs. model
organisms, possibly suggesting species from which to mine

compounds that can treat these diseases (Romano et al., 2015).
Even the predator/prey adaptations of NP-producing species can
suggest the biological function of NPs (de la Vega and Possani,
2005; Miller et al., 2016); the discovery that the cone snail Conus
geographus hunts fish by releasing insulin into the surrounding
water (resulting in rapid hypoglycemic shock in the prey) led to
the identification of a powerful insulin-receptor-binding motif
that has shown considerable promise for future treatments of
diabetes (Menting et al., 2016). Some recent studies focusing on
discovery from TCM data show promise: Cui et al., for example,
created a TCM chemical structure database that they screened
against acetylcholinesterase (ACE) inhibitors, both via docking
simulations with the known structure of ACE, as well as similarity
to existing ACE inhibitors retrieved from BindingDB (Cui et al.,
2015). Conceivably, ontology resources could be used to adapt
these methods into an automated approach for screening many
drug classes with little to no manual curation.

Linking HTS data to disease phenotypes is only one
application of semantic knowledge resources that could be a boon
for NP drug discovery. There are many other conceivable uses for
linking evidence between clinical datasets, drug terminologies,
literature-mined associations, and organismal biodiversity data,
any of which could lead to potentially valuable discoveries and
improved evidence for unproven hypotheses.

6. GAPS AND OPPORTUNITIES

6.1. Comparing the Use of Informatics
Disciplines in NP Drug Discovery
Computers have revolutionized the waymedicine and biomedical
research are conducted, and the same applies to drug discovery.
In doing so, it is critical to consider all of the ways in which
computers can assist the discovery process in order to maximize
the return on research efforts. In terms of natural product
drug discovery, this review reveals that while some branches of
informatics are being utilized extensively, other methods have
not been fully explored. By summarizing nine representative
groups of informatics methods (see Figure 1 and Table 1), we
highlight these disparities and, by extension, areas of opportunity
for future research.

Pharmacologists and the pharmaceutical industry have
championed the use of advanced cheminformatics techniques in
concert with cutting-edge biotechnology innovations. Although
NP drug discovery has always been a hallmark activity in
pharmacology, pharmaceutical researchers have only applied
these cheminformatic techniques to NPs rather recently. Both
QSAR (section 3.1.1) and docking simulations (section 3.1.2)
are standard practice for studying the therapeutic potential and
mechanisms of NPs. There is also a fair number of NP library
studies (section 3.1.3) that have been used to success—especially
when focused on antibodies (Hoogenboom, 2005)—leading to
the discovery of drugs, such as adalimumab (Jespers et al., 1994),
ecallantide (Markland et al., 1996), and others (Nixon et al.,
2014). As computing power improves, it is likely that we will see
similar attention be paid to more challenging NP classes, such as
venom peptides and other macromolecular compounds.
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TABLE 1 | Summary of popular computational drug discovery methods described

in this review and their applicability to NP drug discovery, stratified by the major

branches of informatics discussed in this review.

Informatics branch Method Use with NPs

Cheminformatics QSAR analysis (section 3.1.1) Multiple

Molecular docking

(section 3.1.2)

Multiple

Computational library design (section

3.1.3)

Multiple

Bioinformatics Gene expression perturbation

(section 4.1.1)

Little to none

Protein structure/function modeling

(section 4.1.2)

Multiple

Phylogenetic approaches

(section 4.1.3)

Multiple

Semantic methods Literature mining (section 5.1.1) Limited

EHR mining (section 5.1.2) None

Linking HTS data to effects

(section 5.1.3)

Little to none

Bioinformatics demonstrates a similar trend, albeit somewhat
earlier in its development (with regards to NP drug discovery)
than cheminformatics. The bioinformatics methods covered in
this review are intriguing in that each is a technique originally
intended for uses other than drug discovery. Differential gene
expression analysis (section 4.1.1) was originally used to explore
differences between cell lines and disease states rather than the
effects of drug perturbation, although the conceptual jump in
applying expression analysis to drug discovery is arguably an
obvious one. However, due to this technique’s relatively recent
emergence, few examples using NPs (as opposed to non-NP small
molecule candidates) currently exist in the literature, none of
which are truly data-driven (i.e., agnostic to both specific diseases
and specific NP drug candidates). Nonetheless, analyses targeted
toward specific diseases compared against the Connectivity Map
dataset have resulted in two substantial discoveries based on
plant metabolites: Celastrol as a treatment for acute myeloid
leukemia (Hassane et al., 2008), and gedunin as a treatment
for prostate cancer (Hieronymus et al., 2006). Therefore, the
preliminary groundwork for truly data-driven drug discovery
for NPs via perturbational differential expression analysis has
already been established. For further examples of the successes
of the Connectivity Map approach to data-driven drug discovery
overall, we direct readers to a previous review by Musa et al.
(2017). Phylogenetics (section 4.1.3)—one of the earlier uses
for computers in biology—has become known for its diverse
areas of application, including drug discovery. Since NPs come
from organisms that can be studied in a phylogenetic context,
bioinformaticians have realized just how valuable of a tool this
can be for NP drug discovery, and a number of completed and
ongoing research initiatives capitalize on this.

Semantic methods have been used much less frequently for
drug discovery than the other branches of informatics, and
even less so for NPs. Only a few sparse examples of literature
mining applications (section 5.1.1) exist for NP drug discovery.
A few studies show that ontologies and similar methods

that link experimental evidence to HTS data and structured
knowledge representations (section 5.1.3) could easily be adapted
to perform preliminary validation for expensive and time-
consuming manual experimentation to prove therapeutic activity
in NPs, but the actual use of these methods for this purpose is also
virtually non-existent. EHRs and other clinical data resources are
in a similar situation—as far as we can tell, there are currently no
published examples of clinical data mining (section 5.1.2) being
used to discover therapeutic associations from NPs.

6.2. Data Needs for NP Drug Discovery
Throughout this review, we have touched upon computational
and informatics methods with varying data needs, and have
naturally mentioned several data resources that are dedicated
to (or have strong relevance to) NP drug discovery. Just as
certain discovery methods are enabled by characteristics specific
to NPs, certain data types and dimensions are as well. This
includes taxonomic/evolutionary data (Cordell, 2000; Larsen
et al., 2005), primary (i.e., “intended”) targets and functions of
NPs in nature (Bernardoni et al., 2014), the crude composition
of NPs (often leading to synergistic effects, analogous to drug
combination therapies) (Borkow et al., 1993; Casewell et al.,
2013), and others specific to particular classes of NPs. A more
comprehensive description of NP databases is presented in a
review by Xie et al. (2015), but here we will cover some of them
in brief as they pertaining to specific data needs.

The diversity and complexity of data types relevant for NP
drug discovery research poses challenges in storing, representing,
and exchanging these data. An immediate consequence is that
many NP databases are limited to a narrow range of closely
related NPs, which results in data fragmentation for the sake of
completeness (Williams, 1997). ConoServer (Kaas et al., 2011)
and ArachnoServer (Pineda et al., 2017) are two NP databases
with rich and highly descriptive data, but each only applies
to toxins produced by a single clade of species. One partial
solution to this problem is to form dedicated efforts within larger,
more general purpose databases that are dedicated to improving
the representation of NPs, which is the approach taken by the
Tox-Prot manual annotation program within UniProtKB/Swiss-
Prot (Jungo et al., 2012). However, this does not completely
resolve the greater issue of being able to leverage all important
data types that are unique to certain classes of NPs. One
other advantage that larger database efforts have over smaller,
specialized NP databases is the presence of APIs and other
tools that enable computational access. Many of the specialized
databases do offer the ability to download data in bulk, but
these can be incomplete and out-of-date. Furthermore, APIs can
assist in making databases interoperable—an integrated network
of specialized and well-annotated databases that can exchange
semantic knowledge solves the issue of adequately representing
granular characteristics while providing many of the benefits of
larger data repositories.

Fragmentation of NP databases has also led to issues
in maintaining those databases in the event of funding
inconsistencies and institutional career changes—an issue
that is at least partially safeguarded against when data
resources are maintained by larger teams with more robust
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operating budgets. Three examples of now-defunct NP databases
are the Traditional Chinese Medicine Systems Pharmacology
(TCMSP) database (Ru et al., 2014), the Animal Toxin
Database (ATDB) (He et al., 2007), and the SuperNatural
database (Dunkel et al., 2006). Smaller NP databases can
also suffer from issues like having unwieldy and non-
descriptive URLs, such as that for the Tea Metabolome
Database (found at http://pcsb.ahau.edu.cn:8080/TCDB/f) (Yue
et al., 2014). Furthermore, if ownership of such a database
changes, or if the principle investigator moves to a new
institution, the URL would likely break, creating issues
in finding the database when reading the manuscript that
describes it—a phenomenon sometimes referred to as “link
rot” (Markwell and Brooks, 2003).

Taking into account these and related issues, a wealth
of opportunity is available for informatics researchers
and data scientists to improve the quality, quantity,
and interconnectedness of NP databases and knowledge
representations. In the following section, we will reiterate these
and other areas of importance for the near future, as elucidated
over the course of this review.

6.3. A Road Map for the Future of Natural
Product Drug Discovery
In spite of the disparities outlined above, renewed interest in
bioontologies, semantic knowledge integration, and data-driven
approaches to drug discovery suggests that this could be in
the early stages of change. This review brings to light several
concrete ways that the research industry could address existing
issues and encourage the development of new innovations for NP
drug discovery:

1. Creating new ontology resources: Structured semantic
knowledge resources for NPs and NP drug discovery are
scarce. Most databases are either overly general or overly
specific, and therefore cannot capitalize on many of the
unique characteristics demonstrated by entire classes of NPs.

Resources with the appropriate ontological commitment are
necessary to support the integration of the methods we have
described—specifically, new standards compliant ontologies
and tools for performing inference over (and between) these
ontologies. To increase impact, these new ontologies should
aim to span the translational divide, linking concepts that join
fundamental biological characteristics of NPs to the clinically
meaningful effects those NPs exert on the human body.
Alternatively, the design of tools and frameworks that link
more specialized ontologies (e.g., covering only taxonomy of
NPs, or molecular targets of NPs) that together bridge this gap
could be used to accomplish the same goal.

2. Generating public HTS data for NPs: Although the
biomedical community is experiencing a deluge of multi-
omic HTS data, the vast majority of non-human species are
underrepresented or completely absent in public repositories.
Unless more resources are devoted to publishing multi-omics
data for species of interest to NP drug discovery, many of the
discoverymethods we have discussed will remain out-of-reach
to most researchers.

3. Utilizing clinical data: New collaborative efforts such as
OHDSI and eMERGE enable greater access to real clinical data
that can be used for both discovery and evaluation of new
drugs. As coverage of NPs improves in semantic knowledge
resources, the ability to perform inference on NPs using
observational data will improve as well.
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