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Abstract—Everyday around 2.5 quintillion bytes of data is
created. There is also a growing trend towards integrating real
world data into the Internet, which is provided by sensory
devices, smart phones, GPS and many other sources that capture
and communicate real world data. The term Internet of Things
(IoT) refers to billions of devices which produce and exchange
data related to real world objects (i.e. ”Things”). This paper
focuses on how to optimise the data exchange between the sensory
devices and applications in IoT and Cyber-Physical systems. In
particular, a method to construct higher-level abstractions of data
at local gateways is proposed. This will reduce the traffic load
imposed on the communication networks that provide the real
world data. The proposed method is based on an information
processing algorithm where gateways analyse the data collected
from the sensors and create higher-level abstractions. We enhance
the Symbolic Aggregate Approximation (SAX) algorithm that is
used as a building block of the abstraction creation framework,
into an optimised version for sensor data, called SensorSAX. We
extend the Parsimonious Covering Theory (PCT) that is usually
used for medical purposes with a probabilistic parsimonious
criterion in the temporal domain in order to infer abstractions
based on time-dependent sensor data. The proposed method is
analysed and evaluated over a real world dataset and the results
are discussed in terms of the data size reduction, accuracy and
latency needed to create the abstractions.

Index Terms—Information Abstraction, Internet of Things,
Wireless Sensor Networks.

I. INTRODUCTION

THE Internet is facing a data overload. Every day around

2.5 quintillion bytes (1018) are created [1]. This data

comes from social media, audio and video content, document

repositories, digital libraries, news websites, and many other

sources of online information. In addition to the current

produced data, it is predicted that in the next 5-10 years there

will be around 50 billion Internet connected devices that will

produce 20% of non-video Internet traffic [2]. The devices

include sensor nodes, smart phones, GPS and many other

sources that capture and communicate real world data. This

large volume of data requires sophisticated mechanisms to

satisfy the data communication and data management needs

for the future Internet.

In this paper, we introduce a new paradigm for handling

sensor data to decrease traffic in the real world data

networks, by providing and exchanging abstractions that

represent patterns, events and occurrences or other machine
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interpretable concepts, instead of communicating the raw

sensory data. We differentiate the abstraction process into two

stages. First the raw sensor data is abstracted into a low-level

abstracted form represented as SAX patterns, that contain

aggregated information based on the mean values of data

from variable data windows. Afterwards the SAX patterns

are used to infer higher-level abstractions inferred through

our abductive and temporal reasoning component. This paper

contributes three novelties to achieve the goal of reducing

communication traffic by providing data abstractions, namely:

1. A version of the Symbolic Aggregate approXimation

algorithm (SAX [3]) for the symbolic representation of

time-series data optimised for sensor data. SAX leads to

dimensionality and numerosity reduction and is the building

block for many pattern and outlier detection algorithms ([4],

[5], [6], [7]). The SAX method is described in Section IV.A).

SensorSAX, an adapted version for sensor nodes introduced

in this paper, exploits a variable encoding rate instead of a

constant rate based on the activity in the streaming data and

allows higher compression and fewer errors in reconstructing

the original raw data.

2. An abductive reasoning model based on the parsimonious

covering theory [8] in which sensors report different data that

serve as the input for our model. Based on the data obtained

from sensors, we abductively rule out the most unlikely

phenomena that could have been caused by the sensors

observations. The model is described in Section IV.B). The

model is used to infer from the symbolic representation

(SensorSAX) of the sensor data into higher-level abstractions

such as ”warm”, ”dark” or ”no-attendance”.

3. Using the outcome of the extended non-temporal Par-

simonious Covering Theory (PCT) in a temporal domain

by introducing a Hidden Markov Model that includes the

temporal dimension of the data. By taking the changes of

states over time into the abstraction process it is possible to

detect events that occur over time. This concept is discussed

in Section IV.C)

A. Motivation

The recent advancements in integrating physical objects

into information networks are opening a new paradigm. IoT

networks are enabled by various devices and resources that

collect data in the form of observations and measurements

from the physical environment and communicate the data
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via the Internet to other devices or nodes that are interested

in the data. Wireless Sensor Networks (WSN) are seen as

one of the key enabling technologies to create networks of

cooperating connected physical objects. The data collected by

sensors needs to be communicated and to be made available

to end-users (e.g. enterprise applications, business process

services, web applications, software agents, human users and

objects). The data communication between the capillary sensor

networks and the Internet can be direct end-to-end connections

or it can be facilitated via a gateway node. A gateway node

can process or aggregate the data, process and respond to the

data queries and make the data available through the network.

In case that sensor nodes in the capillary networks are resource

constrained, (which means that the full IP protocol stack is not

feasible or could hinder the efficiency of the communications)

gateway nodes can act as a bridge between the nodes and

higher-level IP networks.

The raw data collected by sensor devices and communicated

is crucial element to integrate the physical world observations

into the cyber world or create what is referred to as the Real

World Internet [9]. However, data consumers are often not

interested in the raw sensor data and thus data is collected and

processed to create domain-level abstractions and knowledge

that can be extracted from the real world data. For example, a

user may be more interested in the information that the door is

open than in the raw analogue sensor readings that lead to this

conclusion. This fact can be used to save the communication

traffic between the network nodes by processing the sensory

data locally at node or gateway level and creating higher-level

abstractions that can be then communicated to the user.

B. Objectives

In this work, we focus on local data processing and creating

higher-level data abstractions that can be communicated glob-

ally. We store and process the raw sensory data in the gateway

and make it available via service interfaces. The gateway is

an intermediary node that enables the communication between

device networks (e.g WSN) with the core network (i.e Inter-

net). The raw data can be accessed and communicated over the

Internet by accessing the gateway service interfaces. However,

our main focus is on processing the data locally at the gateway

and representing it as abstractions that are smaller in size. This

reduces the size of the data that needs to be communicated

instead of offering the raw data (unless it is directly requested).

Abstract representations refer to an occurrence or a pattern

in data, and they are also used to provide a multi-granular

access to the data. Users can receive the abstractions and

then if they were interested in the raw data, then it can

be communicated to them (the records or intervals that are

required). This reduces the size of data emerging through

the deluge of connected devices and allows the gateways to

manage the flow of data and send higher-level information

or extracted knowledge from data that is processed locally,

instead of flooding global networks with raw data from the

real world.

We have implemented the proposed mechanism on a gate-

way component that we developed in our previous work

[10]. The proposed solution supports device heterogeneity by

introducing a gateway component that enables the collection of

data from several heterogeneous sources via different hardware

interfaces (described in Section 3). We have integrated our

abstraction mechanism as part of the processing steps in

the gateway. To evaluate the SensorSAX algorithm we use

TMote Sky nodes [11] to compare reconstruction error rate and

power consumption of the different algorithms. To evaluate our

abstraction creation process, we use the sensory data collected

online from the UK Channel Coastal Observatory resources1.

We use an abductive reasoning mechanism (described in

Section 4) to create abstractions from the meteorological data

(i.e. in this case we use it for tidal monitoring). The inferred

abstractions are then compared with those reported by a tidal

reporting program to evaluate the accuracy and quality of our

results. Overall, the proposed methods can reduce the size of

communicated data from local weather stations by 80%, with

preserving key information and patterns of data.

The rest of the paper is organised as follows: First

we present current approaches in data communication

optimisation and emphasise the novelty of our approach.

Section 3 describes our gateway architecture, which serves as

the host component to run our proposed algorithm. Section

4 introduces the proposed framework to create abstractions

based on the raw sensor data gathered by the gateway. Section

5 provides an evaluation and discusses the results. Section 6

concludes the paper and describes future work.

This paper extends our previous work reported in [12] by 1)

introducing a probabilistic extension of the initial static model,

2) designing a temporal reasoning model and 3) developing a

discretising algorithm for streaming sensor data. In the current

paper, we also provide extensive evaluation of the algorithms

on a real world dataset and demonstrate the efficiency of the

proposed solutions based on an experiment using real sensor

nodes.

II. RELATED WORK

Traffic aggregation and data compression are the main

solutions used to reduce communication traffic in IoT. In this

section we review some of the common solutions and highlight

the uniqueness of our data abstraction approach.

Data aggregation or data fusion can help by removing

redundant data from the gathered sensor streams. Chen et

al. [13] give an overview about approaches that create a

summarised data stream of a set of sensory data streams and

use the aggregated data for transmission. The aggregation of

the data usually relies on the mathematical sum, max, min,

average and count aggregate functions [14].In large distributed

WSN this usually happens via clustering algorithms; however

this can lead to loss of important data that has been masked

due to the aggregation in lower layers. Chen et al. also

review different approaches of information extraction such as

Kalman-Filtering, Neural Networks and Probabilistic Models,

however these methods are not evaluated over real datasets.

1http://www.channelcoast.org/
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TABLE I: Feature identification of different approaches

Compression
Technique

Approach Information Ab-
straction

Chen et
al.

Tree-based
Aggregation

In-Network Kalman-Filtering
Neural Networks
Probabilistic
Models

Wang et
al.

Sparse Data
Transmission

In-network Cen-
tralised

Abnormal Read-
ing Detection

Yun et
al.

Binary Encoding Centralized -

Stocker
et al.

Bandpass FFT Centralized Machine-
Learning

Ganz et
al.

Data discretizing In-Network Cen-
tralised

Reasoning

A different approach to reduce the communication traffic

in communicating the sensory data is to reduce the size of

the messages. This can be realised using data compression

algorithms. However, compressing the data itself could lead

to a loss of information (in lossy compression) and the

compression techniques can require higher power consumption

as compression requires data processing before transmission

and in long term observations (e.g. environmental monitoring

applications) compression techniques data can still create large

amounts of data [15].

Wang et al. [16] use compression techniques with adaptive

sensing for WSN. This can be exploited to transmit only very

dense (and therefore small in size) data and then reconstruct

the overall ”data” by applying a reverse function. However,

the constructed data relies on several incomplete data-streams

and therefore this can lead to a huge loss in the quality

of the reconstructed information. Wang et al. introduce an

abnormal reading detection mechanisms that is able to find

outliers out of the reconstructed data, however the approach

is not able to detect and highlight events that occur on a

regular basis. A new way to reduce data communication in

Real World data networks is to extract the information which

is relevant or important for the user before transmitting it.

However, determining what is required or what is important

to the user from heterogeneous data sources and in the wide

range of applications that IoT and Cyber-Physical systems

can use is not a trivial task. So it is important to define

methods that can create higher-level abstractions that can be

general purpose and then to use abstract reasoning models that

can transform these abstractions into machine interpretable or

human understandable knowledge.

Stocker et al.[17] introduce a system to acquire knowledge

that is represented in a semantic database by abstracting from

the physical sensor layer and the sensor data layer. At first, the

data is pre-processed by applying a bandpass filter to the raw

sensor data and filtering the relevant frequencies. The bandpass

filter is implemented using fast fourier transformation and

summarising the values of a time window to provide input

for the next step which is detection and classification using

machine learning. The authors use a multilayer perceptron

(MLP) neural network classifier to detect and classify different

events and abstractions. The outcome of the classification

process is then transferred into the semantic database. The

limitation of the approach is the long non-automated learning

process that requires domain experts to feed the model with

sample data for supervised learning processes. In this paper

we introduce an approach that infers abstractions based on

pattern representations.

Yun et al. [18] introduce a similar approach that exchanges

information using ”signatures” instead of the raw data. The

signatures are combinations of properties measured during

an event such as ”bright light” and ”loud sound” during

the explosion of a bomb. The signatures consist of a string

representation indicating that something is present or absent at

a particular sensor. This is efficient in terms of data communi-

cation as only binary data has to be transmitted such as ”NYY”

standing for ”No” - light is not present and ”Yes” sound

and temperature are present; however is not precise in terms

of defining various patterns of data and its extendibility and

scalability is also limited. Moreover, the approach gives only

insights about the local sensor readings and does not allow

to extract information in global networks. In our approach,

we discretise the data and create pattern representations of the

source data which can be used to describe the transient states

of a sensor data stream (e.g. low noise (A), medium noise (B),

high noise (C) resulting in ABC instead of binary No). Then

these patterns are fed into a probabilistic reasoning model to

create higher-level abstractions from the data that is emerging

from several sensor data streams.

In Table I we show the various work and their main features

regarding compression/aggregation technique, location of the

approach and the information abstraction method. Most ap-

proaches use mechanisms that are only applicable to certain

use-case domains such as discrete fourier transformation for

signal data and binary encoding for information that has only

two states. However through the tractability of our SensorSAX

mechanism, granularity is automatically adapted based on the

volatility of the data, as described in Section IV-A.

III. SYSTEM MODEL

We have implemented our solution on a gateway component

developed in our previous work [10]. The gateway com-

ponent provides a connection between heterogeneous sensor

devices with low processing and communication capabilities

and higher-level services and applications on the Internet.

The gateway can be equipped with several air interfaces such

as IEEE 802.15.4, IEEE 802.11 and Bluetooth to support

a variety of communication links over the physical layer.

The network protocols such as 6LoWPAN [19] and Zigbee

protocol stack [20] are also supported to enable network

layer communications. In Figure 1, the main components

and basic workflow of the system are depicted. The sensor

nodes transmit either raw data or run our SensorSAX module

and transmit aggregated information to the data collection

component on the gateway. The data collection layer includes

different interfaces and is able to collect and store data from

heterogeneous nodes. After collecting the data, it is forwarded

to the processing layer. In case the data was not aggregated and

discretised by a SensorSAX module, the gateway applies the

pattern creation and discretisation process by applying the Sen-

sorSAX algorithm. The abstraction process is then performed
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by using abductive and temporal reasoning methods. The

abstracted data is finally accessible through the data provision

layer where different mechanisms such as web-services or a

graphical user interface can be used to access the data.

Fig. 1: The System Overview

A. Data Collection

The data collection tier provides wrappers for different

hardware and software platforms and supports communication

between different sensory devices and the gateway. The wrap-

pers are implemented as plug-ins for different data sources.

The data collection layer provides an abstract view and hides

the complexity of underlying devices (i.e. sources) and the pro-

prietary hardware and software specifications. The wrappers

include a protocol for negotiation and association of sensory

devices to the gateway [10]. This modular design makes it

feasible to automatically setup and connect a large amount of

heterogeneous sensor sources. In the current gateway different

plug-ins are implemented for TinyOs [21], Contiki [22] en-

abled devices and Oracle SunSpot [23] nodes. Further plugins

for WiFi or the Zigbee standard can be developed by attaching

the respective hardware interfaces to the gateway and develop-

ing the wrapper plugins to handle the communication between

the standard interface and the data collection component. The

architecture also supports large-scale setups where gateways

can establish connections between other gateways in WSNs.

For large scale Gateway-to-Gateway (G2G) communication

scenarios, the communication process to exchange and update

information among the gateways for data processing including

the reasoning is described in our previous work and not the

main focus of the paper.[24] For evaluation purposes of the

abstraction creation process, we also implement a plug-in to

access a large sensor data repository (UK Coastal Observatory)

via a provided API to get more representative results.

B. Data Processing

The data processing layer provides caching, storage and

processing functionalities. In this paper we focus on this

layer and describe how our proposed solution is implemented

in this part of the gateway. The data processing tier uses

caching and storage functions to minimise direct interaction

with the sensory devices. The important aspect of the gateway

is the ability to process and interpret the data and create

higher-level abstractions. This provides a local computing and

data abstraction and a global data/concept communication

paradigm which allows more efficient communication and

integration of large sensory data.

The data processing tier consists of three sub components:

data discretising, abductive reasoning and temporal reason-

ing. The data discretising component is used to discretise

the raw sensor data into lower-dimensional representations.

This component utilises an extended version of the Sym-

bolic Aggregate approXimation (SAX) algorithm [3], called

SensorSAX optimised for sensor data, to convert continuous

data (e.g. {1,2,3,4,5,4,3,2,1}) into a compressed discretised

representation (e.g. {a,b,b,a}). The abductive model stores the

mapping between discretised representation and abstractions

(e.g {a,b,c,d} represents ”attendance” in a room). The ab-

ductive reasoning and temporal component infers the current

observations and determines which abstractions are the most

plausible ones.

C. Data Provisioning

The data provision tier provides different interfaces for

the data access such as Web service interfaces, and APIs to

query and retrieve the abstracted concepts for traffic efficient

communications. It also provides direct raw data access if it

is required.

IV. ABSTRACTION CREATION MODEL

The aim of abstraction creation in this work is to generate

higher-level abstractions from raw sensor input and transform

the raw data to smaller size machine interpretable or human

understandable concepts. The abstraction creation process con-

sists of three main components: Data Discretising, Abductive

Reasoning and Temporal Reasoning, as shown in Figure 1 and

Figure 2.

The data discretising transforms the raw continuous sensor

data into a dimensionality reduced “pattern” representation.

The patterns are then evaluated and linked to abstractions (with

relevance probabilities explained in Section IV-B). This allows

a possible abstraction to be found, based on the observations.

To abstract an event or phenomena its current and past states



GANZ et al.: INFORMATION ABSTRACTION FOR HETEROGENEOUS REAL WORLD INTERNET DATA 5

Fig. 2: Processing from raw data to abstraction

are taken into account. To include the temporal domain we

propose a temporal reasoning model (described in Section IV-

C).

A. Pattern Creation for Resource-constrained environments

The SAX algorithm is mainly used as a building block for

detecting patterns and outliers, data aggregation, clustering

and classification from and in time-series based data ([4], [5],

[6], [7]). Some of the main advantages of the algorithms are

the high compression rate while retaining the main features

of the original data and providing a distance measurement

function with high correlation on the distance function of

the original data. The algorithm is divided into three steps:

Normalisation, Piecewise Aggregation Approximation (PAA)

and discretising of the aggregated data. During normalisation,

the data is processed to have a standard deviation of 1 and

an average of 0 to enable comparison of data from different

sources and reducing the numerosity of the sensor data.

1: function PAA(outputLength, data)

2: w := length(data)/outputLength
3: output ⊲ Output Vector

4: while pointer < length(data) do ⊲ Iterate data

5: segment := data(pointer,pointer+w)

6: outputn = mean(segment)
7: pointer = pointer + w
8: end while

9: return output
10: end function

Fig. 3: The original PAA function

Piecewise Aggregation divides the original data of length

N into n equally sized windows by taking the mean of each

window. This results in a reduction of data size from N to

N/n data points. A shorter window length n results in a

better reconstruction of the original data, however more data

space is needed to store the data and eventually higher energy

consumption by higher communication costs. The original

1: function SENSORPAA(minOut,maxOut, ρ, data)

2: wmin := length(data)/minOut
3: wmax := length(data)/maxOut
4: winit := wmax ⊲ Initial Length

5: output ⊲ Output Vector

6: pointer := 0
7: while pointer < length(data) do ⊲ Iterate data

8: w = winit

9: segment := data(pointer,pointer+w)

10: if stdDeviation(segment) < ρ then

11: w := w + 1
12: else

13: outputn = (w,mean(segment))
14: pointer = pointer + w
15: continue
16: end if

17: if w >= wmin then

18: outputn = (w,mean(segment))
19: pointer = pointer + w
20: end if

21: end while

22: return output
23: end function

Fig. 4: The modified PAA function in the SensorSAX algo-

rithm

PAA algorithm is depicted in Figure 3. The function takes

two input parameters; the list data containing the raw values

and the desired output length. The function iterates over the

data and takes the mean of the list segments to achieve the

desired output length. The output is a list that contains the

segment means. For instance, running the function with the

parameters data:[1,2,3,4,5,6] and outputLength:2 leads to an

output of [2,7.5].

The data is then split vertical according to the alphabet size

a. The break lines are distributed vertically according to the

Gaussian distribution, more lines closer to 0 (as 0 is the mean

of the distribution). The amount of break lines is dependent

on the alphabet size, the more letters are used, the more break

lines will be used to split the data vertically, each break line

standing for one letter. Each window is assigned a letter,

depending on which break line the average of the window

resides under. The complete process of discretising raw data

into a SAX representation is depicted and described in Figure

5. The drawback of the original approach is in the constant

window length, the sax developers state that it is infeasible to

choose the right parameters n (window length) and a (alphabet

size) because of their high data dependency [3]. The authors

therefore empirically choose the best parameters, based on

several different datasets and the experimentation of different

combinations of n and a. However, in sensor environments it

is often the case that there is no or less activity in the sensed

data and therefore it is not necessary to transmit data with

the same window length. We adapt the piecewise aggregation

step of the SAX algorithm to have a variable window length,

depending on the volatility of the data. This leads to a
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Fig. 5: Dimensionality Reduction Process of SAX

(a) The blue line represents 100 data points of a
sine curve. The green (dotted) line is the curve after
normalisation

(b) The normalised curve is divided into 9 win-
dows. Each window represents the mean of 100/9
datapoints from the original data. That leads to a
compression rate of n/N 9/100

(c) The output windows of the PAA is then divided
vertical. Each segment is assigned to a letter. The
segment in which the curve is in per window forms
the SAX word, in this case CDDCBAAAB

Fig. 6: Evaluation of SAX and SensorSAX

(a) The reconstruction error rate of SAX and
SensorSAX over different random datasets with
different size. To be comparable the output window
length of SAX is the average length of the variable
SensorSAX windows.

(b) The reconstruction error of SAX and Sensor-
SAX over different random datasets with different
activity and variance from 0.01 up to 10

(c) The energy consumption of a TMote Sky
Sensor node for each sensor hardware component.
Transmitting Raw Data, SAX transformed data and
SensorSAX transformed Data

better reconstruction rate of the original data and less energy

consumption, as less data is transmitted, as shown in Figure

6 c). Instead of a fixed window length we use the parameters

minOut as minimum length of the output (N/n), maxOut as

maximum output and ρ as a threshold value for the sensibility

to reduce the output length for less active data. Our extended

algorithm calculates the current activity in the observed data

set based on the standard deviation, and either chooses a larger

window length if there is low activity to reduce transmission

cost, or a shorter window length which will lead to higher

transmission costs but better reconstruction of the original

data, including important features that are needed by the

abstraction creation process in the following sections. The ex-

tended PAA algorithm is depicted in Figure 4 that accepts the

input parameters: minOut, maxOut, p and data, and produces

an output list with an average length of maxOut/minOut. In

Figure 6 a) several random generated datasets with different

length were generated and then discretised. In average, (over

100 random datasets per dataset size) SensorSAX has a better

reconstruction rate of the original data. To measure the error

in reconstruction we used the euclidean distance. In Figure

6 b) several random datasets with different variance in the

data were generated. Independently from the volatility of the

data, SensorSAX leads to a better reconstruction rate. To

evaluate the power consumption on a real world node, we

used TMote Sky [11] nodes that transmit sensory data over

a certain time window. We compared energy consumption of

raw data transmission, SAX processed data transmission and

SensorSAX processed data transmission. Figure 6 c) shows

that SensorSAX performs the best in energy consumption,

even though more mathematical steps to compute standard

deviation are required.

B. Abductive Reasoning

We use the Parsimonious Covering Theory (PCT) [8], an

abductive logic framework, to transform the sensor data into

abstractions. The parsimonious covering theory is predomi-

nantly used in the medical domain to model and infer the

disorder of a patient based on observations made by a doctor.

It uses an abductive approach which is based on partial

observations. To give a brief example: A doctor asks the

patient during the diagnosis, many different questions (How

old are you?, Do you have fever? ) to abductively rule out

diseases unrelated based on the response given by the patient.
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We exploit this approach in our abductive reasoning model.

Sensors are reporting different readings. Based on the state of

the sensor we abductively rule out the most unlikely abstrac-

tions that could have been caused by the present observations

such as warm, high-water level and pressure. The novelty

of our approach is to provide a probabilistic approximation

of the different possible abstractions. Abductive reasoning

infers the most likely explanation given a set of incomplete or

partial observations. In contrast to deductive reasoning where

a conclusion in a complete and sound system can always be

inferred, abductive reasoning only gives an educated guess

about the most likely explanation in an uncertain environment.

The advantage of abductive reasoning is that for partially-

observable concepts and incomplete observations a conclusion

can be given, whereas deduction would need the complete

observations to draw conclusions.

As far as we are aware, the use of PCT in information

retrieval was first reported by Syu et al.[25] and the use of

PCT for sensory data was first reported by Henson et al’s

work in [26]. Henson et al. assume that the raw sensory data is

presented in terms of higher-level observations and then apply

PCT to these observations to draw conclusions and create a list

of possible events. PCT uses two criteria to find an explanation

for some observations: 1) A coverage criterion and 2) the

parsimony criterion. The coverage criterion creates a set of ex-

planations which includes each observation in the explanation

set. To reduce the explanations, the parsimony criterion selects

the best explanations. Many different parsimony criteria have

been developed, such as the single-disorder, minimum cardi-

nality, and irreducibly criteria. However, setting these criteria

and transforming the raw sensory data into observations is

not a trivial task and is not deterministically measurable. The

following describes the probabilistic parameters that are used

in our work to select the most likely explanation for a given

set of observations.

We define our extended PCT model as follows: The

abductive model uses two finite sets to define the scope

of an abstraction. They are set A, representing all possible

abstractions and set O, representing all observations that

may occur when one abstraction is present (Observations

are discretised patterns from the SensorSAX algorithm). To

find the causations between abstractions and observations, we

define a relation C, from A to O. The relationship 〈ai, oj〉
indicates that ai is one of several possible abstractions of

an observation oj . Let’s assume that ”ABCD” and ”EFGH”

are observations o1, o2 and ”high tide” an abstraction a1.

The fact that the observations ”ABCD” and ”EFGH” are

possible signs for the abstraction ”high tide” is denoted as

〈a1, o1〉〈a1, o2〉. The sets A and O and the relationship C
create the knowledge-base of the model. The knowledge-base

is a simple (because of a maximum depth of 1) Bayesian

network. For our example we assume that we have o1,o2
and a1 and their relationship in our example knowledge-base

(partly depicted in Figure 7) .

To find a possible abstraction based on the

observations a 4-Tuple is defined, which is shown as

P = 〈KB,O+〉 = 〈A,O,C,O+〉 where O+ ⊆ O is the set

of current observations made by active sensors.

We find two functions in the PCT, namely causes(oj)
representing all possible abstractions of a given observation

and effects(aj) representing all possible observations of a

given abstraction. causes(o1) would lead to an abstraction

e.g ”high tide”, whereas effects(a1) would return ”ABCD”

and ”EFGH”.

A set of abstractions AI ⊆ A is called a cover of a set of

observations Oj ⊆ O if Oj ⊆ effects(AI)
a1 is a cover for the observation set o1 and o2.

This definition makes it likely that there could be different

abstractions for a set of observations. To find out the plausible

abstractions, PCT follows the concept of ”Occams’ Razor”2

that refers to selecting among explanations and chooses that

one that makes the fewest assumptions. A cover is called

a parsimonious cover when its abstraction covers O+, but

also satisfies being parsimonious. This means that only the

simplest explanations are chosen. This leads to the definition

of simplicity in the context of choosing the explanations.

To define the simple explanations we use a likelihood

weighting used to determine the plausibility of a hypothesis by

calculating its probability and comparing with the probabilities

of the other hypothetical abstractions which cover the current

observations. We use the utility functions introduced by Peng

and Reggia [27] and extended it for discretised data.

In order to define the weights and calculate the likelihood

Fig. 7: An Example of an extended PCT with probabilities

several probability factors are introduced, as shown in Figure

7. A probability pi defines the likelihood of the different

abstractions for each ai ∈ A. In our example, the probability

of a1 to be the current observation ”high tide” is p1 = 0.3. A

causal strength 0 < cij < 1 defines how frequently ai causes

oj . Therefore o2, with c12 = 0.7 is more likely a reason for

a ”high tide” abstraction than o1 with c11 = 0.3. This allows

to derive a formula to calculate the possibilities for certain

abstractions under the current observations:

L(AI , O
+) = L1(AI , O

+) ∗ L2(AI , O
+) ∗ L3(AI) ∗ L4(O

+)
(1)

The first product, shown in equation (2), represents the like-

lihood to cause the presence of the abstractions in the given

2http://en.wikipedia.org/wiki/Occam%27s razor
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O+. In other words, how likely is it that o1 and o2 are reasons

for a1

L1(AI , O
+) =

∏

oj∈O∗

(1−
∏

ai∈Ai

(1− cij)) (2)

The second product, equation (3) calculates the weights based

on expected observations in the knowledge base within Ai but

not observed. If our current set of observations only consists

of o1 it is less likely to be a ”high tide” abstraction as o2 is

not present.

L2(AI , O
+) =

∏

ai∈AI

∏

oi∈effects(ai)

(1− cij) (3)

The third product, equation (4), represents probabilities related

to pi. In our example, the chance that the current state is ”high

tide” will be 0.3 as p1 is defined as 0.3.

L3(AI , O
+) =

∏

ai∈AI

pi
(1− pi)

(4)

And the fourth product, equation (5), takes the distance of the

discretised pattern representation into account. The distance

between the observed discretised values defines the likelihood

of relevancy between a pattern and an abstraction. This allows

us to take small variances in the discretised data into account.

(e.g. ”ABCD” and ”ABCE” are closer to each other than

”BBBB” and therefore ”ABCD” could also be an observation

for the ”High Tide” abstraction). The distance function is

defined in the original SAX algorithm [3].

L4(AI , O
+) = distance(O+, O) (5)

To find the most relevant explanations of a set of observations,

the abstraction with the highest probability is chosen in

equation (6).

Y = a∗ where a∗ ∈ AI : max(L(AI , O
+)) (6)

However, PCT was never designed to model temporal

observations as they occur in processing continuous real world

data. Sensors make observations over time and therefore can

change the inferred explanation each time a new observation is

made. PCT however is only a static model and only represents

the variables during a time slice. Therefore, a time-dependent

model is also needed to infer explanations from observations

during a period of time. In the next section, we describe the

extension of the parsimonious covering theory with a temporal

component.

C. Temporal Reasoning

The output of the abductive model can vary over time.

Especially in sensor networks the state of an observation is

constantly changing and most likely following some patterns.

To perceive a concept or phenomena both the current and past

states are required. To model and include this time-dependent

aspect of higher-level concept creation, we combine the previ-

ous static model with a Hidden Markov Model (HMM). The

HMM enables to use the abstractions obtained from the static

abductive model to acquire events and processes that occur

over a certain amount of time. The temperature change during

Fig. 8: Complete abstraction model

a day from cold over warm to cold that represents a ”regular”

temperature pattern can be modelled as a new hidden state

that is dependent on several abstractions inferred during the

day. Derivations from this pattern can lead to newly observed

hidden states that eventually can be perceived as outliers.

The output Y (AI , O
+), the inferred abstraction, under a

given set of possible abstractions and current observations

serves as the input for the dynamic model as shown in Figure

8. The overall observation process is divided into several

time windows. The window size enfolds a fixed amount of

observations, made by a sensor and can vary depending on

the sample rate of the different sensors. To model temporal

relations we use a hidden markov model, consisting of the

following 4-tuple: HMM = 〈X,A, Y,B〉 where X is the set

of time-dependent abstractions, A is the transition probabilities

between the different abstractions, Y is the emission parameter

- output of our previous abductive model, B represents the

probabilities bij to make a time-dependent abstraction xi based

on the output of yj . Based on the frequency and type of

occurring events, the HMM model changes the probabilities

and provides feedback for the static model. For instance in

our example from the previous section, is it more likely that

the current observation will be ”high tide” after the detection

of a ”low tide” pattern.

This model transforms observation and measurement data

(originated from sensory devices) and relations into higher-

level abstractions to formalise concepts and knowledge from

the underlying raw data. Figure 8 depicts the relations in

temporal and original abductive reasoning models.
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Fig. 9: The original and abstracted data

V. EVALUATION

To prove the feasibility of the proposed approach, we mea-

sure accuracy, data size reduction and latency of the process

to create the abstractions. We use the UK coastal observation

data provided by the Strategic Regional Coastal Monitoring

Program for the evaluation. A plug-in is implemented that

uses the Channel Coastal Observatory API3 and reads the data-

streams into our gateway. The gateway collects the data from

several stations and provides the abstracted information.

We evaluate the accuracy of the method by comparing the

constructed abstractions with a tidal time table calculated with

the help of a tide and current prediction program4. We use tidal

time table data to show that the model is able to transform

sensor readings to abstractions which occur in the real world.

We measure the data size reduction (i.e. we only measure the

data size and other communication protocol overheads are not

included) and calculate the average correlation between the

original and reconstructed data. The results show that the data

has a correlation coefficient of 0.89 with a positive direction

which means that the reconstructed data is very similar to

the original data. The execution time is also measured for the

construction of a set of abstractions over a data collection

period.

A. Accuracy

The precision and recall metrics have been used to evaluate

the reconstructed data. Precision and recall are predominantly

used in information retrieval to evaluate search algorithms

[28]. In this work recall is used to measure the completeness

in terms of retrieved and relevant abstractions by the algorithm

3http://api.channelcoast.org/
4http://www.wxtide32.com/

compare with the real events as they are reported. Relevant

abstractions are abstractions which could be mapped to an

event in the real world. Recall is defined as follows:

recall = relevantAbstractions∩retrievedAbstractions
totalRelevantEvents

Precision, in the current work, measures the accuracy

of the result by comparing relevant abstractions with the total

number of retrieved abstractions. Defined as:

precision = relevantAbstractions∩retrievedAbstractions
retrievedAbstraction

Figure 9 shows a set of coastal data collected over a

period of time between November and December 20115. The

top diagram in Figure 9 shows the raw sensory data shown

as a time series data. The blue line represents the raw sensor

data, the height of waves measured in the Weston Bay coastal

observation station. The green line represents the z-normalised

data that is used to discrete and reduce the dimension of

the data by applying the SensorSAX algorithm. The second

diagram in Figure 9 shows the constructed abstractions from

the data. The abstraction process is evaluated using three

different probability sets depicted in Table II (a,b). The tables

show the ”training” data. In particular they show which

discretised pattern is represented with what abstraction and

with what probability. To show the feasibility of our approach

we choose small training sets. The probability values for

the training data shown in Table II incrementally use more

observations. Each table shows relation between discrete

value and the ”high tide” abstraction (shown in Figure 9) and

5Due to the space limitations, we cannot show a detailed version of
the diagram. A higher resolution version of Figure 9 is available at:
http://tinyurl.com/c3hfoll
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(a) Latency to create abstracted data (b) Correlation between raw and reconstructed data

Fig. 10: Evaluation results of abstraction creation

High Tide Abstraction Discretised String length =12

Discretised Value Probability cij
aabbdeggghfe 1

High Tide Abstraction Discretised String length =12

Discretised Value Probability cij
aabbdeggghfe 0.5
bbbcccbcfghh 0.5

(a) First and Second Abductive Probabilities

High Tide Abstraction Discretised String length =12

Discretised Value Probability cij
aabbdeggghfe 0.3
bbbcccbcfghh 0.3
hgeeecbcbbcd 0.3

(b) Third Abductive Probabilities

HMM Probabilities Transition Probabilities Emission Probabilities

High Tide Low Tide=0.9, High Tide=0.1 Y = a∗ where a∗ ∈ AI : max(L(AI , O
+))

Low Tide Low Tide=0.1, High Tide=0.9 Y = a∗ where a∗ ∈ AI : max(L(AI , O
+))

(c) HMM (Temporal Probabilities)

TABLE II: Initial values for the abductive and temporal reasoning model

a set of possible abstractions. It is clear that including more

data to describe an abstraction will result in a more precise

abstraction. To find the temporal relationship, the output of

the abductive reasoner is also used to identify the irregular

patterns in the temporal model if they do not follow a

previously known pattern. This irregular pattern can represent

important events that may have occurred. In the current

system, the unknown patterns are labelled as ”outliers” and

a user can be informed or an action can be defined on the

gateway for these outliers. Once an outlier is defined (and

labelled) then it can be also included in the temporal model.

The initial transition probabilities for the temporal process in

our sample data set are shown in Table II (c). This considers

temporal relevance of the abstractions and their occurrences

(for example in our dataset a high tide abstraction always

appear after a low tide abstraction). The HMM reasoning

model is able to alter the transition probabilities as more

observations are made. We use a training length of 10 days

(out of 48 days) to improve the initial manually entered

probabilities based on our model (i.e. the initial probabilities

are defined manually; however as the system observes more

patterns it re-adjusts the probability weights according to the

real occurrences).

First we evaluate the correlation and covariance of the

discretised and reconstructed data using the SensorSAX al-

gorithm. Figure 10 (b) shows the correlation of the sample

data and the reconstructed data over 40 days. As can be seen,

the reconstructed data shows high correlation with the original

data.

We compare the detected abstractions with the observation

data provided by the tidal prediction program. Let’s note that

the Channel Costal Observatory collects and communicates

this data to compute the observations and in our proposed

method the abstractions (which are reduced in size) will be

sent from the gateways instead of the raw-data streams. Figure

11 (a) and (b) demonstrate the precision and recall over

the coastal data with different maximum word length in the

SensorSAX algorithm. A maximum recall result of 0.93 is

achieved with a maxium word length of 14. In other words,

93% of the real occurring ”‘high tide”’ events could be found

by our model while the data size is reduced by 80%. The

precision result is 77% for a maximum word length of 14.

There is also always access to the raw data on the gateway,

in case more evidence is required.

B. Data Size Reduction

To reduce the communication traffic, gateways can process

the data and send the abstractions instead of the raw data. The

”‘size reduction”’ of the abstraction mechanism relies on the

dimensionality reduction of the underlying discretisation algo-

rithm. As described in Section IV.A, we use the SensorSAX
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(a) Precision with different maximum output length in SensorSAX

(b) Recall with different maximum output length in SensorSAX (c) Data size reduction between original Data, discretised data and abstracted
data

Fig. 11: Evaluation results of abstraction creation

algorithm which transforms continuous sensor readings into

string representations. The sample data includes measurements

over 48 days with a total of 2317 data points. In Figure 10 (c)

the size of data that needs to be communicated using different

methods is depicted. The raw data consists of around 246

Kbytes and is unchanged for different maximum word length

(i.e. the maxOut parameter in Figure 4) used to discretise the

data using the SensorSAX algorithm. The size of discretised

data for the same data rises with an average of around 100

Kbytes, if a longer maximum word length is chosen. The size

of the abstracted data stays steady with an average of around

49 Kbytes that needs to be communicated from the gateway to

other destinations. This leads to a reduction of data by nearly

80% compared with the raw data.

C. Latency

It is important that the abstractions can be inferred in a

feasible time. To evaluate the latency of creating the abstrac-

tions, the execution time for different solutions is measured.

The execution time is determined by the length of the pattern

representation defined in the SensorSAX algorithm. The longer

pattern representation create more precise abstractions results;

however the long patterns in SensorSAX will also imply more

data that needs to be processed by the abductive reasoner. We

evaluate the latency over the same dataset that is used in the

previous section. For smaller pattern representations (i.e. word

length < 12) the abstraction creation process takes under 5

seconds (we used a Pentium Quad Core i5 with 2 GHz and

4Gbyte RAM memory). For longer pattern representations,

the execution time raises linearly up to 22 seconds for the

pattern representation with a length of 23 as shown in Figure

10 (a). In a use case scenario according to latency and

accuracy requirement a trade-off needs to be made between

the maximum size of patterns and the latency. The current

approach is realised as an online algorithm and is executed

each time data is requested; however in caching mechanisms

of the abstractions need to be also developed to enhance the

response time.
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D. Discussion

The current work allows to abstract from raw sensor data

to interpretable concepts. Software components run on sensor

nodes and aggregate and discretise the raw data to low-level

SensorSax abstractions. Those abstractions are transmitted to

the nearest gateway to abstract it to higher-level abstractions.

This requires that the used sensor hardware platform is able to

run modified code or adapted implementations. In this work

TMote Sky nodes [11] have been utilised. In case that sensor

nodes are not open source or proprietary, and our SensorSax

module cannot be run on the node itself, the data discretising

process can be applied on the gateway level. However this

would lead to loss of transmission saving on the south bound

direction, as still raw data has to be submitted to the gateway.

Our evaluation results show that we detect 93% of the real

occurring events (represented as concept high tide) with a

saving of 80% on data communication on the north bound

side of the gateway. 23% of the detected abstractions found,

were classified as false positives, therefore wrong inferred

concepts that did not occur in reality. 7% were classified as

false negatives that occurred in reality but where not mapped

as an abstraction. The amount of false positives and false

negatives is too high that the system can be used for real-time

critical scenarios such as flood detection or health observation,

but in non-critical scenarios such as Smart Home, Office and

other pervasive computing scenarios, and with the huge saving

in transmission, the approach is applicable. Especially in the

case of false positives, a domain expert is able to examine

the raw data that is still stored on gateway/node level, but not

transmitted to save traffic, to rule out wrong abstractions.

VI. CONCLUSIONS

In this paper, we propose a solution to reduce the commu-

nication traffic between sensory devices and applications and

services in the Internet of Things and Cyber-Physical systems.

We transform the data to higher-level abstractions and transmit

these data abstractions instead of raw data. Data abstractions

are created using a probabilistic approach where raw data

is analysed and based on abductive and temporal reasoning,

the abstractions are generated. The abductive and temporal

reasoning methods are evaluated over a real world dataset

accessed from the UK Channel Coastal Observatory. We show

that the occurring events with an accuracy of 93% can be

transformed to reduced sized abstractions that are smaller in

size by 80% compared to the raw data. The current approach

is applied only to one local domain. For global domains and

multiple WSNs in different domains, we believe the model

still needs to be localised. What can be identified as an outlier

in one domain can be normal in a different domain. However,

sharing trained local models between different networks can

help enhancing the model by learning from other domains or

bootstrapping a model for new WSNs. The future work will

focus on the parameter learning for the probabilistic model

by applying expectation maximisation (EM) algorithms to

different local models to increase the accuracy of abstractions.
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