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NOTES AND COMMENTS

INFORMATION ACQUISITION IN AUCTIONS

BY NICOLA PERSICO1

1. INTRODUCTION

OUR AIM IN THIS PAPER is to study the incentives to acquire information. We consider
decision problems where the payoff has the single-crossing property and signals are
affiliated with the unknown parameter. We introduce the notion of risk-sensiti�ity, and
establish that the value of information is higher in decision problems that are more
risk-sensitive. We apply this result to auctions: we are able to show that a first price
auction induces more information acquisition than a second price auction.

Consider a decision maker choosing an action a to maximize the expected value of a
Ž .payoff function u � , a . The decision maker does not observe � , which he regards as a

random variable V. Instead, he observes the realization of a random variable X, a signal
which conveys information about � . We assume that the decision maker can make X
more informative, at a cost. Making X more informative increases the expected payoff.
We analyze the returns to making X more informative.

Ž .We focus on problems where X and V are affiliated, and u � , a has the weak
Ž . Ž .single-crossing property in a; � in the definition of Milgrom and Shannon 1994 . See

Ž . Ž .Figure 1 for examples of single-crossing payoff functions u � , a and u � , a .I II
For these problems we are able to identify a determinant of the value of information.

Ž .To this end, we introduce the notion of ‘‘risk-sensitivity.’’ Let a* � denote the a that
Ž .maximizes u � , a for given � . We define a payoff to be more risk-sensitive than another

Ž .if, for given � , it decreases more sharply as a moves away from a* � . See Figure 1,
where u is more risk-sensitive than u .2 We show that the more risk-sensitive a payoffI II
function, the larger the increase in expected revenue from adopting a more accurate
signal. Intuitively, information is more valuable in problem I since inferring the wrong

Ž .value for � , and hence taking a suboptimal action a�a* � , results in a larger loss of
utility than in problem II. We exploit this property in Theorem 2 to determine which
decision problems induce more information acquisition.

We then apply this result to auctions. Suppose that, before an auction, bidders could
acquire information about the value V of the object for sale. Would they choose to
acquire more information before a first or a second price auction? The answer is: before
a first price auction. Indeed, we show that the payoff in a first price auction is more
risk-sensitive than in a second price, as in Figure 1. The intuition for why the value of
information is higher in a first price auction is as follows. The value of the object V is
informative about the opponent’s bid, because the opponent’s signal is positively corre-
lated with V. When bidder 1 acquires information about V, his signal becomes ‘‘more

1 I am grateful to S. Athey, I. Jewitt, M. Krishnan, W. Pesendorfer, A. Postlewaite, J. Valimaki, A.
Wolinsky, and especially Steve Matthews. The editor and four anonymous referees made invaluable
suggestions. A Sloan Dissertation Fellowship is gratefully acknowledged.

2 Ž .Despite the appearance of Figure 1, quasi-concavity of u � , a in a is not necessary for our
arguments.
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FIGURE 1.�The function u is more risk-sensitive than u . Here � ��� � �� �.I II

correlated’’ with V and bidder 1 ends up bidding closer�in a statistical sense�to bidder
2. Now consider the two mechanisms: in a second price auction the price paid does not
depend on the winner’s bid; hence, there is no incentive to bid close to the opponent,
conditional on winning or losing. The payoff is not very risk-sensitive. However, in a first
price auction there is a clear incentive to bid close to the opponent: the winner in a first
price auction could save money by bidding just above the second highest bidder. The
payoff is very risk-sensitive. As a result, correlation with the opponent’s bid is more
valuable in a first price auction. Since information about the object provides correlation
with the opponent’s bid, the result follows.

The paper proceeds as follows. Section 2 analyzes decision problems. First, the model
and the assumptions are presented. Section 2.3 introduces accuracy, a somewhat novel
definition of informativeness of signals. This notion is more general than Blackwell’s
sufficiency for the kind of decision problems we consider. Section 2.4 presents the result
on the marginal revenue of information. Section 3 applies this result to auctions. The
model is introduced in Section 3.1, and in Section 3.2 first and second price auctions are
compared. Section 4 discusses related literature and concludes.

2. AFFILIATED DECISION PROBLEMS

2.1. The Decision Problem

A payoff function is a function

Ž .u � , a : VV�AA��.
The real number � �VV is an unknown parameter, seen as the realization of a random

Ž . Ž .variable V. Let g � be the prior density for V, with c.d.f. G � . The real number a�AA is
the action that the decision maker takes.
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The decision maker cannot observe � , but can observe a signal X� that he chooses
� �4 �from a family of signals X , where E is an interval of the real line. X is a random�� E

�Ž � . �Ž � . �variable with conditional density f x � and c.d.f. F x � . Denote the support of X
� � Ž .by XX , and let XX�� XX . We use the term statistical structure to denote a prior G ��� E

together with a family of signals.
� Ž .A payoff function together with a signal X and a prior G � give rise to the decision

problem

Ž . � Ž � .max u � , a dG � x ,H
a�AA VV

�Ž � . �where G � x denotes the density for V conditional on observing X �x.
�Ž . �Let a x be an optimal action upon observing X �x,

� Ž . Ž . � Ž � .a x �argmax u � , a dG � x .Ha� AA
VV

Let

Ž . Ž � Ž .. � Ž � . Ž .R � � u � , a x dF x � dG �H H
VV XX

denote the expected payoff of a decision maker endowed with signal X�.
� � �4 Ž .A decision maker choosing his signal X from X will balance R � with the�� E

Ž .cost C � of acquiring that signal. We call the optimization problem

Ž . Ž .max R � �C �
��E

Ž .an information acquisition problem. In the case where R � is differentiable, let

�
Ž . Ž .MR � � R �

��

denote the marginal revenue to the decision maker from increasing �.
We restrict attention to the class of payoffs that have the single-crossing property in

Ž . Ž Ž . Ž .a; � see Athey 1997 , Milgrom and Shannon 1994 , and Figure 1 for pictures of
.single-crossing functions . The next definition is instrumental in defining the single-cross-

ing property.

Ž Ž .. Ž .DEFINITION 1 Karamardian and Schaible 1990 : A function H � is quasi-monotone
Ž . Ž .if � ��� and H � �0 imply H � � �0.

Ž .A quasi-monotone function H � crosses the line y�0 at most once, and from below,
as � increases.

Ž . Ž .DEFINITION 2: A function u � , a has the single crossing property in a; � if for any pair
Ž . Ž .a��a, u � , a� �u � , a is quasi-monotone in � .

Ž . Ž .Milgrom and Shannon 1994 call this the weak single-crossing property. Suppose u � , a
Ž . Ž .is differentiable in a. By Theorem 3 in Milgrom and Shannon 1994 , if u � , a has the

Ž . Ž .single-crossing property in a; � , then � u � , a �� a is quasi-monotone as a function of � .
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Ž . Ž .DEFINITION 3: Given two functions u � , a and u � , a , we say that u is moreI II I
Ž .risk-sensiti�e than u and we write u �u if u �u has the single-crossing property inII I II I II

Ž .a; � . When u �u and u �u , we say that u and u have the same degree ofI II II I I II
Ž .risk-sensitivity and we write u �u .I II

Ž .Suppose u and u are differentiable in a. Then u �u means that � u � , a �� aI II I II I
Ž .crosses � u � , a �� a at most once, and from below, as � increases; see Figure 1.II

The class of single-crossing payoff functions is naturally connected with the notion of
affiliation. When a single-crossing payoff function is coupled with a signal X� that is

�Ž . Žaffiliated with V, the resulting optimal strategy a x is nondecreasing in x see Athey
Ž . Ž ..1997 , Jewitt 1987 .

Ž Ž ..DEFINITION 4 Milgrom and Weber 1982 : Two random variables X and V with joint
Ž .density f x, � are affiliated when

Ž . Ž . Ž . Ž .x��x , � ��� � f x�, � � f x , � � f x , � � f x�, � .

Ž � . Ž � . ŽAffiliation implies that the ratio F x � �f x � is nonincreasing in � see Milgrom and
Ž ..Weber 1982 . Affiliation between two random variables is equivalent to the monotone

likelihood ratio property. A high realization of x is ‘‘good news’’ in the terminology of
Ž .Milgrom 1981 , in that it is associated with higher values of V. When X and V are

affiliated, we use the terms affiliated signals and affiliated decision problem in the obvious
way.

2.2. Assumptions

We focus on smooth decision problems, where signals vary continuously in the index �
as defined in the following two assumptions.

Ž . �Ž .A1: The payoff u � , a is differentiable in a, and the optimal action a x is a differen-
tiable function of x and �.

Ž . �Ž � .A2: For all x, � the function F x � is differentiable with respect to � on E, and is
continuous in � .

Assumption A1 is a restriction on the payoff and on the optimal strategy: it requires
some knowledge about the solution of the decision problem. In particular the optimal
strategy must be a smooth function of the signal. Many important economic models
satisfy A1, including those in this paper.3 Assumption A2 requires smoothness in the way

Ž .the family of signals depends on �; see Persico 1996a for examples of families of signals
satisfying A2.4

3 Ž .This assumption is relaxed in Athey and Levin 1998 .
4 For example, A2 is satisfied if X� is distributed as a Uniform, or as a Normal, with mean � and

variance 1��.



INFORMATION ACQUISITION IN AUCTIONS 139

2.3. Information

The standard notion of informativeness of a signal is Blackwell’s sufficiency. However,
there are very few pairs of signals that are ranked in terms of sufficiency, including some
that cannot be ranked despite one signal appearing intuitively to be more informative

Ž .than the other. Thus, a more general and easier to check notion of informativeness of
signals is useful.

Here we use a notion of informativeness which we call accuracy. Given two informa-
tion structures, verifying that one is more accurate than another is straightforward. In
addition, whenever a signal is sufficient for another then it is also more accurate, but not

5 Žconversely. Accuracy, which has been proposed in the statistics literature Lehmann
Ž ..1988 , also arises naturally in other economic contexts such as principal-agent problems
Ž Ž . Ž ..see Jewitt 1997 and Kim 1995 . Accuracy is simpler to verify than sufficiency, and
more intuitive. Section 2.4 below shows that accuracy is the appropriate concept for
understanding the marginal value of information in affiliated decision problems.

DEFINITION 5: Given two signals X� and X �, we say that X � is more accurate than
X� if

Ž . ��1 Ž � Ž � . � .T x �F F x � �� , � , �

is nondecreasing in � , for every x.

� �4We say that the family of signals X is A-ordered if a signal with a higher index�� E
is more accurate than a signal with a lower index.

In order to understand better the concept of accuracy, note that from the definition of
Ž .T x it follows that�, � , �

Ž . Ž � � . � �1 T X � is distributed as X � .� , � , �

Thus, a more accurate signal can be obtained by subjecting a less accurate signal to the
Ž . Ž .T transformation. The fact that T x is increasing in � means that the T 	�, � , � �, � , � �, � , �

transformation varies together with � : the new signal obtained by applying this transfor-
mation is higher than the old signal when � is high, and lower when � is low. Hence, the
notion of a more accurate signal can be interpreted as one of a signal that is more

Ž .correlated with the random variable V; the T 	 transformation imposes this addi-�, � , �
tional correlation on the original signal.6

5 For instance, consider a signal distributed as a Uniform with mean � . Decreasing the variance of
the uniform distribution makes the signal more accurate, but it does not make it more informative
in Blackwell’s sense. For details concerning the concept of accuracy and its relationship to

Ž . Ž .sufficiency, see Persico 1996a . See also Athey and Levin 1998 for related concepts.
6 Applying accuracy to hypothesis testing may be illuminating. Consider a case with two states of

the world, � �� . Let X� be an information structure affiliated with V. Any most powerful test of1 2
� versus � has the form ‘‘accept � if and only if X��x*.’’ The probability of type I error is then1 2 2

�Ž � . �Ž � . � �F x* � , and the probability of type II error is 1�F x* � . Let X be more accurate than X .2 1
Using information structure X � we can design a test that is more powerful than the above test.

�Ž � . �Ž � .Indeed, choose x** such that F x** � �F x* � . Then the test ‘‘accept � if and only if2 2 2
X ��x**’’ has the same probability of type I error as the previous test. Furthermore, since X � is

� ��1Ž �Ž � . � . �more accurate than X , x**�F F x* � � . This means that the test based on X has lower1 1
Ž .probability of type II error; see Lehmann 1988 .
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The next theorem formalizes that A-order is a necessary and sufficient condition for
‘‘better information,’’ when X �, X� are affiliated with V and the payoff satisfies the
single crossing property.

THEOREM 1: Suppose X �, X� are affiliated with V. Then

Ž .For all payoffs u � , a ha�ing the� 	
� � 
 �Ž .� 4 single-crossing property, R � �X is more accurate than X � .� Ž .R � .

Ž .PROOF: See Lehmann 1988 .

2.4. The Marginal Value of Information

Consider two decision problems with the same statistical structure. Which of the two
problems has the highest marginal return to information? Theorem 2 below says that it is
the more risk-sensitive. For pictorial insight refer to Figure 1 where u �u : intuitively, aI II
marginal increase in the accuracy of information is more valuable in problem I since
inferring the wrong value for � , and hence taking a suboptimal action, results in a larger

Ž .marginal loss of utility than in problem II. Once this is established, Theorem 2, part iii
tells which of the two decision problems will yield greater information acquisition. Note
that Theorem 2 holds a fortiori if acquiring information is taken to be in the sense of
Blackwell, because if two signals are ranked according to sufficiency they are necessarily
ranked according to accuracy.

THEOREM 2: Gi�en VV and AA, consider two payoff functions u and u associated to theI II
same A-ordered statistical structure, gi�ing rise to two information acquisition problems

Ž �Ž .. Ž � Ž ..satisfying A1 and A2. If u � , a x �u � , a x , then:I I II II
Ž . Ž . Ž .i MR � �MR � ;I II
Ž . Ž �Ž .. Ž � Ž .. Ž . Ž .ii if u � , a x �u � , a x , then MR � �MR � ;I I II II I II
Ž . 7iii the set of optimal accuracies in problem I is higher, in the strong set order, than that

of problem II.

Ž .PROOF: For part i , notice that

Ž . Ž .MR � �MR �I II

d
� � �� Ž Ž .. Ž Ž ..� Ž � . Ž .� u � , a x �u � , a x dF x � dG � .H H I I II II

���d� VV XX

Denoting

� Ž . Ž � Ž .. Ž � Ž ..u � , x �u � , a x �u � , a x ,I I II II

7 Given A and B subsets of the real line, we say that A is higher than B in the strong set order
� 4 � 4when, for every a�A and b�B we have max a, b �A and min a, b �B.
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we wish to show that

d
� �Ž . Ž � . Ž .u � , x dF x � dG � �0.H H

���d� VV XX

Ž . Ž .Expression 1 on page 139 suggests a change of variable: we can rewrite MR � �I
Ž .MR � asII

d
� �Ž . Ž Ž .. Ž � . Ž .2 u � , T x dF x � dG �H H � , � , �d� ���VV XX

d
� � �Ž Ž .. Ž � . Ž .� u � , T x dG � x dF xH H � , � , �d� ���XX VV

d
� � �Ž Ž .. Ž � . Ž .� u � , T x dG � x dF x .H H � , � , �d� ���XX VV

Differentiability of the above expression is guaranteed by A1, A2. The inner integral
can be computed as

� � �
� � � � �Ž . Ž Ž .. Ž . Ž . Ž . Ž � .3 u � , a x a x �a x T x dG � xH I I I I � , � , �� a �� ����� ���VV

� � �
� � � �Ž Ž .. Ž . Ž . Ž .� u � , a x a x �a x T xH II II II II � , � , �� a �� ����� ���VV

� Ž � .�dG � x .

The first order conditions for problems I and II are

�
� �Ž Ž .. Ž � .u � , a x dG � x �0 for m�I , II .H m m� aVV

Ž .Thus, equation 3 simplifies to

� �
� �Ž . Ž . Ž . Ž � .4 u � , x T x dG � x .H � , � , �� x �� ���VV

Ž .Now we want to apply Lemma 1 in Appendix A to conclude that expression 4 , and
Ž .hence 2 , are nonnegative; this will conclude the proof. To this end we note that

�Ž .� u � , x �� x is quasi-monotone by assumption. By the first-order conditions

�
� �Ž . Ž � .u � , x dG � x �0.H

� xVV

Ž .It remains to show that � T x ��� is nondecreasing in � ; write�, � , �

Ž . Ž .T x �T x� � , � , � � , � , �Ž .T x � lim .� , � , ��� ������ � ��

Ž . Ž .The term T x �x is independent of � . Since T x is nondecreasing in � by�, � , � �, � , �
Ž . 8assumption, we obtain that � T x ��� is nondecreasing in � as required.�, � , �

8 Reasoning along the lines of this proof, it is possible to obtain a ‘‘marginal version’’ of Theorem
Ž .1. See Persico 1996a for details.



NICOLA PERSICO142

Ž .Part ii is straightforward.
Ž . Ž . Ž . ŽPart iii follows from the fact that the function R � �C � where m�I, II andm

. Ž .II�I is seen to have the single-crossing property in �; m . This is easily proved using
Ž . Ž .part i above. Then Theorem 4 by Milgrom and Shannon 1994 on monotone compara-

tive statics yields the results. Q.E.D.

Ž .The intuition for this result is the following. In view of expression 1 , acquiring a more
Ž . Ž .accurate signal is equivalent to observing y�T x instead of x. Because T 	 is�, � , � �, � , �

increasing in � , y will be larger than x if � is high, and smaller if � is low. Thus, for each
�Ž . �Ž . Ž .� the action a y is closer than a x to argmax u a, � . This increases the payoff to thea
Ždecision maker these last two steps make use of the fact that the payoff is single-cross-
.ing: see Figure 1 . How much the payoff increases, however, depends on how steeply

Ž . Ž .u a, � increases as a moves towards argmax u a, � . The steepness of this increase isa
precisely the risk-sensitivity of the payoff.

Ž �Ž .. Ž � Ž ..In general, checking that u � , a x �u � , a x , as required by Theorem 2,I I II II
requires some knowledge of the optimal action in decision problems I and II. However,
this is not the case in the application to auctions, as we see in the next section.

3. AUCTIONS

In this section we use the results developed above to discuss information acquisition in
first and second price auctions.

3.1. The Auction Model

There are two players, 1 and 2,9 and an object to be auctioned whose value to player i
Ž . Ž .is u �u V , V . The function u � , � is increasing in � and nondecreasing in � . V andi i j i j i j 1

Ž .V are random variables unobserved by the players; players share a prior g � , � on2 1 2
Ž .their distribution, with g 	, 	 a symmetric affiliated density function.

� � �4 Ž . �Player i chooses a signal X from a family X at a cost C � . X has a densityi i � � E i
� Ž � . � �f x � whose c.d.f. satisfies A2. Thus, X conveys information about � . X is affiliatedX i i i i ii

� . Ž .with V . The family of signals is A-ordered, and E� �, 
 . We assume C � �0. Thei
interpretation is that agents receive a signal of accuracy � for free, and may choose to

Ž .improve the accuracy of their signal at a cost C � . For each � , � chosen by the1 2
bidders, the joint distribution of signals and value is

�1�2 Ž . �1 Ž � . �2 Ž � . Ž .f x , x , � , � � f x � f x � g � , � .1 2 1 2 X 1 1 X 2 2 1 21 2

Ž Ž .Given this statistical structure, X , X , V , and V are affiliated see Theorem 1 ii in1 2 1 2
Ž .. Ž . Ž Ž . � .Milgrom and Weber 1982 . Let u � , x �E u V , V V �� , X �x .˜ i j i j i i j j

Ž . Ž . Ž .Two special cases of this model are, independent signals when g � , � �g � g � ,1 2 1 2
and the mineral rights model when V �V �V.1 2

The m information acquisition game consists of two stages:
Ž .i player i chooses � , independently from, and simultaneously with, his opponent.i
Ž . �iii after observing the realization of X , but not the opponent’s choice of � , playersi j

compete for the object in mechanism m.

9 This is for expositional ease: all the results carry over to the n-bidders case.
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Ž Ž ..A pure strategy in the m information acquisition game is a pair � , b 	 listing them m
Ž .accuracy choice in stage i and the strategy in the subsequent bidding stage. A symmetric

pure strategy combination for the m information acquisition game is a pure strategy
combination of the form: in the first stage, both players acquire a signal of accuracy � ;m

Ž .in the second stage, both players play strategy b 	 in mechanism m. We modelm
Ž .information acquisition as a co�ert activity, which means that in stage ii players do not

observe the opponent’s accuracy choice before bidding. This allows us to apply the results
in the previous section to characterize the equilibrium of the game.

We introduce some notation about the marginal benefit from increasing accuracy.
First, we define the marginal benefit from increasing accuracy starting from �, when the

Ž .opponent has accuracy � and moreover wrongly thinks the situation is symmetric at � .
Let

Ž .AMR � , � �player 1’s marginal revenue from increasing � inm
Ž .mechanism m when a player 1 has accuracy � ,

Ž .and b is best responding to a player 2 who has
accuracy � and plays the symmetric equilibrium
strategy as if both players had accuracy � .

Let now

Ž . Ž .MR � �AMR � , � .m m

Ž .MR � is the marginal revenue from increasing accuracy when both bidders havem
Ž .accuracy �. We denote with MC � the marginal cost of increasing accuracy.

3.2. First �s. Second Price Auction

We first show how the auction model of Section 3.1 relates to the analysis of Section 2.
Consider a second price auction. Let us check that a bidder faces an affiliated decision
problem when choosing his bid. Bidders 1 and 2 receive signals X and X respectively,1 2
and bid for an object of value V. Suppose that the joint density for X , X , V , and V is1 2 1 2

Ž � . Ž � . Ž .f x � f x � g � , � .1 1 2 2 1 2

The problem of bidder 1 with signal x in a second price auction is1

�1 Ž .b bS � Ž . Ž .� Ž � .max � x , x �b x f x x dx ,H 1 2 S 2 2 1 2
b �


where

Ž . Ž Ž . � .� x , x �E u V , V X �x , X �x1 2 1 2 1 1 2 2

�

Ž . Ž � .� u � , x f � x , x d� ,˜H 1 2 1 1 2 1

�


Ž . Ž .and b x is bidder 2’s strategy. Substituting for � x , x yieldsS 2 1 2

�
�1 Ž .b bS Ž Ž . Ž .. Ž � . Ž � .max u � , x �b x f � x , x d� f x x dx˜H H 1 2 S 2 1 1 2 1 2 1 2
b �
 �


�
 �1 Ž .b bS Ž Ž . Ž ..� max u � , x �b x˜H H 1 2 S 2
b �
 �


Ž � . Ž � .� f x x f � x , x dx d� .2 1 1 1 2 2 1
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Ž � . Ž � . Ž � . Ž � .Since f x x f � x , x � f x � f � x , the previous expression can be written as2 1 1 1 2 2 1 1 1

�

Ž . Ž � .max u � , b f � x d� ,H S 1 1 1 1

b �


where

�1 Ž .b bSŽ . � Ž . Ž .� Ž � .u � , b � u � , x �b x dF x � .˜HS 1 1 2 S 2 2 1
�


A similar analysis can be performed on the first price auction, to get

�1 Ž .b bFŽ . � Ž . � Ž � .u � , b � u � , x �b dF x � ,˜HF 1 1 2 2 1
�


Ž Ž ..where b denotes bidder 2’s strategy. As is well known see, for example, Athey 1997 ,F
Ž . Ž . Ž .u � , b and u � , b have the single-crossing property in b; � . Thus, the bidders’S 1 F 1 1

decision problems in first and second price auctions are of the type analyzed in Section 2.
Then, in view of Theorem 1, accuracy is the appropriate concept of ‘‘better information’’
for a first or second price auction: increasing the accuracy of one’s information is
beneficial, irrespective of the opponent’s strategy and accuracy level. This observation is
formalized in the following Fact.

FACT 1: Consider the first and second price information acquisition games described
in Section 3.1. Let the index m�F, S denote a first and second price auction, respec-

� Ž .tively. Suppose player 2 has accuracy � and plays any increasing strategy b 	 . Supposem
� Ž . Ž .player 1 has accuracy � and plays his best response to b 	 . Then for all �, � ,m

Ž . Ž .increasing � is beneficial to player 1. Formally, AMR � , � , AMR � , � �0.F S

The next proposition proves that at a symmetric equilibrium the marginal return to
information is higher in a first price auction than in a second price.

PROPOSITION 1: Consider the first and second price information acquisition games de-
Ž . Ž .scribed in Section 3.1. Then MR � �MR � for all �.F S

Ž �Ž .. Ž �Ž ..PROOF: In view of Theorem 2, it is enough to show that u � , b x �u � , b x .F F 1 S S 1
For a second price auction we have, at a symmetric equilibrium,

x1� � �Ž Ž .. � Ž . Ž .� Ž � .u � , b x � u � , y �b y f y � dy.˜HS S 1 1 S X 12�


For a first price auction we have

x1� � �Ž . Ž Ž .. � Ž . Ž .� Ž � .5 u � , b x � u � , y �b x f y � dy ,˜HF F 1 1 F 1 X 12�


whence

x1� � � � �Ž Ž .. Ž Ž .. � Ž . Ž .� Ž � .u � , b x �u � , b x � b y �b x f y � dy.HF F 1 S S 1 S F 1 X 12�
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We need to show that

�
� �� Ž Ž .. Ž Ž ..�u � , b x �u � , b xF F 1 S S 1� x1

is quasi-monotone. This expression reads

� Ž � .F x �X 1 12� � � � �Ž . Ž . Ž . Ž . Ž � .6 �b x �b x �b x f x � .F 1 F 1 S 1 X 1 1� 2Ž � .f x �X 1 12

� Ž � . � Ž � .Since X and V are affiliated, F x � �f x � is nonincreasing in � . Thus,2 1 X 1 1 X 1 1 12 2
Ž .expression 6 is quasi-monotone in � . Q.E.D.1

Ž � . Ž � .The proof of Proposition 1 hinges on the properties of F x � �f x � . This ratio can
be interpreted as an index of the ‘‘money left on the table’’ by the winner in a first-price

Ž � . Ž � .auction. When F x � �f x � is very large, the probability that your opponent is bidding
close to you is small. Then, in a first price auction you could save money by reducing your
bid, and still be winning with almost the same probability; in other words, lots of money is
left on the table. By contrast, in a second price auction this deviation is not profitable
because you pay the other player’s bid: no money is left on the table in a second price

Ž .auction. An additional bit of correlation with � information is more useful in a first
price auction because it allows to correlate more closely your bid with the opponent’s,
and thus to reduce the money left on the table.10

We next translate Proposition 1 into a statement about symmetric pure strategy
equilibria of the information acquisition games. A necessary condition for a symmetric

Ž 	 	. Ž . Ž . 	equilibrium at � , � is that MC 	 intersects MR 	 from below in � . In view ofm m m m
Proposition 1 the following is straightforward:

FACT 2: Suppose a symmetric pure strategy equilibrium exists for a first and second
Ž .price information acquisition game described in Section 3.1. If MC 	 only intersects

Ž . 	MR 	 once, then the equilibrium accuracy in the first price auction � will be higherS F
than or equal to �	, the accuracy in a second price auction.S

The question then is which cost functions satisfy the conditions of Fact 2. A cost
Ž . Ž .�function of the form C � � ��� will certainly do for � sufficiently high. Indeed, if

� is large enough we are guaranteed that MC crosses the MR functions only once, andm
from below, at �	; then Fact 2 applies. To check that an equilibrium exists at �	, wem m

Ž . Ž 	 . 	must also check that MC � �AMR � , � if and only if ��� . This is guaranteed bym m m
Ž 	 . Ž 	 .choosing � sufficiently large, because by Fact 1 AMR � , � , AMR � , � �0. TheseF F S S

observations are collected in the following corollary.

Ž . Ž .�COROLLARY 1: Take a cost function C � � ��� and an � sufficiently high. Then for
the first and second price information acquisition game described in Section 3.1, a pure
strategy symmetric equilibrium exists and is unique. Equilibrium accuracy is higher in the first
than in the second price game.

10 In the limiting case where V and V are independent, acquiring information about � does not1 2 1
� Ž � . � Ž � .make player 1 more correlated with player 2’s bid. In this case F x � �f x � is independentX 1 1 X 1 12 2

of � and thus MR �MR .1 F S
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What about the revenue to the auctioneer? An important result in auction theory
states that�when the information structure is exogenously fixed�a second price auction

Žgives the auctioneer a higher expected profit than a first price auction Milgrom and
Ž ..Weber 1982 . However, when information acquisition is allowed as in our model, it is

possible that a first price auction yields more revenue than a second price. See Persico
Ž .1996b for an example.

4. DISCUSSION AND RELATED LITERATURE

We obtain an explicit expression for the marginal value of information in the class of
decision problems where the payoff function exhibits the single-crossing property and the
statistical structure is affiliated. We show that the value of information in such decision
problems is determined by the degree of risk-sensitivity of the payoff.

We use this result to demonstrate how auction formats can be ranked in terms of
bidders’ incentives to acquire information about the object for sale. Different auctions
use winning and losing bids in different ways to determine payoffs. Since learning about
the object for sale conveys information about the opponent’s bid, information about the
object is more valuable in auctions where information about the opponent’s bid is more
important. Our work shows how bidders’ information acquisition behavior varies across
auction formats. We find that a first price auction is more risk-sensitive than a second
price, and thus information is more valuable in the former. This is because in a first price,
more information allows the winning bidder to reduce the money left on the table. This
effect is absent in a second price auction: there is no money left on the table there. This
makes information more valuable in a first price.

In contrast to most results on the value of information in oligopoly games, we analyze
a very general model of information acquisition without resorting to special functional
forms. Our results should be compared with the existing literature on information

Ž .acquisition in auctions. In an unpublished work, Matthews 1977 compares a first and a
second price auction: the two auction forms are found to give the same incentives to

Ž .acquire information. Similarly, Hausch and Li 1991 find no difference in the incentives
to acquire information, among all independent private-values auction mechanisms. Our
work makes clear that this is due to their choice of statistical structure.11 In a recent

Ž .work independent of ours, Gaier 1995 takes up Matthews’ primitives and finds that a
first price auction gives stronger incentives to acquire information than a royalty rate
auction. This result can be couched in the terms of the present paper, and is discussed in

Ž . Ž .Persico 1996b . The techniques presented here are used in Persico 1996b to compare
other auction forms in terms of marginal incentives to acquire information.

The ideas developed in this paper translate immediately to modeling research and
development. Consider the following more general specification for the value to player i:

Ž . Žu �u V , V , X , � . Here, increasing accuracy may have a value-enhancing or cost-re-i i j i i
.ducing effect, and receiving a high signal may be good for the payoff. These features

allow us to reinterpret increasing accuracy as R&D activity, and all the results in the
Ž .present work apply. Tan 1992 presents a model where, prior to a procurement auction,

firms invest in cost-reducing R&D. Tan finds that first and second price are equivalent in
terms of incentives to invest. Using the intuition developed here helps to interpret that
result. In Tan’s model, the R&D activity is one of independent stochastic cost reduction,

11 Ž . Ž .The statistical structures of Matthews 1977, 1984 and Hausch and Li 1991 share the feature
Ž � . Ž � .that F x � �f x � is independent of � .X 1 1 X 1 1 12 2
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in that a firm’s decision to reduce costs does not make its cost function statistically more
correlated with the other firm’s. Thus, once again an independence assumption is key to
the result. Our work shows that if this assumption is relaxed a first price auction induces
more investment in R&D than a second price.

Dept. of Economics, Uni�ersity of Pennsyl�ania, 3718 Locust Walk, Philadelphia, PA
19104-6297, U.S.A.; persico@econ.sas.upenn.edu; http:��www.ssc.upenn.edu� persico˜

Manuscript recei�ed June, 1998; final re�ision recei�ed March, 1999.

APPENDIX

The following lemma is used in the literature to establish comparative statics results in setups
with the monotone likelihood ratio and the single-crossing property. The lemma is also widely used

Ž Ž ..in the literature on comparative statics of risk see Eeckhoudt and Gollier 1994 .

Ž . Ž . Ž .LEMMA 1: Let c, d be an inter�al of the real line, J 	 a nondecreasing function, H 	 a
quasi-monotone function. Assume that for some measure � on � we ha�e

dŽ . Ž . Ž .7 H � d� � �0.H
c

d Ž . Ž . Ž .Then H H � J � d� � �0.c

Ž . � �PROOF: Because H is quasi-monotone and satisfies 7 , there must be a � � c, d such that H is0
Ž̃ . Ž . Ž . Ž .nonpositive for � �� , and nonnegative for � �� . Denote J � �J � �J � . Since J 	 is0 0 0

Ž̃ .nondecreasing, J � is nonpositive for � �� , and nonnegative for � �� . Then0 0

d d ˜Ž . Ž . Ž . Ž . Ž . Ž .H � J � d� � � H � J � d� �H H
c c

� d0 ˜ ˜Ž . Ž . Ž . Ž . Ž . Ž .� H � J � d� � � H � J � d� � �0,H H
c � 0

˜Ž . Žwhere the first equality uses 7 and the inequality follows from H and J having the same sign on c,
. Ž .� and � , d . Q.E.D.0 0
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