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information about the opponent’s payoffs and (iii) with random matching. Using Stahl and 
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check for the consistency of subjects’ actions with the stated beliefs as well as for the 
accuracy of their beliefs (relative to the opponent’s true choice). In the baseline treatment we 
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to beliefs over time. We isolate feedback as the main driving force of learning to play 
strategically and to form beliefs that accurately predict the behavior of the opponent. 
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1 Introduction

The literature on learning has opened the black box of how an equilibrium is reached. Numerous

theoretical and experimental papers have studied learning over a large number of periods and

have focused either on the convergence properties of the learning algorithms or on the evolution of

observed behavior in experimental data. Here, we focus on the development of strategic behavior

in relatively few periods of play. The idea is to take a microscopic view of how beliefs and choices

change over time, controlling for the role of information in this process.

We use a repeated two-person normal-form game with a unique Nash equilibrium of the

stage game. In this relatively simple setup, we observe whether subjects learn to play the game in

the sense that the Nash-equilibrium strategy is chosen more often in later than in earlier periods.

A novel feature of the experiment is that we elicit the beliefs of a player about the action of the

other player in every period. Thus, we can observe the joint development of beliefs and actions

over time. This allows us to answer a number of questions in a dynamic setting that up to now

have only been studied in one-shot games.

A widely used classi�cation of behavior is the level-of-reasoning model of Stahl and Wilson

(1995). In this model players can be distinguished by their levels of strategic thinking. Players

with no sophistication randomize uniformly over their strategy space (level-0 type), whereas a

player with one step of thinking best responds to L0-types, etc. The model also incorporates other

types to capture perfectly rational behavior like the Nash or rational expectation types. We use

the most prominent rules (L1; L2 and Nash) to classify the actions of our game according to their

strategic sophistication and to study how the sophistication of players change over time.

This categorization of choices according to their strategic sophistication is complemented

by the elicited beliefs. We show that the beliefs stated by the participants are better predictors of

the actual choices than the beliefs estimated from choices with belief-learning models. Assuming

that both stated beliefs and estimated beliefs are only a proxy of the true underlying beliefs, we can

conclude that stated beliefs are the better proxy. We then use the stated beliefs to analyze whether

players�actions are best responses to their beliefs more frequently in later than in earlier periods

of the experiment. In addition, we study whether beliefs become more accurate in predicting the

opponents�actual behavior in later periods. The (in)accuracy of beliefs can be interpreted as a

measure of strategic uncertainty.

In order to better understand the reasons for the development of actions and beliefs over
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time, we vary the information that is available to the players. Learning theories typically make use

only of a limited amount of information. To be able to separate between di¤erent forms of learning,

we run a baseline treatment with full information about the game and with feedback about one�s

own payo¤ (and thereby the other�s payo¤ and action) in the previous period. In addition, we

employ a treatment where subjects do not get any feedback about the outcome of play in the

previous period and a treatment where subjects do not know the payo¤s of the other player in the

game, only their own payo¤s. As we change only one aspect at a time, we can observe which kind

of information is important for the learning process. Finally, we control for repeated game a¤ects

by running a treatment with random matching in every period.

Two extreme learning patterns can be distinguished with our experiment. First, subjects

can learn inductively, based on the history of play. Players look back to determine which strategy

to choose in the next period. For example, belief learning and reinforcement learning fall into this

category. Second, deductive reasoning implies that players analyze the game in order to understand

its strategic properties and thereby form beliefs about the opponent�s choice. This learning with-

out feedback requires more sophistication of the players than most inductive learning algorithms.

While both forms of learning have already been studied in di¤erent experiments, we provide a uni-

�ed framework to compare no-feedback learning with inductive learning. The treatment without

feedback information and the treatment without information about the opponent�s payo¤s allow us

to separate the two forms of learning. Using the level-of-reasoning model, we characterize behavior

as strategic or non-strategic and can then evaluate under which information conditions subjects

learn faster to play strategically than in others.

Concerning the results, we �nd an initially high level of non-strategic behavior in all treat-

ments, i.e., subjects tend to neglect the incentives of their opponents. In the baseline treatment

with full information about the game and feedback about past outcomes, this non-strategic behav-

ior decreases in later periods. Experience also has a moderate positive impact on the accuracy of

beliefs and on the best-response rates in the baseline treatment.

The control treatments show that the learning path crucially depends on the information

available. Information about the other player�s payo¤s is important for initial play, but not as much

as to be expected from rational players. Thus, subjects seem to have only a limited understanding

of the strategic properties of the game initially, even if they have full information about the game.

Also, behavior over time is very similar in treatments with and without information about the

opponent�s payo¤ function. However, our results indicate the importance of feedback. In the
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treatment without feedback about past outcomes, there is virtually no change in behavior over

time. Thus, independent of whether subjects know the complete game or only their own payo¤s,

it is the experience through feedback which reduces non-strategic behavior.

Both in standard Nash equilibrium and in the level-of-reasoning model, players are assumed

to best respond to their beliefs. However, best-response rates are initially only between 50% and

60% in the baseline treatment. We observe an increase in best responses over time in the baseline

treatment, but not in any other treatment. Thus, receiving information about the past play of one�s

opponent and about his incentives in the game allows subjects to learn to best respond. Regarding

the accuracy of belief statements in predicting the opponent�s behavior, repeated interaction with

the same opponent and information about his past choices are the main determinants of success in

this task.

The literature related to this study can be summarized as follows. First, the level-of-

reasoning model by Stahl and Wilson (1995) has been applied to a number of data sets based

on 3x3 one-shot normal-form games. Costa-Gomes, Crawford and Broseta (2001) study decision

rules and use the mouselab technique to record how subjects use payo¤ information. Costa-Gomes

and Weizsäcker (2008) elicit subjects�beliefs about the other player�s choice and �nd that subjects

perceive the game di¤erently when asked for beliefs than when playing it themselves. Rey-Biel

(forthcoming) focuses on constant-sum games to analyze the dependency of equilibrium predictions

on the game characteristics. Finally, Ivanov (2006) combines the level-of-reasoning approach with

risk aversion to explain observed behavior.

Repeated normal-form games with belief elicitation have been studied in two other papers.

Nyarko and Schotter (2002) focus on the matching-pennies game to compare stated beliefs with

Cournot and �ctitious-play beliefs. Ehrblatt, Hyndman, Özbay and Schotter (2008) use two di¤er-

ent normal-form games with a unique Pareto-e¢ cient Nash equilibrium in pure strategies to study

convergence to the Nash equilibrium. They focus on the mechanisms underlying the convergence

process and on strategic teaching. Our experimental design is closest to the last paper. However,

the Nash equilibrium in our game is not Pareto-e¢ cient, leading to less convergence. We focus

more broadly on learning how to play strategically and pay close attention to the development and

nature of non-strategic play.

Another strand of the literature studies learning in normal-form games under di¤erent

information conditions. Oechssler and Schipper (2003) and Gerber (2006) use normal-form games

with incomplete information about the opponents�payo¤s in order to study whether players can
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Left Center Right

Top 78, 68 72, 23 12, 20

Middle 67, 52 59, 63 78, 49

Bottom 21, 11 62, 89 89, 78

Table 1: Game

�gure out which game they are playing. Subjects receive feedback about the strategy chosen by

the other player and can thereby form a "subjective game" (Kalai and Lehrer, 1993). In contrast,

Weber (2003) studies a repeated beauty-contest game without feedback and Weber and Rick (2008)

focus on repeated normal-form games without feedback. Both studies observe some amount of no-

feedback learning.

The paper is organized as follows. The next section introduces the design of the experiment

and provides a description of the level-of-reasoning model applied to the normal-form game we

used. In Section 4, we present the results, focusing �rst on choices and then on belief statements.

Section 5 contains a discussion and the conclusions.

2 Experimental design

2.1 Procedures

In all treatments of the experiment, we used the asymmetric normal-form game presented in Table

1. The game has a unique Nash equilibrium in pure strategies in which the row player chooses

Top and the column player chooses Left. This equilibrium can be found by applying iterative

elimination of dominated strategies. Note that the Nash equilibrium of the stage game is not

Pareto e¢ cient. The strategy combination of Bottom and Right leads to higher payo¤s for both

players. This outcome maximizes the payo¤ of the player that is least well o¤, and it also maximizes

the sum of payo¤s. The unique Nash equilibrium of the stage game is also the unique subgame

perfect equilibrium of the repeated game.1 Finally, note that for the column player choosing Right

is strictly dominated by Center.

1However, there is a Nash equilibrium of the �nitely repeated game in which the players play the Pareto-e¢ cient

strategy combination (Bottom, Right) for a number of periods and then switch to the Nash Equilibrium (Top,

Left). In case a player deviates in this equilibrium, she is minmaxed by the other player choosing Middle or Center,

respectively, for the rest of the game.
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Treatment Payo¤ Feedback Matching Periods Sessions # of subjects

BASE own+opponent own payo¤ �xed 20 4 54

PI own own payo¤ �xed 20 4 48

NF own+opponent none �xed 20 4 50

RM own+opponent own payo¤ random 20 3 40

Table 2: Treatments

To study the impact of information on choices and belief statements we implemented four

treatments, the details of which are given in Table 2. Our main interest is in the baseline treatment,

denoted by BASE. In this treatment subjects had all relevant information about the game, i.e. the

set of players, the set of strategies and the payo¤ function of each player. In addition, after each

period they received feedback about the payo¤ earned in this period. Every other treatment di¤ers

from BASE only in one respect. In the treatments NF (no feedback) and RM (random matching)

subjects had common knowledge of the payo¤ structure of the game, but we varied either the

available feedback after each period or the matching protocol. In treatment NF, subjects received

no feedback at all. In treatment RM subjects received feedback about their payo¤, but were

randomly matched with another participant in each period. In treatment PI (partial information),

subjects had incomplete information about some elements of the game. They only knew their own

payo¤ function, but not the payo¤ function of their opponent. However, they received feedback

after each period, just as in treatments BASE and RM, such that they could infer the choice of

their opponent. In all treatments subjects did not receive any feedback about their payo¤s from

the belief elicitation task.2

In the beginning of all treatments, subjects were randomly assigned a player role (row player

or column player), which they kept during the whole experiment. However, they made all their

decisions from the perspective of the row player, i.e. for column players we used a transformation of

the matrix game in Table 1. Before choosing an action (choice task), we asked subjects to indicate

their beliefs regarding the behavior of their opponent (belief task). In particular, we asked subjects

to state the expected frequencies of play, i.e., they had to specify in how many out of 100 times

they expect the column player to choose Left, Center and Right in the current period.3 After the

2Nevertheless, they could infer their payo¤ from this task in treatments BASE, PI and RM. The main reason for

not showing the payo¤s from the belief elicitation task was to change as few parameters as possible when going from

BASE, PI and RM to NF.
3For simplicity we restricted the expected frequencies of play to integers. Therefore, we count any belief statement
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belief task, subjects had to make their choice by selecting one of the three possible actions (mixing

was not possible).4

Subjects were paid for both tasks. For the choice task we paid subjects according to the

numbers in the payo¤ matrix, which were exchanged at the commonly known rate of 1 point = e

0:15. To reward the belief task we used a quadratic scoring rule (QSR) which is incentive compatible

given that subjects are risk-neutral money maximizers. The QSR we used is de�ned as follows.

The payo¤ �QSRit for player i in period t for a given action akjt with k 2 fL;C;Rg of player j in

period t and belief vector bit =
�
bLit; b

C
it ; b

R
it

�
2 �2 such that �2 =

n
bit 2 R3j

P
k2fL;C;Rg b

k
it = 1

o
is

YQSR

it
(bit; ajt) = A�B �

�X
k2fL;C;Rg

�
bkit � 1[akjt]

�2�
(1)

where 1[akjt]
is an indicator function equal to 1 if akjt is chosen in period t and 0 otherwise. While

paying subjects for the choice and the belief task is necessary to ensure incentive compatibility, it

allows subjects to engage in hedging. Subjects can for example coordinate on a cell of the payo¤

matrix that is not an equilibrium and become unwilling to move away from it in order to avoid

losses in the belief task. To eliminate such behavior, we decided to determine the �nal payo¤s as

follows. First, at the end of the experiment we selected one period randomly and independently to

determine the payo¤s for each of the two tasks. Second, we used parameters A = 1:5 and B = 0:75

in the QSR. Thus, the maximum payo¤ from the belief task (e 1:50) is relatively low compared to

payo¤s from choice task. For instance, the Nash equilibrium [Top, Left] would lead to payo¤s of e

11:7 and e 10:2 for the two player roles.5

The experiments were conducted in the computer lab at Technical University Berlin using

the software tool kit z-Tree, developed by Fischbacher (2007). Subjects were recruited via a mailing

list through which they could voluntarily register to participate in decision experiments (Greiner,

2004). Upon entering the lab, subjects received written instructions and were asked to read them

carefully.6 After everybody had �nished reading the instructions, we distributed an understanding

assigning a weight of 34 percent to one action and 33 percent to each of the remaining actions as a uniform belief

statement.
4We employ belief elicitation in all four treatments to analyze the impact of information on beliefs and choices.

For a recent study of the impact of belief elicitation on choices see Rutström and Wilcox (2006).
5Note that subjects could guarantee themselves a payo¤ of e 1 by stating uniform beliefs. Although this would

be an attractive choice for a risk-averse subject, we �nd no evidence of such behavior in our treatments. Only 7:5

percent of belief statements assign no less than 30 and no more than 35 percent to all three of the opponent�s actions.

(BASE 5:8%, PI 5:9%, NF 12:1% and RM 6:3%)
6For the instructions of the baseline treatment see the Appendix A.4.
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test that covered both the game and the QSR. Only after all subjects had answered the questions

correctly, we proceeded with the experiment. In total 192 students (106 males and 86 females) from

various disciplines participated in the four treatments. Sessions lasted about one hour. Subjects�

average earnings were about e 12:80, including a show-up fee of e 3 for arriving at the laboratory

on time.

2.2 Strategies

Stahl and Wilson (1995) proposed a theory of boundedly rational types, based on a hierarchical

model by Nagel (1993). Stahl and Wilson assume that players di¤er in their level of strategic

sophistication. Their model classi�es players into types according to their level of reasoning. A

level-0 type randomizes uniformly over his strategy space, whereas a level-k type best responds to

level-(k � 1) behavior for k 2 f1; 2; ::;1g, hence the term level-k model.7

The level-k model is a useful approach to track o¤-equilibrium behavior. It has been tested

and extended by various other studies mainly in the context of normal-form games (e.g. Costa-

Gomes et al., 2001, Costa-Gomes and Weizsäcker, 2008, Rey-Biel, forthcoming or Camerer et al.,

2004). It is also successful in organizing data from other games such as auctions, as recently shown

by Crawford and Iriberri (2007a, 2007b) as well as Gneezy (2005). The most common types found

in normal-form games are level-1 (L1), level-2 (L2) and Nash types, but their distribution crucially

depends on the set of games investigated.

All above mentioned studies on normal-form games focus on one-shot interactions. In a

repeated setting, additional strategic considerations come into play, and learning becomes possible.

The level-k model can accommodate learning by inducing subjects to play higher-level strategies.

Suppose a subject starts out by playing the L1 action, but then learns to best respond to L1 by

playing L2 and so forth. Thus, a subject can learn by updating his beliefs in the course of the

game, and we will investigate this on the basis of our data. In particular, we will test whether the

subjects�beliefs become more accurate in predicting the opponents�behavior over time.

We use the level-k model to classify the available strategies in our game (see Table 3).

The most important types of the level-k model (L1, L2 and Nash) can be grouped into two broad

7The model contains also other types to capture behavior eventually more in line with traditional game theory.

These are the naive Nash type who chooses the Nash equilibrium strategy, the wordly type who plays a best response to

a subjective distribution of all other types and the rational expectation type who correctly anticipates the distribution

of boundedly rational types and best responds to this distribution.
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Row player Column player

Top Nash(L2) Left Nash

Middle L1 Center L1(L2)

Bottom Rawls Right Rawls

Table 3: Decision rules

categories, namely strategic and non-strategic types. Strategic types form beliefs based on an

analysis of what others do and best respond to these beliefs, whereas non-strategic types do not

take into account the incentives of others. Given this de�nition, strategic types are L2 and Nash

and the non-strategic type is L1.

We also introduce a Rawlsian decision rule, de�ned as choosing the action that maximizes

the payo¤ of the player with the lower payo¤, given that the other player has the same objective

and chooses accordingly. Remember that in the game we use, the Rawls strategy is the same as the

Utilitarian strategy which maximizes the sum of payo¤s. With our de�nition of strategic behavior,

the Rawls action is strategic because it requires the belief that the other player has the same

preferences and acts accordingly (the same reasoning holds for its interpretation as a Utilitarian

rule). Previous studies did not explicitly explore Rawlsian or Utilitarian strategies, but some of

them found behavior pointing in this direction (e.g. Costa-Gomes and Weizsäcker, 2008). The

game we used, depicted in Figure 1, allows us to separate between Nash play and play of the most

e¢ cient and/or fair outcome.8

The main focus of this study is on the development of strategic and non-strategic behavior

over time. We therefore chose a game that allows us to identify strategic and non-strategic behavior

as clearly as possible. In particular our interest was to achieve the best possible separation of the

four rules of behavior (L1, L2, Rawls and Nash). We chose an asymmetric game for which the

di¤erent rules overlap di¤erently for the two player roles (see Table 3). Only the L2 rule cannot be

identi�ed clearly for any of the two player roles. For the row player, it prescribes the same action

as Nash and for the column player it is the same as L1. Assuming that there is a considerable

proportion of L2 play, which is suggested by previous studies, we will overestimate the proportion

of Nash play of the row player and the proportion of L1 play of the column player. We will

keep this in mind when interpreting the �ndings. However, our focus is on subjects learning to

8 In contrast, Ehrblatt et al. (2008) run a similar experiment based on a game where the Nash equilibrium coincides

with the Rawlsian/ Utilitarian outcome.
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play strategically, and the L2 rule represents an intermediate level of strategic reasoning. We are

mainly interested in the comparison between L1 and Nash behavior as the two extreme ends of the

spectrum of strategic play.

Notice that we use the names L1, Nash and Rawls also for the three strategies in treat-

ment PI even though a priori the subjects cannot reason about the other player�s incentives and

consequently cannot identify the Nash and the Rawls strategy in this treatment.9

3 Results

In the �rst part of the analysis, we examine the choices made by the experimental subjects. We

begin this analysis with a focus on �rst period behavior and a comparison of these results to previous

experiments. Afterwards we extend our analysis to all periods and focus on the development of

behavior over time, considering the impact of the information available. In the second part of

the data analysis, we make use of the elicited beliefs. After con�rming that the stated beliefs

outperform beliefs constructed with standard models of belief formation, we examine the frequency

of best responses to the stated beliefs. Furthermore we check the accuracy of the stated beliefs

in predicting the opponent�s choice as well as the role of feedback and payo¤ information for the

formation of beliefs.

Note that unlike in most other studies on asymmetric one-shot games (e.g. Costa-Gomes and

Weizsäcker, 2008), we do not pool the data over player roles. As we study only one speci�c game,

we are able to consider the exact strategic situation of each player role. This di¤erentiation would

be lost by pooling the data. Thus, we run all statistical tests separately for row and for column

players. All results reported as signi�cant in the paper are based on a 5%-level of signi�cance.

3.1 Choices

3.1.1 First-period choices

In this section, we look at behavior in the �rst period only. This is of some stand-alone interest,

since many experiments on behavior in one-shot 3x3 normal-form games have used similar games,

and we can compare our results to them. First-period behavior in the four treatments is presented

9However, if the subjective game constructed by the participants happens to be equivalent to the true game, the

names of the strategies can be interpreted as decision rules. See Kalai and Lehrer (1993) for the theory of subjective

games.
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Figure 1: First period choices

in Figure 1. The �gure shows the fraction of each action in a given treatment for row players and

column players, respectively.

In the �rst period, subjects in treatments BASE, RM and NF all face the same strategic

situation. Therefore we should not observe any di¤erences in behavior in the �rst period. This

is clearly the case, as can be taken from Figure 1. The frequency of chosen strategies of the row

players (column players) in all three treatments is 19 (8) percent Nash, 43 (64) percent L1 and

38 (28) percent Rawls. We cannot reject the hypothesis that the frequency of strategies is the

same in these three treatments using a �2-Test.10 Our �nding of 53% L1 behavior in the �rst

period in BASE, RM and NF is in line with previous studies.11 For instance, Costa-Gomes et al.

(2001) estimated a L1 rate of about 45%, Rey-Biel (forthcoming) found 48% L1 behavior in his

constant-sum games, whereas Costa-Gomes and Weizsäcker (2008) found slightly higher rates of

about 60%.

Now, consider the decision situation in the �rst period of treatment PI. Subjects only know

their own payo¤s in the game and therefore cannot base their decisions on strategic considerations.

Hence, it is no surprise to see 39 out of 48 subjects (81%) choosing the L1 rule in period 1 in PI,

which not only maximizes the minimum payo¤, but also the expected payo¤ assuming that the

opponent randomizes uniformly over all possible actions. Concerning the column player�s choice of

the dominated action Right (Rawls), violations of dominance only occur in treatments BASE, RM

and NF. It is remarkable that no column player in PI chooses Rawls in the �rst period, indicating

that the choice of dominated actions in the other treatments is due to the payo¤ structure of the

10For both player roles we perform a pairwise comparison of BASE with NF and RM, respectively. The test yields

no p-value smaller than 0:64 (�2(2)).
11For ease of comparison with other studies, we pool L1 behavior over player roles.
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other player and not only to mistakes. The frequency of the three strategies in PI is signi�cantly

di¤erent from BASE in the �rst period for both player roles (�2(2); p = 0:043 for row players and

p = 0:014 for column players). We summarize the �ndings on choices in the �rst period in the

following result.

Result 1 (i) First-period behavior in BASE, RM and NF is statistically indistinguishable from

each other and comparable to �ndings from one-shot experiments. (ii) L1 is the most frequently

chosen strategy in the �rst period in all treatments and for both player roles. (iii) First-period play

in treatment PI is signi�cantly di¤erent from BASE.

3.1.2 Choices over all periods

To give a �rst impression of how subjects play the game in the di¤erent treatments, Figure 2

presents the proportion of the behavioral rules over time for each treatment. The �gure shows

averages over three periods in a given treatment for row players in the left panel and for column

players in the right panel. It emerges from the graphs that the frequency of the behavioral rules

di¤ers in the various treatments and for the two player roles.12 To study these di¤erences, we run

a number of regressions, summarized in Table 4.

First, we consider average behavior over all 20 periods in the di¤erent treatments. For

this purpose, we perform a separate regression for each strategy and player role combination. We

regress the strategies on treatment dummies without controlling for time e¤ects, which gives us

a �rst indication of the in�uence of the di¤erent information conditions. To model the repeated

decisions of the same subject in each treatment, we use random-e¤ects panel regressions. Since

subjects had to choose one out of three possible strategies, a probit model is employed where the

dependent variable re�ects the inclination to choose one strategy over the other two.

The results of the regressions without time trends, shown in the odd-numbered columns in

Table 4, reveal the importance of information about the opponent�s payo¤ and of feedback about

past choices. The coe¢ cients of PI are signi�cantly di¤erent from BASE for all strategies except

for the Nash strategy of the row player. In particular, there is signi�cantly more L1 play and less

Rawls play in PI than in BASE. In addition, the lack of feedback in NF results in more L1 play

than in BASE for both player roles and less Rawls play for column players. Similar but weaker

12As stated above, we cannot clearly identify L2 behavior, since this rule overlaps with Nash for row players and

with L1 for column players (see also Table 3). A certain proportion of L2 play may therefore be the reason why we

observe on average less Nash and more L1 play of column players compared to row players over all treatments.
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e¤ects can be observed in RM where the only signi�cant di¤erence to BASE is that L1 choices of

the column player are more frequent.

To investigate potential learning paths, we extend our regressions by including a time trend

and interaction terms for treatment with time. The results of these regressions are presented in

the even-numbered columns in Table 4. In these regressions the dummy variables are coded such

that the corresponding coe¢ cients represent the intercept and the development over time in each

treatment relative to the baseline treatment. In order to assess the absolute time trends in each

treatment, we additionally test the hypothesis that the sum of the coe¢ cient for Period and the

relevant coe¢ cient for Treatment*Period is equal to zero (see Appendix A.1)

First, let us focus on the development of the three strategies in BASE. The coe¢ cient of

Period shows that in BASE subjects tend to choose the L1 strategy less often in later periods

while Nash play increases and Rawls choices are more or less stable over time. We can compare

this learning path to the time trend in treatment PI. The inclusion of time controls reveals that

behavior in PI changes in a similar way as in BASE, with an even stronger decrease of L1 play for

the column player. The average di¤erence in the choices between the BASE and the PI treatment

is therefore mainly due to di¤erences in initial play.

Now consider treatment NF. Although the removal of feedback in treatment NF does not

produce signi�cant di¤erences in the time trend compared to BASE, the time trends in NF are so

small that they are no longer signi�cant when tested directly (see Table A.1). Finally, we compare

the e¤ect of random matching compared to �xed matching on the time trend. While we do not

�nd di¤erences between RM and BASE for row players over time, column players in RM choose

Rawls less often and L1 more often than in BASE. This is consistent with the fact that reputation

building is not possible in RM, and a deviation from Rawls to L1 which gives a higher payo¤ cannot

be sanctioned e¤ectively by the row player.

The �ndings based on the various regressions can be summarized as follows.

Result 2 (i) In treatment BASE there is signi�cantly less L1 and more Rawls play than in PI

and NF. (ii) Over time the proportion of the Nash strategy increases in all treatments and for both

player roles except in NF. (iii) The proportion of the L1 strategy decreases over time in BASE

(row player) and PI (both player roles). There is no similar time trend in NF. (iv) The proportion

of Rawls choices is almost constant over time for all treatments and player roles (except for the

column player in RM).
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Thus, in the sense of Stahl and Wilson we observe a trend towards more strategic play

(that is more Nash and less L1 play) in all treatments with feedback information. There is an

increase in Nash and a decrease in L1 play in BASE and PI. In PI, the overall lower proportion

of strategic behavior compared to BASE can be ascribed to the lack of information about the

opponent�s payo¤s. However, the fact that players in PI can observe the choices of their opponent

over time and react to these observations leads to a development of behavior away from the L1

rule, just as in BASE. In treatment NF behavior does not change over time. As the NF treatment

is comparable to a repeated one-shot situation, this �nding lends support to the frequently applied

method of giving no feedback between di¤erent tasks in experiments in order to minimize learning

e¤ects. Finally, as our control for repeated game e¤ects, treatment RM reveals no di¤erences to

BASE for the row player. But we observe that the column player�s behavior is a¤ected by the

matching protocol in that she chooses on average more non-strategic L1 play in RM than in BASE.

And over time she is less likely to choose the dominated strategy (Rawls) in RM compared to

BASE, probably due to a lack of repeated-game e¤ects.

3.2 Belief formation

In this section, we focus on the relationship between the elicited beliefs and the subjects�own as

well as their opponents�actions. In standard equilibrium analysis it is assumed that subjects form

beliefs about the behavior of the opponent and then best respond to these beliefs. The level-k

model departs from this view by positing that subjects di¤er in their strategic sophistication when

thinking about the behavior of other players, i.e., they di¤er in their beliefs (Stahl and Wilson,

1995). In particular, level-1 behavior implies that beliefs are naive in that uniform randomization

by the opponent is assumed. Level-2 types hold the belief that others best respond to uniform

randomization. Thus, we can use belief statements to measure the level of strategic sophistication

and to track the development of strategic thinking over time.

There are some caveats concerning the elicitation of beliefs. First, subjects need not hold

beliefs about the opponent�s play at all. For example, they might choose some non-strategic decision

rule in the �rst period and then condition play on received payo¤s (as in reinforcement learning).

Forcing them to state beliefs could alter the choices if these subjects move their decisions in the

direction of belief-based play.13 However, our design is based on a comparison between treatments

which all use belief elicitation. Unless the e¤ects of belief elicitation interact with our treatment
13See Rutström and Wilcox (2006) for an argument along these lines.
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variables, our results are immune to such problems. More importantly, the assumption of best-

responses to beliefs in decision theory can be understood as an "as if" assumption. With this

interpretation, subjects do not necessarily have to best respond to their stated beliefs as these beliefs

might be unrelated to the true underlying beliefs. In order to address this concern, we compare

the stated beliefs to beliefs constructed from previous play of the opponent. The stated beliefs

emerge as a better predictor of actual choices than the constructed beliefs, which lends support

to the hypothesis that the elicited beliefs are good approximations of the true underlying beliefs.

Also, subjects might make mistakes when stating their beliefs, just as when taking decisions. We

therefore propose that the belief statements should only be taken as a proxy of the true underlying

beliefs of subjects.14 Finally, even though we asked explicitly to state myopic beliefs, i.e. beliefs

only for the current period, we cannot rule out that subjects follow repeated-game strategies and

hold beliefs consistent with this. As the choices that are part of repeated-game strategies are not

necessarily best responses to myopic beliefs, we will use treatment RM to check for repeated-game

e¤ects.

3.2.1 Stated beliefs vs. models of belief formation

We follow the approach used in Nyarko and Schotter (2002) and compare the explanatory power

of elicited beliefs compared to standard belief learning models. The purpose of this comparison is

to establish whether stated beliefs are a good measure of strategic uncertainty or whether stated

beliefs are inferior to beliefs derived indirectly from the opponents�choices.

Standard belief learning models assume that players update their beliefs based on the op-

ponent�s history of play and then best-respond to these beliefs. The two most prominent models

based on this assumption are the �ctitious-play and the Cournot best-response model. While in

the Cournot model subjects best respond to the opponent�s play in the very last period, players in

a pure �ctitious-play model best respond to beliefs based on all previous actions of the opponent.

The 
-weighted �ctitious-play model introduced by Cheung and Friedman (1997) contains Cournot

best response and �ctitious-play as special cases. In this model subject i�s belief bki;t+1 that subject

j will choose action akjt; k 2 fL;C;Rg in period t+ 1 is de�ned as:

bki;t+1 =
1[akjt]

+
Pt�1
u=1 


u
i 1[akj;t�u]

1 +
Pt�1
u=1 


u
i

: (2)

The parameter 
i is the weight player i gives to the past actions of his opponent. It is obvious

14See Costa-Gomes and Weizsäcker (2008) for a thorough analysis of belief statements.
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from (2) that 
i = 0 leads to the Cournot best-response model and 
i = 1 yields �ctitious-play,

respectively. We incorporate this model into a standard logistic choice model to allow subjects to

best respond to their beliefs with noise. Subject i chooses action k with probability

Pr
�
akit

�
=

exp
�
��[akit; bit]

�P
l2fL;C;Rg exp

�
��[alit; bit]

� ; (3)

where �[akit; bit] is the expected payo¤ of player i when she chooses an action k given her beliefs bit

over the action set of her opponent. The parameter � determines the impact of this expected payo¤

on her own choice probability and can be interpreted as a rationality parameter. A player with

� = 0 chooses all actions with equal probability disregarding the expected payo¤ of her choice. On

the other hand if �!1 the player is fully rational, i.e. she always best responds to her beliefs.

We now turn to the estimation and probabilistic comparison of the choice model (3) based

on the 
-weighted �ctitious-play model (2) on the one hand and on the stated beliefs on the other

hand. Since the belief-learning model assumes that subjects process only information about their

own payo¤s and about the history of their opponent�s play, we only use the data of treatments

BASE and PI in the following analysis, while we do not consider treatment NF. We also analyze

the data from treatment RM, since the process described in (2) can also be interpreted as the

formation of beliefs over the average play of the population rather than over individual choices.

The estimation results for each treatment and player role are presented in Table 5.15

As a �rst result we observe that the stated beliefs play a signi�cant role in explaining the

behavior of our subjects, since appropriate likelihood-ratio tests reject the hypothesis that the

rationality parameter � is equal to zero (p = 0:00 for all treatments and player roles).

Using tests for the selection between non-nested models introduced by Vuong (1989) and

Clarke (2003), the hypothesis of equal explanatory power of the models can be rejected at all usual

signi�cance levels for all treatments and player roles, the only exception being the column player in

the random-matching treatment.16 In our notation the negative signs of the test statistics reveal

15For the 
-weighted �ctitious-play model we estimated 
 and � simultaneously. All ML-estimations and tests have

been conducted with MATLAB and R.
16Vuong�s test statistic is based on the overall likelihood ratio of two rival models and is asymptotically normally

distributed under the null. Clarke�s test statistic consists of the number of single likelihood ratios being greater than

1 which is binomially distributed under the null with parameters � = 0:5 and the number of observations in each

subset of the data. Vuong�s test is outperformed by Clarke�s test when the distribution of the single log-likelihood

ratios is highly peaked. Both tests were calculated using corrections for the dimension of the models as proposed by

Schwarz (1978) and Clarke (2007) respectively.
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ML-estimation of model (3) using Model selection tests

Fictitious play (2) Stated beliefs Vuong�s test Clarke�s test

Treatment Role � 
 logL � logL Z p-value Z p-value

BASE row 0.0575 0.7418 -484.01 0.1005 -422.12 -3.46 0.0005 -9.12 0.0000

column 0.0373 0.6009 -492.96 0.0586 -421.93 -6.88 0.0000 -5.42 0.0000

PI row 0.0442 0.6488 -487.68 0.0646 -451.16 -3.72 0.0002 -3.47 0.0005

column 0.0571 0.6220 -413.59 0.1066 -307.98 -5.82 0.0000 -14.97 0.0000

RM row 0.0233 0.5821 -427.04 0.0825 -372.34 -5.35 0.0000 -5.90 0.0000

column 0.0729 0.9067 -350.21 0.0604 -334.25 -1.42 0.1548 -1.30 0.1936

Notes: p-values are two-sided. Clarke�s corrected B has been approximated by the standard normal

distribution.

Table 5: Model Estimation and Selection.

that the stated belief model is closer to the real data generating process than the beliefs generated

by the belief-learning models.

To summarize, we extend the �nding of Nyarko and Schotter (2002) from a matching-

pennies game to our normal-form game with a unique subgame perfect Nash equilibrium in pure

strategies. We �nd that stated beliefs are better at explaining observed choices than beliefs that are

implied by the standard models of belief formation. In the following, we therefore use the stated

beliefs when analyzing the impact of experience and information on the consistency and accuracy

of beliefs.

3.2.2 Consistency of actions and stated beliefs

Both in standard Nash equilibrium and in the level-k model it is assumed that subjects best respond

to their beliefs. Using the elicited beliefs, we can investigate the consistency of actions and stated

beliefs, i.e. whether subjects best respond to their stated beliefs. This helps us to evaluate the

relative descriptive validity of both models in the four di¤erent treatments.

In Figure 3 the proportion of players best responding to their stated beliefs is displayed

for each player role and treatment separately. The �gure shows the average proportion of best

responses over three periods. In all treatments, the average best response rates are rather low,

ranging from 45% to 75%. In order to compare our results to other studies, it is useful to look

at the aggregated best-response behavior of all subjects. Averaging over all treatments and player
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Figure 3: Best-response rates over time

Costa-Gomes

& Weizsäcker

(2008)

Rey-Biel

(forthcom.)

Ehrblatt et al.

(2008)

Nyarko

& Schotter

(2002)

our study

Games various 3x3 various 3x3 two 3x3 one 2x2 one 3x3

Interaction one-shot one-shot repeated repeated repeated

� 54 69 49 75 63

Table 6: Best-response rates (in %) in various studies

roles, subjects best-respond to their stated beliefs in 63% of the cases. The best-response rates

found in similar studies are summarized in Table 6. In simple games like 2x2 games (Nyarko and

Schotter, 2002) or constant-sum games (Rey-Biel, forthcoming) consistency rates are about 70%,

whereas the rates range from 49% to 63% in more complicated games like ours or the games used

in Costa-Gomes and Weizsäcker (2008) and Ehrblatt et al.(2008), respectively.

For statistical evidence on di¤erences between the treatments and the development of best-

response rates over time, we run random-e¤ects panel regressions. As the dependent variable is

either 0 (no best response) or 1 (best response), we use a probit model. Besides the constant,

the independent variables are dummies for PI, NF and RM, a linear time trend and interaction

dummies for time trend and treatment. The regression results are summarized in Table 7. Again,

we run additional direct tests of the absolute time trends in the control treatments (see Appendix

A.2).

Due to the asymmetry of the game and in particular due to the fact that only the column
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Best-response rates

row player column player

(1) (2) (3) (4)

PI
-0.356�

(0.212)

0.105

(0.263)

0.846���

(0.257)

1.262���

(0.314)

NF
-0.517��

(0.209)

-0.387

(0.260)

0.499��

(0.253)

0.578�

(0.302)

RM
0.326

(0.222)

-0.176

(0.275)

0.335

(0.269)

0.244

(0.320)

Period
0.032���

(0.011)

0.018�

(0.011)

PI*Period
-0.046���

(0.015)

-0.039��

(0.017)

NF*Period
-0.014

(0.015)

-0.007

(0.016)

RM*Period
-0.016

(0.016)

0.009

(0.017)

Constant
0.557���

(0.146)

0.234

(0.181)

0.176

(0.174)

-0.012

(0.208)

log L -1160.74 -1152.70 -1008.56 -1002.94

�2(3)=�
2
(7) 6.48� 22.13��� 11.22�� 22.09���

N 1920 1920

Notes: Random-e¤ects probit regressions,

* signi�cant at 10%; ** signi�cant at 5%; *** signi�cant at 1%

Table 7: Regressions: Best-response rates
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player has a dominated strategy, it is necessary to di¤erentiate between the row and the column

player in this section. First we investigate whether subjects learn to best respond in BASE in the

course of the experiment. The signi�cant and positive coe¢ cient of Period reveals that this is the

case for the row player. There is a positive trend also for the column player, but it fails to be

signi�cant.

In what follows, we will compare each control treatment with BASE separately, starting

with PI. For the row player, the average number of best responses in BASE is slightly higher than

the number of best responses in PI. The opposite holds for the column player which is due to less

Rawls play in PI (as the Rawls strategy cannot be identi�ed in PI), thereby avoiding violation of

dominance. Using direct tests for the time trends, there is no signi�cant development over time

for both player roles in PI. When comparing BASE to NF the overall level of best responses is

again higher in BASE than in NF for the row player and lower for the column player (because the

dominated Rawls strategy is played less often in NF than in BASE). As in PI, the time trends in

NF are not signi�cant when tested directly. Aside from the row players in BASE, only the column

players in RM display higher best-response rates in later periods (the time trend of column players

in RM is signi�cant when using a direct test).

These �ndings raise the question why the best-response rates of the row player are higher in

BASE compared to treatments PI and NF. Internal consistency requires best responding to one�s

beliefs, independent of the information conditions. We can merely o¤er potential explanations

of our observations, but further research is necessary to disentangle the causes of behavior more

thoroughly. In treatment NF, subjects might be doubtful about the accuracy of their beliefs, lacking

information about the other player�s behavior. This might induce them to put less weight on their

beliefs when choosing an action. But this reasoning fails to explain the similar result in treatment

PI where there is also no discernible increase in best-response behavior. In PI, players have to learn

about the structure of the game over time. Two possible explanations come to mind. First, the

complexity of learning both the structure of the game and of best responding to one�s beliefs at

the same time may be too high. Second, in treatment PI many subjects start with uniform beliefs

and best respond to them. As the belief set of L1 is large and L1 is an attractive strategy initially,

there is a high rate of consistency at the outset. This e¤ect is absent in BASE and NF.

The focus of the preceding analysis was on myopic beliefs. However, in our repeated-game

setting, Folk Theorem results are possible. If subjects aim at a cooperative outcome, column players

might choose their dominated action (Rawls) in response to Rawls play of row players. A necessary
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condition for a repeated-game strategy is the observability of past behavior such that subjects can

condition their actions on their opponents�play. To achieve a cooperative outcome a minimum of

information is needed to allow for sanctions of deviations.17 As mentioned before, the fact that the

choice of Rawls by the column player can never be a best response to any myopic belief explains why

we observe very low best-response rates for column players in BASE compared to NF and PI where

less Rawls play is observed. If the low best-response rates are indeed a result of repeated-game

strategies, we should observe signi�cantly higher best-response rates in RM. The reason is that the

�nite time horizon and the random-matching protocol do not allow for cooperation based on the

Folk theorem. But we observe a substantial proportion of Rawls play also in RM in both player

roles. Moreover, the regressions reveal no signi�cant di¤erences between BASE and RM neither

for the overall proportion of Rawls play (see Table 4) nor for the average best response rates (see

Table 7).

The insigni�cant di¤erence of best response rates in BASE and RM could be due to a higher

number of failures to best respond to undominated actions in RM, which would push best-response

rates down in the direction of BASE. But this is not the case. When considering only the best-

response behavior to Nash and L1, we �nd best response rates of about 92% in BASE and 88%

in RM. We can further support this �nding of equal best-response rates in BASE and RM by a

Kolmogorov-Smirnov test which compares the number of best responses to Nash and L1 of each

subject. The test yields a p-value of p > 0:88.18 For these reasons we consider the evidence for

repeated-game strategies as weak.

Result 3 (i) Row player: The best-response rates in PI and NF are on average signi�cantly lower

than in BASE. While the proportion of best responses increases over time in BASE, there is no

signi�cant time trend in all other treatments. (ii) Column player: Best-response rates are overall

higher in treatments NF and PI than in BASE. This di¤erence disappears when restricting attention

to undominated actions. There is no signi�cant time trend for any treatment except RM. (iii) For

both player roles, treatments BASE and RM do not signi�cantly di¤er from each other with respect

to overall best-response rates.

Interpreting the stated beliefs as proxies for the true underlying beliefs, we can conclude that

17For instance, Ellison (1994) and Kandori (1992) have shown for in�nitely repeated games with random matching

that a cooperative outcome is possible through contagious sanctions.
18We use each column player as an independent observation and compare the empirical distribution of the number

of best responses to Nash and L1 between BASE and RM.
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Figure 4: Accuracy of stated beliefs

actors best respond more often to their beliefs in repeated games with feedback information and

information about the game structure with some experience of the situation, compared to situations

with less information and experience. Best-response rates are low when there is a dominated action

leading to the Pareto-e¢ cient outcome.19

3.2.3 Accuracy of stated beliefs

We will now focus on whether the elicited beliefs are accurate in predicting the behavior of the

opponents. The accuracy of beliefs is also a measure of strategic uncertainty. Subjects who hold

accurate beliefs about opponent�s behavior do not experience strategic uncertainty. The baseline

treatment together with the control treatments allow us to identify the factors enabling subjects

to reduce strategic uncertainty and to state accurate beliefs. In addition, the predicted accuracy of

beliefs is di¤erent in the Nash equilibrium prediction and the level-k model. In the Nash equilibrium

of the stage game, subjects hold accurate beliefs about their opponent�s choice. In the level-k model,

however, this is typically not the case as subjects�beliefs can be at odds with their opponents�

behavior. In order to measure how well stated beliefs predict the opponent�s play, we use the

earnings from the quadratic scoring rule (QSR). Figure 4 shows the average earnings over three

periods from the QSR for all treatments and for both player roles.20

19Of course, the strategy may not be dominated for other speci�cations of the utility function. However, in this

paper we restrict attention to payo¤s representing utilities.
20 In principle, the accuracy of predicting other�s behavior should not depend on the player role. Indeed, we only �nd

a weakly signi�cant di¤erence between player roles in RM (Mann-Whitney test, p = 0:098). In all other treatments
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The average payo¤ across treatments and player roles is about e 1.21 This corresponds to

the payo¤ for subjects who state uniform beliefs, which is indicated by the vertical line in Figure 4.

The second benchmark to which we can compare the earnings is e 0:5; representing the expected

payo¤ from randomizing uniformly over degenerate beliefs. Although subjects earn hardly more

than e 1; their beliefs are much better than in the case where they simply try to predict the

choice of their opponent with a probability of one (Wilcoxon signed-rank test, all p-values < 0:01).

How can the belief statements be further characterized? We do not observe many uniform belief

statements (see also footnote 5). Although 49% of all belief statements assign a positive probability

to each action, only a fraction of 7.5% submit uniform beliefs. About 21% of the belief statements

assign a positive probability to two of the actions, and 30% of the statements are degenerate. Row

players in BASE and PI earn on average more than e 1 and in NF and RM they earn less than e 1.

But we cannot reject the hypothesis of equal means at a 5% level of signi�cance for all treatments

(Wilcoxon signed-rank test, p-values > 0:085). The same holds for column players in BASE and PI,

but column players in NF and RM earn on average signi�cantly less than e 1 (Wilcoxon signed-rank

test, for NF and RM p-values < 0:01).

Figure 4 displays improvements over time in predicting the play of the opponent in treat-

ments BASE and PI. Apparently, this is not the case for treatments NF and RM. We run a

random-e¤ects panel regression where the dependent variable is the payo¤ from the belief elicita-

tion task. In addition to the constant and a reference time trend for BASE, the regression includes

treatment and time interaction dummies for the controls PI, NF and RM as independent variables

in order to measure the corresponding performance relative to BASE. Again, direct tests of the

absolute time trends in the control treatments were performed separately (see Appendix A.3).

Averaged over all periods, beliefs are signi�cantly less accurate in NF than in BASE while

PI and BASE show the same accuracy of beliefs. When comparing BASE to RM, only the column

players di¤er signi�cantly due to a lower accuracy of beliefs in RM than in BASE. Focusing on the

development over time, we observe some learning in BASE since the beliefs become more accurate

over time for the column players. We observe the same pattern over time in PI as in BASE. But for

treatments NF and RM, tests of the absolute time trends reveal that there is no learning. Finally,

the row players show no signi�cant learning path in any treatment.

The �ndings can be summarized as follows:

the same test yields p-values higher than 0:45.
21The average payo¤ across player roles is in BASE e 1.07, in PI e 1.02, in NF e 0.89 and in RM e 0.91.
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Payment for belief task

row player column player

(1) (2) (3) (4)

PI
-0.017

(0.063)

-0.030

(0.082)

-0.069

(0.063)

-0.087

(0.081)

NF
-0.144��

(0.063)

-0.024

(0.081)

-0.219���

(0.062)

-0.039

(0.080)

RM
-0.100

(0.067)

-0.053

(0.086)

-0.216���

(0.066)

-0.138

(0.085)

Period
0.005

(0.003)

0.013���

(0.003)

PI*Period
0.001

(0.005)

0.002

(0.005)

NF*Period
-0.011��

(0.005)

-0.017���

(0.005)

RM*Period
-0.005

(0.005)

-0.007

(0.005)

Constant
1.056���

(0.044)

0.999���

(0.056)

1.080���

(0.043)

0.941���

(0.055)

�2(3)=�
2
(7) 6.84� 15.60�� 17.61��� 55.56���

R2 0.07 0.07 0.16 0.16

N 1920

Notes: Random-e¤ects regressions,

* signi�cant at 10%; ** signi�cant at 5%; *** signi�cant at 1%

Table 8: Regressions: Accuracy of stated beliefs
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Result 4 (i) In treatments BASE and PI, behavior is characterized by the same learning path. The

column player�s beliefs are more accurate in later periods while the row players do not display any

learning. (ii) Overall, the beliefs are signi�cantly less accurate in NF than in BASE since there is

no learning at all in NF. (iii) While for the row player the accuracy of beliefs is the same in RM

as in BASE over all periods, the column players in RM exhibit less accurate beliefs on average.

The results indicate that feedback about past behavior of one�s opponent is more important

for reducing strategic uncertainty than information about the strategic incentives of one�s opponent.

Without feedback or with noisy feedback because the opponent is not the same in each period, it

is di¢ cult to predict one�s opponent�s behavior. Further support for the relatively minor role of

information about the structure of the game comes from the fact, displayed in Figure 4, that in

the �rst periods beliefs are not signi�cantly less accurate in PI than in BASE. The observed low

accuracy of beliefs is an indicator for the strategic uncertainty in all treatments. However, we see

that in the treatments with feedback (BASE and PI) the accuracy of beliefs is not only higher than

in NF and RM, but it also increases over time. The non-signi�cance of the time trend of the row

players in BASE is mainly due to the large drop of the accuracy of beliefs in the last two periods.22

This drop is associated with the deviation from Rawls of almost all column players in the last two

periods which was not anticipated by the row players.

4 Summary and Conclusions

We have performed an experiment to study the development of strategic reasoning over a limited

number of periods. To classify the strategies of the 3x3 normal-form game employed in our study,

we used the level-of-reasoning model of Stahl and Wilson (1995). This classi�cation allowed us to

track strategic play over time. In order to understand the determinants of strategic play, we varied

the information available to the players and elicited their beliefs about opponents�play.

We �nd that feedback information and information about the payo¤s of the opponent have

an impact on choices. When either type of information is lacking, this leads to an increase in

non-strategic (L1) and a decrease in Rawls play on average. However, not revealing the opponent�s

payo¤ function has almost no impact on the learning path compared to the baseline treatment. In

both treatments (BASE and PI), subjects exhibit less non-strategic and more Nash play over time.

22 If we exclude the last two periods in regression (2) and (4) in Table 8, the coe¢ cients of period are signi�cantly

positive for BASE and signi�cantly negative for NF and RM.
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In contrast, in the no-feedback treatment there is no increase in strategic play in the course of

the experiment. This fact clearly highlights the importance of feedback and the limits of strategic

sophistication of the subjects.

Regarding the analysis of beliefs, we �rst evaluate whether stated beliefs or beliefs con-

structed with belief-learning models are a better proxy for the underlying true beliefs of the subjects.

We �nd that the stated beliefs are more consistent with actual choices than beliefs constructed with

belief models such as weighted �ctitious play or Cournot best response. Given this result, we study

the best-response rates to the stated beliefs. In the baseline treatment, actions are consistent with

stated beliefs more frequently in later periods (signi�cant for the row players). Missing informa-

tion about the opponent�s payo¤ function or no feedback destroys this trend towards more best

responses in later periods.

The accuracy of the subjects�beliefs with respect to the opponent�s choices is increasing over

time in the baseline treatment (this is signi�cant for column players). Surprisingly, removing the

information about the opponent�s payo¤ function does not decrease the overall accuracy of beliefs

nor its development over time in a signi�cant manner. However, without feedback information

about the other player�s past actions, the overall accuracy of beliefs is signi�cantly lower, and

players do not make any improvements in predicting the other player�s behavior.

This study should be seen as a �rst step in understanding the development of strategic

thinking with the help of stated beliefs in a game. Many issues remain to be investigated. For

example, other games should be used in order to be able abstract from the speci�cs of our game.

Also, the accuracy and consistency of beliefs over time is by now very little understood and in our

view deserves thorough empirical scrutiny.

28



References

[1] Camerer, C., Ho, T., and Chong, J.-K. (2004). A Cognitive Hierarchy Model of Games, Quar-

terly Journal of Economics, 119, 861-898.

[2] Clarke, K. A. (2003). Nonparametric Model Discrimination in International Relations, Journal

of Con�ict Resolution, 47, 72-93.

[3] Clarke, K. A. (2007). A Simple Distribution-Free Test for Nonnested Model Selection, Political

Analysis, 15, 347-363.

[4] Costa-Gomes, M.A., Crawford, V. and Broseta, B. (2001). Cognition and Behavior in Normal-

form Games: An Experimental Study, Econometrica, 69, 1193-1235.

[5] Costa-Gomes, M.A. and Weizsäcker, G. (2008). Stated Beliefs and Play in Normal-form Games,

Review of Economic Studies, 75, 729-762.

[6] Crawford, V. and Iriberri, N. (2007a). Level-k Auctions: Can a Non-Equilibrium Model of

Strategic Thinking Explain the Winner�s Curse and Overbidding in Private Value Auctions,

Econometrica, 75, 1721-1770.

[7] Crawford, V. and Iriberri, N. (2007b). Fatal Attraction: Salience, Naivete, and Sophistication

in Experimental Hide-and-Seek Games, American Economic Review, 97, 1731-1750.

[8] Ehrblatt, W. Z., Hyndman, K., Özbay, E.Y. and Schotter, A. (2008). Convergence: An Ex-

perimental Study of Teaching and Learning in Repeated Games, Working Paper.

[9] Ellison, G. (1994). Cooperation in the Prisoner�s Dilemma with random matching, Review of

Economic Studies, 61, 567-588.

[10] Fischbacher, Urs (2007). z-Tree: Zurich toolbox for ready-made economic experiments, Exper-

imental Economics, 10, 171-178.

[11] Gerber, A. (2006). Learning In and About Games, Working paper.

[12] Gneezy, U. (2005). Step-Level Reasoning and Bidding in Auctions, Management Science, 51,

1633-1642.

29



[13] Greiner, B. (2004). An Online Recruitment System for Economic Experiments, in: Kremer,K.,

Macho, V. (eds.): Forschung und wissenschaftliches Rechnen 2003, GWDG Bericht 63, Göt-

tingen: Ges. für Wiss. Datenverarbeitung, 79-93.

[14] Ivanov, A. (2006). Strategic Play and Risk Aversion in One-Shot Normal-Form Games: An

Experimental Study, Working Paper.

[15] Kandori, M. (1992). Social Norms and Community Enforcement, Review of Economic Studies,

59, 63-80.

[16] Kalai, E. and Lehrer, E. (1993). Subjective Equilibrium in Repeated Games, Econometrica,

61, 1231-1240.

[17] Nyarko, Y. and Schotter, A. (2002). An Experimental Study of Belief Learning Using Elicited

Beliefs, Econometrica, 70, 971-1005.

[18] Oechssler, J. and Schipper, B. (2003). Can You Guess the Game You Are Playing?, Games

and Economic Behavior, 43, 137-152.

[19] Rey-Biel, P. (forthcoming). Equilibrium Play and Best Response to (Stated) Beliefs in Constant

Sum Games, Games and Economic Behavior.

[20] Rutström, E. and Wilcox, N. (2006). Stated Beliefs Versus Empirical Beliefs: A Methodological

Inquiry and Experimental Test. Mimeo.

[21] Schwarz, G. (1978). Estimating the Dimension of a Model, The Annals of Statistics, 6, 461-464.

[22] Stahl, D.O. and Wilson, P.W. (1995). On Players�Models of Other Players: Theory and

Experimental Evidence. Games and Economic Behavior,10, 218-254.

[23] Vuong, Q. H. (1989). Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses,

Econometrica, 57, 307-333.

[24] Weber, R. (2003). �Learning�With No Feedback in a Competitive Guessing Game, Games and

Economic Behavior, 44, 134-144.

[25] Weber, R. and Rick, S. (2008). Meaningful learning and transfer of learning in games played

repeatedly without feedback, Working Paper.

30



A APPENDIX

A.1 Tests for absolute time trends of choices

Row player Column player
(1)

Nash
(2)

L1
(3)

Rawls
(4)

Nash
(5)

L1
(6)

Rawls

BASE
-0.929���

(0.24)

-0.831���

(0.239)

-0.03

(0.236)

-1.671���

(0.251)

-0.126

(0.187)

-0.31

(0.242)

PI
-0.622��

(0.244)

-0.023

(0.244)

-1.037���

(0.258)

-1.227���

(0.236)

0.861���

(0.203)

-1.723���

(0.29)

NF
-1.012���

(0.251)

-0.273

(0.235)

-0.507��

(0.249)

-1.317���

(0.244)

0.406��

(0.199)

-0.993���

(0.256)

RM
-1.137���

(0.274)

-0.421

(0.266)

-0.112

(0.274)

-1.875���

(0.296)

0.245

(0.22)

-0.417

(0.28)

Period*BASE
0.032���

(0.012)

-0.045���

(0.013)

0.001

(0.011)

0.042���

(0.013)

-0.018�

(0.01)

-0.013

(0.012)

Period*PI
0.033���

(0.011)

-0.041���

(0.012)

-0.002

(0.012)

0.053���

(0.012)

-0.05���

(0.011)

0.007

(0.016)

Period*NF
0.008

(0.012)

-0.013

(0.011)

0.007

(0.012)

0.019

(0.013)

-0.007

(0.011)

-0.012

(0.013)

Period*RM
0.051���

(0.013)

-0.042���

(0.014)

-0.019

(0.013)

0.038��

(0.016)

0.013

(0.012)

-0.051���

(0.014)

logL -977.66 -908.25 -978.62 -801.85 -1147.71 -795.93

N 1920 1920

Notes: Random-e¤ects probit regression, standard errors in parentheses,

* signi�cant at 10-percent level; ** signi�cant at 5-percent level; *** signi�cant at 1-percent level.

Table A.1: Regressions: Decision rules with absolute time trends.
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A.2 Tests for absolute time trends of best-response rates

Best-response rates

row player column player

BASE
0.234

(0.181)

-0.012

(0.208)

PI
0.339�

(0.191)

1.250���

(0.235)

NF
-0.153

(0.186)

0.566���

(0.218)

RM
0.059

(0.207)

0.232

(0.243)

Period*BASE
0.032���

(0.011)

0.018�

(0.011)

Period*PI
-0.013

(0.011)

-0.021�

(0.013)

Period*NF
0.019�

(0.01)

0.011

(0.011)

Period*RM
0.017

(0.012)

0.027��

(0.013)

log L -1152.70 -1002.94

N 1920 1920

Notes: Random-e¤ects probit regression,

* signi�cant at 10%; ** signi�cant at 5%; *** signi�cant at 1%

Table A.2: Regressions: Best-response rates with absolute time trends.
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A.3 Tests for absolute time trends of the accuracy of beliefs

Payment in belief task

row player column player

BASE
0.999���

(0.056)

0.941���

(0.055)

PI
0.970���

(0.059)

0.854���

(0.058)

NF
0.975���

(0.058)

0.902���

(0.057)

RM
0.947���

(0.065)

0.803���

(0.063)

Period*BASE
0.005

(0.003)

0.013���

(0.003)

Period*PI
0.007�

(0.004)

0.015���

(0.004)

Period*NF
-0.006�

(0.004)

-0.004

(0.003)

Period*RM
0.001

(0.004)

0.006

(0.004)

log L -1290.10 -1236.34

N 1920 1920

Notes: Random-e¤ects regressions,

* signi�cant at 10%; ** signi�cant at 5%; *** signi�cant at 1%

Table A.3: Regressions: Accuracy of stated beliefs with absolute time trends.
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A.4 Instructions (for BASE)

The experiment you are about to participate in is part of a project �nanced by the German

Research Foundation (DFG). Its aim is to analyze economic decision-making behavior. You can

earn a considerable amount of money in this experiment, dependent on your decisions and the

decisions of the other participants. Consequently, it is extremely important that you read these

instructions very carefully.

Please note: these instructions are for your eyes only, and it is not permitted to hand on any

information whatsoever to other participants. Similarly, you are not allowed to speak to the other

participants throughout the whole experiment. Should you have a question, please raise your hand

and we will come to you and answer your question individually. Please do not ask your question(s)

aloud. If you break these rules, we will unfortunately be compelled to discontinue the experiment.

General information The experiment is made up of several rounds where decisions must be

made and questions answered. You can win points with your decisions. These points represent

your earnings and will be converted into euros at the end of the game and paid out in cash. The

exact procedure of the experiment, the various decisions and the method of payment are clearly

explained in the next section.

The decision-making situation At the beginning of the experiment, you will be assigned by

draw to another participant, randomly and anonymously. This allocation is maintained throughout

the whole of the remaining experiment. The participant who has been assigned to you will be called

�the other one�from now on.

In each round, you and the other one will be confronted with the same decision-making

situation. Each time, you must choose between the three alternatives: �top�, �middle�, and

�bottom�.

Each of these three alternatives has been given three possible payo¤s (as points). The other

one must also decide between three alternatives (�left�, �center� or �right�), and each of these

alternatives has also three possible payo¤s, as above. You will see the following input screen on the

computer:
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Your three alternatives, �top�, �middle�, and �bottom�, are listed in the �rst column of the

table. Next to your alternatives, you can see three boxes, each with two numbers. The subscript

(lower) number is always your possible payo¤. On the input screen illustrated above, the alternative

�top�has been allocated the payo¤ of 78, 72 and 12, the alternative �middle�the payo¤ of 67, 59

and 78, and the alternative �bottom� the payo¤ of 21, 62 and 89. This means that should you

decide on �top�, for example, then your payo¤ is 78, 72 or 12 points. The payo¤ you actually

receive depends on whether the other one selects �left�, �center� or �right�. Thus your payo¤

depends on your own decision as well as that of the other one. The superscript (raised) number

in any box is always the possible payo¤ of the other one. For example, if the other one decides on

�left�, then his/her possible payo¤ points are 68, 52 and 11. This means, for example, that if you

decide on �middle�and the other one decides on �right�, your payo¤ is 78 points. The payo¤ for

the other one is 49 points in this case.

The possible payo¤ points on the input screen above are therefore as follows:
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You choose �top�; the other one chooses �left�:

Your payo¤ is: 78 points

The payo¤ for the other one is: 68 points

You choose �top�; the other one chooses �center�

Your payo¤ is: 72 points

The payo¤ for the other one is: 23 points

You choose �top�; the other one chooses �right�:

Your payo¤ is: 12 points

The payo¤ for the other one is: 20 points

You choose �middle�; the other one chooses �left�:

Your payo¤ is: 67 points

The payo¤ for the other one is: 52 points

You choose �middle�; the other one chooses �center�:

Your payo¤ is: 59 points

The payo¤ for the other one is: 63 points

You choose �middle�; the other one chooses �right�:

Your payo¤ is: 78 points

The payo¤ for the other one is: 49 points

You choose �bottom�; the other one chooses �left�:

Your payo¤ is: 21 points

The payo¤ for the other one is: 11 points

You choose �bottom�; the other one chooses �center�:

Your payo¤ is: 62 points

The payo¤ for the other one is: 89 points

You choose �bottom�; the other one chooses �right�:

Your payo¤ is: 89 points

The payo¤ for the other one is: 78 points

Please note that the possible payo¤ points for you and the other one remain the same in

every round.

The other one always has exactly the same input screen in front of him/her as you do. After

you and the other one have chosen between the three alternatives, you will be informed of your
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payo¤ in this round. This is the only information you will be given during the experiment in each

round. The next round begins after that.

Statement of expectations

a) How can you state your expectations? Before each decision-making situation, you

will be asked how you estimate the decision-making behavior of the other one. This means that

at the beginning of each round we will require you to predict how the other one will decide in this

round. You will have to answer the following question:

In how many out of 100 cases do you expect the other one to decide on �left�, �center�or �right�?

Of course, the other one makes his decision only once in each round. You could also consider

the question as asking you to state the likelihood that each of the three alternatives is chosen by

the other one. You will see the following input screen on the computer:
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Your three alternatives, �top�, �middle� and �bottom�, are listed in the table above, as

well as the corresponding possible payo¤. Below that, there is the question with the three boxes.

Let us assume that you are sure that the other one will choose �right�, and de�nitely not

�center� or �left�. Then you would respond to our question by entering the number 100 in the

box for �right� and the number 0 in the boxes for �center� and �left�. Alternatively, we could

assume that you think the other one will probably choose �center�, but there is still a small chance

that s/he will choose �right�, and an even smaller chance that s/he will choose �left�. Then, for

example, you might respond to our question by entering the number 70 for �center�, 20 for �right�

and 10 for �left�.

If you think it is even more unlikely that s/he will choose �center�, then you could enter,

for example, 60 for �center�, 24 for �right�and 16 for �left�. Or it is possible that you think it is

equally likely that the other one will choose �left�, �center�and �right�. Then you should enter,

for example, the numbers 33, 33, 34 in the boxes.

Please note that the three numbers may not be decimal, and that they must always add up

to 100.

N.B.: The numbers used in the examples have been chosen arbitrarily. They

give you no indication how you and the other one decide.

b) How is the payo¤ for your stated expectations calculated? Your payo¤ is

calculated after you have guessed how frequently the other one chooses his/her three alternatives.

Your payo¤ depends on the di¤erence between your estimate of the frequency of the decision and

the actual decision made. Your payo¤ is higher when you have guessed that the other one often

makes the �true�decision (which s/he really made), and it is lower when you have guessed that

the other one will make this decision infrequently. Similarly, your payo¤ is higher when you have

correctly predicted that the other one will not make a particular decision and then s/he in fact

does not make the decision.

The exact calculation of the payo¤ is as follows: We calculate a number for each of the

three alternatives. This number re�ects how appropriate your estimate of the decision frequency

of the corresponding alternative was. We take these three numbers to calculate your payo¤.

First, we consider how well you predicted the alternatives which were actually chosen. Let

us assume that the other one chose �left�. We then compare your estimate of how often the other

one would choose �left�out of 100 cases with the number 100, and calculate the di¤erence between
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the two. This di¤erence is then multiplied by itself and the resulting number multiplied by the

factor 0.0005. Thus, if you expected the other one to choose �left�in many out of 100 cases, then

this number will be smaller (since the di¤erence between your estimate and 100 is small) than if

you expected that s/he would choose �left�in few out of 100 cases.

Then we consider how well you predicted that the other two alternatives would not be

chosen. Let us assume again, for example, that the other one chose �left�, which at the same time

means that �center�and �right�were not chosen. Then we take your estimate for the alternative

�center�and multiply this by itself. The resulting number is again multiplied by the factor 0.0005.

We apply this procedure again to your estimate for the alternative �right�. We then take the three

numbers thus calculated and deduct them from the number 10. This determines the number of

points you receive for your statement of expectations.

As an illustration of how your payo¤ might appear, let us consider three examples. Let us

assume that the other one chose �left�and that your estimate for �left�was 100 and correspondingly

0 for the other two alternatives. This means that you have stated an estimate that is exactly right.

Consequently, you earn the following points:

10� 0:0005 � (100� 100)2 � 0:0005 � 02 � 0:0005 � 02 = 10

Let us assume again that the other one chose �left�. Your estimate for �left�was 60, for

�center� 20 and for �right� 20, which means that your stated estimate predicted that the other

one would choose �left�more frequently than �center� and �right�. Consequently, you earn the

following points:

10� 0:0005 � (100� 60)2 � 0:0005 � 202 � 0:0005 � 202 = 8:8

If we still assume that the other one chose �left�, but your estimate for �left�was 0, for

�center� also 0 and for �right� 100, this means that your stated estimate was exactly wrong.

Consequently, you earn the following points:

10� 0:0005 � (100� 0)2 � 0:0005 � 02 � 0:0005 � 1002 = 0
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N.B.: The numbers used in the examples have been chosen arbitrarily. They

give no indication how you and the other one decide.

These examples should make it clear that you will always receive a payo¤ of at least 0

points, and at most 10 points for your stated expectations. And the closer your estimations, the

more money you earn. (You may be asking yourself why we have chosen such a payo¤ ruling as

described above. The reason being that with such a payo¤ ruling, you can expect the highest

payment when you state numbers that are closest to your own estimate.)

Procedure and payment The experiment consists of 20 rounds altogether. In each round, you

have to �rst state your estimate of the behavior of the other one, and then make your own decision.

At the end of the experiment, a round each for the decision-making situation and for the

statement of expectations will be chosen randomly in order to determine your earnings in the

experiment. The choice of both rounds will be made randomly by the experiment leader throwing

a dice. The chosen rounds will then be entered onto the input screen by the experiment leader.

At the end of the experiment, you will see an overview of your earnings from the decision-making

situation and your earnings from the statement of expectation, as well as the total amount. The

payo¤ that you have attained in the corresponding round chosen will be converted at a rate of

1 point = 15 cents

and will be paid out in cash.

Do you have any questions?
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Control questions Now you have to answer 7 questions. In this way we are checking whether

you have understood the decisions you have to make during the experiment. Should you have any

further questions, please raise your hand and one of the experiment leaders will come to you. The

experiment will not start until all participants have answered the control questions correctly.

The decision-making situation:

1. If you choose �bottom�and the other one chooses �center�, how many points do you earn?

________

2. If you choose �middle�and the other one chooses �left�, how many points does the other one

earn?

________

3. If we assume your payo¤ amounts to 12, which decision did the other one make?

________
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4. If you choose �bottom� and the other one chooses �left�, how much do you earn and how

much does the other one earn?

The other one:___________ You:__________

5. Consider the following two cases:

You expect the other one to choose �left�in 80 out of 100 cases. The other one actually does

choose �left�. You expect the other one to choose �left�in 20 out of 100 cases. The other one

actually chooses �right�. In both cases we assume that you expect the other one to choose

�center�in 0 out of 100 cases.

Is your payo¤ for the statement of expectation in the �rst case:

higher the same lower (Please underline your answer!)

than in the second case?

6. Imagine that Participant 1 states the following expectation: The other one chooses �left�

in 50 out of 100 cases, �center� in 20 out of 100 cases, and �right� in 30 out of 100 cases.

Participant 2 expects the following: the other one chooses �left� in 60 out of 100 cases,

�center� in 20 out of 100 cases, and �right� in 20 out of 100 cases. We will assume that

the other one chose �left�by Participant 1 as well as by Participant 2. Who will receive the

highest payo¤?

Participant _____

7. If you consider all three alternatives to be equally possible, which numbers should you then

enter?

left:________ center:_________ right:_________

Thank you for participating in the experiment!
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