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This paper analyzes the role of private information in U.S. Forest
Service timber auctions. In these auctions, firms bid a per unit price
for each timber species. Total bids are computed by multiplying these
prices by Forest Service volume estimates, but payments depend on
actual volumes harvested. We develop an equilibrium theory for these
auctions. We then relate (ex post) data about volume to (ex ante)
bids. We show that bidders have private information about volumes
of species and use it as predicted by theory. Differences in bidder
estimates appear to affect the allocation of tracts, but competition
limits information rents.

We have benefited from the helpful comments of Pat Bajari, Glenn Ellison, Sara Ellison,
Phil Haile, Jerry Hausman, Ken Hendricks, Paul Joskow, Richard Levin, Bob Marshall,
Wally Mullin, Whitney Newey, Mike Niccolouci, Tom Stoker, and seminar participants at
Alabama, Berkeley, Brown, the Institut d’Economie Industrielle at Toulouse, Massachusetts
Institute of Technology, the Minneapolis Federal Reserve Bank, Toronto, Tufts, University
of British Columbia, University of Southern California, the Federal Trade Commission,
the National Science Foundation Conference on Auctions and Infrastructure, and the
National Bureau of Economic Research, as well as from John Cochrane and two anonymous
referees. Patrick Wang and Leigh Linden provided exceptional research assistance. We
would also like to thank U.S. Forest Service and timber industry employees who generously
answered our many questions, especially Doug MacDonald of Timber Data Company. Athey
acknowledges financial support from NSF grant SBR-9631760 and the Provost’s Fund for
Humanities and Social Sciences at MIT. We acknowledge the hospitality and support of
the Cowles Foundation for Economic Research at Yale University.



376 journal of political economy

I. Introduction

Over the past 20 years, a large theoretical literature has described how
bidders might behave in auctions in which each bidder has a private
estimate of commonly valued aspects of the item for sale. From the
perspective of policy or auction design, these “common-value” settings
are quite different from “private-value” settings in which bidders have
private information about their own preferences. Yet the two theoretical
models are very difficult to distinguish on the basis of bidding data
alone (Laffont and Vuong 1996), and most empirical work simply as-
sumes that one setting or the other is appropriate. In this paper, we
present evidence that private information about common values plays
a significant role in U.S. Forest Service auctions for timber harvest con-
tracts and that strategic bidding behavior in these auctions is consistent
with theoretical predictions.

In timber auctions, as in many other procurement auctions, bids are
multidimensional. As we describe below, private information about the
composition of the tract for sale affects the optimal structure of bids. We
build a model of the timber auction process that captures this feature
and then use ex post information on tract composition to empirically
test whether the observed structure of bids reflects private information
at the time of bidding and whether auction outcomes reflect infor-
mational differences between bidders. We find a variety of evidence to
support both hypotheses. We also find evidence that is consistent with
bidder risk aversion. Implications for revenue generation and auction
design are discussed.

The starting point for our analysis is the “scale sale” auction format
used by the Forest Service. A sale begins when the Forest Service
“cruises” a selected tract of timber and estimates the quantity of each
species (as well as other factors such as timber quality and logging costs).
These estimates are publicly announced, at which point potential bid-
ders may conduct their own cruises. Firms then bid a per unit price for
each species of timber. The winner is the firm with the highest “esti-
mated” bid, computed by multiplying the unit prices by the quantities
announced by the Forest Service. The winner, under contract, has a
number of years to remove all designated timber. As timber is removed,
the Forest Service measures it, and the winner pays at the rates specified
in the bid. Consequently, there may be a significant gap between the
average bid, weighted by Forest Service estimates, and the average pay-
ment, weighted by the true quantities. Such a gap is typical: on tracts
with two main species of timber, the Forest Service’s estimate of the
proportion of timber that is the primary species is within 5 percent of
the actual proportion removed on only half of the sales.

A distinctive feature of scale sales is that if a firm has private infor-



information and competition 377

mation about the composition of the tract, it can structure its bid so
that its expected payment is less than its bid. This can be done by
“skewing” one’s bid onto the species the bidder believes has been over-
estimated by the Forest Service. Consider a simple example. Suppose
that there are two species, Douglas fir and western hemlock, that the
Forest Service estimates are present in equal proportions. Suppose that
on the basis of its own cruise and the Forest Service announcement, a
firm estimates that 60 percent of the timber is Douglas fir. The two bid
vectors ($100, $100) and ($50, $150) yield the same average bid, $100.
However, the firm expects to make an average payment of $100 under
the first bid and only $90 under the second. Similarly, a bidder that
believes that 65 percent of the timber is Douglas fir will expect to pay
an average of only $85 under the second bid.

Mechanisms similar to scale auctions are employed widely in pro-
curement. In construction contracting, “unit price” contracts specify per
unit prices for different items, and payment is made on the basis of
realized quantities. In contract auctions, bids are scored using prean-
nounced quantity estimates. In preparation for these sales, firms per-
form quantity surveys or hire professional surveyors, and bid skewing,
or “unbalanced bidding,” is reported to be common (Clough and Sears
1986; Hinze 1992).1 In some cases, construction contracts explicitly pro-
tect against extreme skewing by stating that a unit price may be rene-
gotiated if the realized quantities differ from the initial estimates by
more than some fixed amount (Hinze 1992). Many government pro-
curement contracts also have a similar unit price structure.2 The Gov-
ernment Printing Office’s recently revised procurement policy includes
provisions specifically aimed at unbalanced bidding. In particular, it
reserves the right to reject “materially unbalanced” bids (Gindlesperger
1999).

In this paper, we develop an equilibrium model of bidding in scale
auctions. In the model, there are two species of timber, and the Forest
Service estimates their relative proportions (as well as the total quantity).
Bidders then cruise and form their own estimates of tract composition
before bidding. To solve the model, we exploit the basic insight that
bid decisions can be decomposed into two parts: a choice of total bid
and a decision about how to allocate that bid across species. For any
total bid, bidders will skew onto the species they believe the Forest
Service has overestimated. Bidders whose own estimates differ widely
from those of the Forest Service skew most heavily and are most opti-

1 We thank Pat Bajari for directing us to these texts.
2 Government agencies may also rely on a related practice of “indefinite quantity” con-

tracting. Again, bidders name unit prices, and bids are evaluated on the basis of projected
quantities. Ex post, the procurer may purchase arbitrary quantities (perhaps subject to
some constraints) at the stated prices.
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mistic about the gap between their calculated bid and their expected
payment. Consequently, they submit the highest total bids in equilib-
rium. Essentially the same logic describes both sealed-bid and oral auc-
tions. An attractive feature of our oral auction theory is that skewing
behavior at each stage of the auction corresponds to the optimal skew
for a bidder that is just indifferent about dropping out of the auction.
This allows for a precise interpretation of losing bids in oral auction
data.

We test the main predictions of the model using data from Oregon
and Washington during 1976–90, focusing on oral auctions. We match
bidding data and information from the Forest Service cruise with ex
post cutting data from each tract. Coupled with the Forest Service es-
timates, the ex post data provide a direct measure of the returns to
different bid allocations. We present five main empirical findings: (i)
on average, winning bids tend to be skewed in the right direction; (ii)
the more a given species has been overestimated by the Forest Service,
the more the winning bid is skewed onto that species; (iii) within an
auction, higher-ranked bids tend to be more skewed in absolute terms,
as well as more skewed in the right direction; (iv) in oral auctions, but
not sealed-bid auctions, higher-ranked bids tend to be more accurately
skewed than lower-ranked bids; and (v) larger Forest Service errors are
associated with higher total bids but minimal revenue loss.

Our first two findings are consistent with bidders’ having information
about the true composition of the tract beyond what is contained in
the Forest Service estimate, and responding to that information as pre-
dicted by theory. More generally, these two findings are consistent with
almost any theory (equilibrium based or not) in which individual bid-
ders recognize the incentive to skew. The next three findings provide
evidence on our equilibrium model. They are consistent with a bidding
equilibrium in which firms have different estimates of tract composition
and information is revealed in the course of an oral auction. The last
finding suggests that potential “information rents” created by Forest
Service errors are largely competed away. Finally, we show that bidders
do not always skew to the maximum extent possible, consistent with
bidder risk aversion. The findings are duplicated on a small sample of
sealed-bid auctions.

The results of this paper contribute to the existing literature in several
ways. We extend Milgrom and Weber’s (1982) “mineral rights” auction
to scale auctions. Previous work by Diekmann, Mayer, and Stark (1982)
and Baldwin (1995) has looked at skewing as a purely decision-theoretic
problem, whereas Wood (1989) considered second-price scale auctions
under the assumption that bidders use preselected linear bidding rules.3

3 Baldwin (1995) also used Forest Service data to estimate the degree of bidder risk
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An equilibrium model of scale sales is important for understanding
findings iii and iv above. Independently, Fieseler (1999) has studied
equilibrium bidding in unit price procurement. His model is essentially
an independent private-values analogue of ours.4

In the empirical literature on auctions, our work relates to the classic
study of off-shore oil leases by Hendricks and Porter (1988). Using ex
post data about oil production, they showed that bidders in possession
of “neighboring” tracts have information about the presence of oil su-
perior to that of their competitors. Timber auctions thus provide a
second example in which ex post information can be exploited to es-
tablish that observed bidding is consistent with bidders’ having and
strategically exploiting private information.5 Notably, in timber auctions
the ex post data can be related to the structure of bids as well as to the
total amount bid, allowing for a rich set of tests of the hypothesis that
private information plays a role.

The paper proceeds as follows. Section II provides background on
the Forest Service timber sale program. Section III presents the model
and derives a series of testable implications. Section IV describes the
data, and Section V contains our main empirical findings. We conclude
in Section VI with some discussion of the costs and benefits of scale
sales relative to other auction formats.

II. Background: The Forest Service Timber Program

In the northern and western regions of the United States, the national
forests traditionally have been a primary source of timber for mills,
logging companies, and forest products companies. During 1976–90,
the Forest Service conducted well over a thousand auctions per year in
these areas, generating annual revenue of around $1 billion. Our em-
pirical work will focus on Forest Service regions 5 (California) and 6
(Oregon and Washington); in the 1980s, these regions accounted for
two-thirds of all Forest Service timber sold and 80 percent of all Forest
Service timber receipts. Table 1 includes basic summary statistics.6 Since
details of the Forest Service timber program have been discussed else-
where (see, e.g., Baldwin, Marshall, and Richard 1997), we touch on

aversion. Her data, however, did not include ex post realizations of tract composition, so
her conclusions are based on revealed preference rather than direct measures of the
return to skewing.

4 Osband and Reichelstein (1985), Che (1993), and Bushnell and Oren (1994) studied
auctions in which bidders can bid in two dimensions and a scoring rule determines the
winner. There is no analogue of skewing in these models.

5 See also McAfee, Takacs, and Vincent (1999), who use resale values to approximate
common values.

6 The unit of measurement for timber is “thousand board feet,” or mbf.
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TABLE 1
U.S. Forest Service Timber Auctions, 1976(1)–1990(2): Statistics

Region 5 Region 6

Sales 6,009 16,857
Average volume (mbf) 3,752.6 3,994.6
Average reserve price ($) 184,897 329,280
Average winning bid ($) 542,047 682,227
Average bid per unit ($/mbf) 110.34 151.69
Average number of bidders 3.67 5.07
Percentage of oral auctions 47.5 87.1

only a few aspects of the industry and focus on the process through
which bidders acquire information and prepare a scale sale bid.

Bidding in Forest Service sales is undertaken by a diverse collection
of timber conglomerates, smaller mills, and independent logging op-
erations. Timber from a sale is frequently processed in mills proximate
to the national forest. In region 6, there are several hundred mills of
different types, each demanding different species and qualities of tim-
ber. Conglomerate firms (such as Weyerhauser, Boise-Cascade, and
Georgia-Pacific) own many mills all over the country and may be able
to process the whole range of species and timber qualities on a given
tract. Smaller mills and independent logging operations do not have
this ability. When these smaller bidders win Forest Service auctions, they
tend to resell some or all of the timber. In the 1980s, this resale occurred
either through private bilateral trades or, in smaller quantities, through
prices posted by the mills (see Haile [in press] for an analysis of resale
in timber auctions).

The Forest Service begins preparation several months in advance of
a sale. The forest manager organizes a cruise and publicly announces
the findings at least 30 days before the sale date. The manager also
decides, on the basis of tract characteristics and expected competition,
whether to conduct the sale by oral or sealed bidding (in region 6, over
80 percent of sales are oral auctions). Once the sale is announced, each
firm must “qualify” by submitting a deposit of 10 percent of the bid in
a sealed-bid auction, or 10 percent of the appraised value of the sale
in an oral auction. This deposit is held until the contract is awarded.

As described above, bidders in a scale sale submit a bid rate for each
species, and the winner pays the bid rate for the realized volume of
each species. The Forest Service announces in advance a minimum
acceptable bid, or reserve price, for each species.

The scale format is used in the northern and western regions of the
country, where sales are larger and the presence of older trees makes
tracts more difficult to value. In other regions, the Forest Service often
uses a lump-sum format, where bidders submit fixed lump-sum bids and
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the winner’s payment does not depend on the timber harvested. A main
motivation for the scale format is to reduce the risk borne by the winner.
If firms face substantial risk in the sale value, they will require a risk
premium and bid less aggressively. In a scale sale, the amount paid is
explicitly linked to the quantity of timber harvested. Thus a scale sale
automatically mitigates uncertainty about the total volume of timber on
a tract. Moreover, bidders in principle can insure against uncertainty
about the proportion of each species on the tract by bidding the same profit
margin on each species (although, as we shall show, skewing can upset
this property).7

Before submitting their sealed bids or qualifying bids, the bidders
have the opportunity to cruise the tract and form their own estimates
of tract characteristics. Cruising a tract has traditionally been considered
something of an art by industry insiders, and many cruisers have an
undergraduate degree in forestry (such a degree as well as two years of
experience are requirements for admission to the industry association).
According to industry sources, beginning cruisers in the 1990s made
about $30,000–$40,000 per year, whereas more experienced cruisers
made $60,000 or more. Large forest product companies have in-house
cruising staffs, whereas smaller companies may use for-hire cruisers from
consulting companies. These for-hire cruisers typically price their ser-
vices either by the acre or by the hour. While the costs vary substantially
from tract to tract, one firm estimated a “typical” cost of $10 per acre.
The average tract size in our sample is 380 acres, putting this cost at
about $3,800 per sale (or about 0.6 percent of the tract value). It is
unusual for a bidder to place a bid on a tract without cruising. Moreover,
firms that have incurred the costs of surveying a tract generally submit
bids; thus one can think of the decision to survey a tract as roughly
equivalent to an entry decision.

While cruisers use statistical sampling techniques, estimates are im-
perfect. One difficulty is detecting potential defects in trees. For ex-
ample, insects can damage old-growth trees, but this may be difficult to
verify from external characteristics; and different kinds of insects may
have caused problems in different areas of a forest. Cruisers must guess
at the defects in trees and determine the merchantable timber, which
will be sold at the prices bid at the auction, and the nonmerchantable
timber, which is essentially scrap.

The Forest Service has long been aware of skewed bidding in scale
sale auctions (see, e.g., “Skewed Bidding Presents Costly Problems”
[1983], which documents revenue losses from skewing). Over time, rules

7 Another benefit of scale sales is that Forest Service personnel bear political costs when
their ex ante estimates are incorrect. With a scale sale, there may be less chance of
disastrous bidder outcomes if volume estimates are incorrect. Firms in the industry have
historically exercised great influence over Forest Service policy.
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have been adopted that limit the scope for skewing. In some forests
during the 1980s, bidders could place bids above the reserve price only
on species that accounted for more than 25 percent of the volume. In
1993, in an effort to limit skewing, the Forest Service changed the bid-
ding rules so that the ratio of the per unit bid to the per unit reserve
price on a given species cannot be more than twice as large as the ratio
of the average bid to the average reserve price (amendment 2400-95-2,
title 2400, of the Forest Service Manual [April 28, 1995]). We return to
this, as well as to the relative costs and benefits of scale sales, in Section
VI.

III. The Model

This section presents a model of equilibrium bidding in scale auctions
and derives testable predictions.

There are two species, 1 and 2, with known per unit values v1 and v2.
They are present on the tract in proportions r1 and Theser p 1 2 r .2 1

proportions are initially unknown.8 The Forest Service cruises the tract
and announces an estimate of r1, denoted e1 (and ), and alsoe p 1 2 e2 1

of the total volume of timber on the tract, denoted It also an-Q .EST

nounces per species reserve prices r1 and r2. We assume that andv 1 r1 1

v 1 r .2 2

There are J bidders with identical utility functions over wealth.u(7)
We take u to be increasing and weakly concave. Each bidder j cruises
the tract and obtains information Let denote bidderj j jI . s p E[r d e , I ]1 1 1

j’s postcruise estimate of the proportion of species 1 (note that E[r d2

). For simplicity, we suppose that bidders learn the totalj je , I ] p 1 2 s1 1

volume of timber, on their cruise (it may not be equal to ).9Q , QACT EST

A bid is a price vector (b1, b2) that generates a total bid of B p
and, if it wins the auction, an eventual paymentQ O b e P pEST i i i

Q O b r .ACT i i i

We impose the following assumptions.
Assumption 1. Given any e1, are strictly affiliated and1 J(s , … , s , r )1 1 1

are exchangeable.1 J(s , … , s )1 1

Assumption 2. Given any e1, for any profile 1 J(I , … , I ), r d1

has support equal to [0, 1].1 J(e , I , … , I )1

Assumption 3. Given any e1, for any profile realized with1 J(I , … , I )
positive probability, and are simulta-1 J 1 Js , … , s E[r d e , I , … , I ]1 1 1 1

neously greater than or less than e1.

8 Throughout, we take a notational shortcut, using the same notation for random var-
iables and their realizations.

9 To extend the model to allow uncertainty about additional assumptions on riskQ ,ACT

preferences may be required. In our data set, and r1 are uncorrelated conditionalQACT

on and e1.QEST
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Our first two assumptions are mild. Assumption 1 says that bidders’
estimates are affiliated with the truth and imposes symmetry among the
bidders.10 Assumption 2 states that bidder estimates are noisy: there is
postcruise uncertainty about r1. The final assumption, assumption 3, is
stronger but is a useful simplification. It says that bidders’ estimates are
correlated so that they are either all greater than or all less than the
Forest Service estimate (of course, the Forest Service may still be closest
to the truth). This assumption serves to simplify the updating that occurs
when bidders condition their beliefs on winning the auction (i.e., when
they account for the winner’s curse). A consequence is that, in equilib-
rium, bidders will end up all skewing their bids in the same (though
potentially wrong) direction, though to different degrees. In Appendix
A, we sketch how this assumption can be relaxed.

Let us make two further comments. First, the model can be extended
to incorporate the realistic feature that bidders choose how much in-
formation to acquire. In the extended model, bidders privately choose
their cruising intensity (precision of their estimate) at stage 1, followed
by the realization of information and bidding at stage 2. The behavior
we describe here corresponds to the bidding stage of a symmetric pure-
strategy equilibrium of the extended model. Second, the model focuses
on the particularities of skew bidding and abstracts from heterogeneity
in the private values of the firms for different species as well as from
private cost or inventory differences. In practice, private-value differ-
ences are also important.11 Nevertheless, we believe that the basic in-
centives that drive bid allocation in this model would persist in a richer
environment in which bidders had both private-value differences and
different beliefs about tract composition.

A. The Sealed-Bid Auction

In a sealed-bid auction, each bidder submits a bid vector (b1, b2). The
bid decision can be broken into two parts: selecting a total bid B and
allocating that bid over the two species, that is, choosing Db p b 2 b1 2

(note that B and Db uniquely determine b1 and b2). Since the winner is
determined only by the total bid, bid allocation is relevant only if a bid
wins. Let

V 2 B
p(Db, B, r ) p Q 7 (Db 2 Dv)(e 2 r ) 11 ACT 1 1[ ]Q EST

10 We return to the issue of bidder heterogeneity in Sec. VE.
11 Indeed, if the Forest Service had exactly the same information as the bidders about

the value and extraction costs of each species of timber (as in our formalization), no
auction would be needed. The Forest Service could simply set a per unit price for each
species equal to its value and sell to any bidder.
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denote ex post profits conditional on winning (here andDv p v 2 v1 2

). Then bidder j’s bid allocation problem can be writtenV p Q O v eEST i i i

as

j kmax E [u(p(Db, B, r )) d e , s , G k ( j, B ! B]r 1 1 11
Db

subject to b ≥ r , b ≥ r . (1)1 1 2 2

In making his allocation decision, bidder j conditions on his own esti-
mate and also on winning with total bid B (accounting for the winner’s
curse).

It is useful to think of bid allocation as a portfolio problem: the bidder
is “investing” in a risky asset with “return” By biddingDb 2 Dv e 2 r .1 1

a constant profit margin on each species (setting ), a bidderDb p Dv
eliminates risk from the Forest Service error. Alternatively, the bidder
can gamble by skewing his bid (setting ). From standard port-Db ( Dv
folio theory, we obtain the following proposition.

Proposition 1. For any Forest Service estimate, opponent strategies,
and total bid B, (i) if

B V
1 2 (v 2 r ), i p 1, 2,i iQ QEST EST

then the optimal bid allocation sets if and ifj j jDb 1 Dv s ! e Db ! Dv1 1

;12 (ii) if a bidder is risk-neutral, his optimal bid sets eitherjs 1 e1 1

or ; and (iii) the optimal bid allocation is decreasing13jb p r b p r Db1 1 2 2 1

in js .1

Intuitively, bidders will skew their bid onto the species they believe
has been overestimated. This lowers the expected payment for a given
bid, but it means taking on risk. A risk-neutral bidder disregards the
risk and skews to the maximum extent allowed by the reserve prices.
This result is very general. When a bidder is risk-neutral, expected pay-
offs are linear. Whatever conjecture the bidder has about opponent es-
timates, as long as the posterior mean of r1 is not equal to e1, it will be
optimal to place an extreme skew. Finally, a bidder’s allocation is mon-
otone in his estimate: the higher his estimate of species 1, the more he
allocates his bid onto species 2.

Bidders whose estimates differ greatly from the Forest Service estimate
want to skew most aggressively. Since these bidders will also be the most
optimistic about the gap between calculated bids and expected pay-

12 Given B, the reserve price constraints limit the allowable set of Db’s to an interval.
The qualification that ensures that Dv is in the allowableB/Q 1 (V/Q ) 2 (v 2 r )EST EST i i

interval. In equilibrium, this is always the case.
13 Throughout, we use the terms “increasing” and “decreasing” in the weak sense, unless

we explicitly indicate that we require strict monotonicity.
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ments, it is natural that they should bid more as well. The next prop-
osition establishes a pure-strategy equilibrium that reflects this behavior.
For this result, and from now on, we make the further assumption that
bidders’ risk preferences satisfy either constant or increasing absolute
risk aversion.14

Proposition 2. There is a pure-strategy Nash equilibrium in which
all bidders use strategies B(s1) and Db1(s1), where (i) Db1 is decreasing
in s1, (ii) B is decreasing in s1 when and increasing in s1 whens ! e1 1

and (iii) for all s1.s 1 e , B ≥ V1 1

The equilibrium bid function is U-shaped in a bidder’s estimate. A
detailed derivation of the equilibrium is in Appendix A, but the intuition
is just as suggested above. Bidders whose estimates differ greatly from
those of the Forest Service are the most optimistic about their ability
to drive a wedge between bid and payment. Hence they skew, and bid,
most aggressively. Interestingly, in equilibrium, bidders must skew to win
the auction. If a bidder does not skew, a second bidder can earn greater
profits by slightly raising the bid and skewing optimally. Following this
logic, competition leads each bidder to choose greater thanB/Q EST

the (certain) per unit value of winning whenV/Q , Db p Dv.EST

B. Oral Ascending Auctions

We now consider oral ascending scale auctions. A common concern in
empirical studies of oral auctions is that nonwinning bids may not be
good indicators of bidders’ beliefs. In the scale context, this problem
might be acute since bidders have significant leeway to engage in stra-
tegic behavior early on, for example, by trying to influence opponents’
beliefs through the choice of skew. Anecdotal evidence suggests that
such practices are unusual. Nevertheless, we want a theoretical frame-
work to guide our interpretation of the nonwinning bids we observe in
our data.

We consider a stylized oral auction, similar to Milgrom and Weber’s
(1982) “English” auction, in which total bids rise smoothly and bidders
may not drop out of the bidding and reenter. Below, we relate this
auction to the actual Forest Service rules.

English scale auction.—All bidders are active at the reserve price. The
auctioneer raises the total bid in small increments. At any bid increment,

14 The reason for this restriction is that with a higher total bid, a bidder evaluates the
species composition risk from (essentially) a position of decreased wealth. Under decreas-
ing absolute risk aversion, this reduces his propensity to skew, introducing an effect that
competes with the direct tendency of bidders with extreme signals to skew and bid more.
The assumption is potentially undesirable since Baldwin’s (1995) empirical work suggests
that decreasing absolute risk aversion might be a preferable hypothesis. To relax it, we
would require that wealth effects from raising one’s bid are not too pronounced relative
to other forces in the model.
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all bidders call out a skew (Db) for the next increment. They then
announce their activity for the next increment. No bidder who has
dropped out can become active again. If only one bidder announces
activity, that bidder is declared the winner at her last announced bid.

Given a bid level B and a bidding history, we define a “marginal”
estimate to be the cruise estimate that leaves a bidder indifferent be-
tween winning and losing at B with an optimally chosen skew. We con-
struct an equilibrium in which, at each point in time, all active bidders
mimic the optimal bid allocation of a firm with a “marginal” cruise
estimate. As the price rises, bidders drop out at the point at which their
estimate becomes marginal, and bidders with more divergent estimates
stay in the auction longer. The equilibrium has the same qualitative
features as the Milgrom-Weber equilibrium: (1) bidders drop out in
order of their estimates and fully reveal their information when they
drop out, (2) bidders remain in the auction until they are just indifferent
between dropping out and winning the auction at the current bid, and
(3) the only information that can be inferred about active bidders is
that their estimates are at least as great as some marginal estimate.15

Formally, order the bidders in descending order according to the
extremity of their estimates (i.e., so ). If k biddersj j11Fs 2 e F 1 Fs 2 e F1 1 1 1

have dropped out, let be the vector of total bids atP p {p , … , p }k 1 k

which the dropouts occurred. We define to be the total bid∗B (D; P)k
level at which a bidder with estimate can achieve a payoff of ats p D1

most zero given that all other remaining bidders also have estimate D.
That is, solves∗B (D; P)k

1 J2k…0 p max E [u(p(Db, B, r )) d e , s p p s p D, P]r 1 1 1 1 k1
Db

subject to b ≥ r , b ≥ r . (2)1 1 2 2

Our next result establishes that is U-shaped in D; that is,∗B (D; P)k
bidders whose estimates are farther from those of the Forest Service
can bid more and still expect a positive payoff.

Proposition 3. The bid level is strictly increasing in D if∗B (D; P)k
and strictly decreasing if and ∗D 1 e D ! e , B (D; P) ≥ V.1 1 k

15 Notice that it is not clear a priori that the equilibrium will have these properties.
Relative to the standard setting, there is additional ambiguity because each bidder must
decide not only whether to remain active but also what allocation to announce. In prin-
ciple, all information could be revealed immediately through these announcements. How-
ever, a simple argument can explain why the release of information must be gradual in
equilibrium. If each bidder were to announce a distinct allocation depending on his signal
(e.g., his optimal allocation), then from that point on, all information would be public
and everyone would have the same expected value conditional on winning. Bidding would
continue until the value of winning was zero. Such behavior cannot be an equilibrium
because an individual bidder would want to falsely reveal a less extreme estimate, reducing
the dropout level of all opponents and giving him positive expected profits.
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The “marginal” type given bid level B and history Pk is the estimate
D that solves 16 Let be the bid allocation that∗B p B (D; P). Db(B; P)k k

solves (2) for the marginal type. We now describe behavior in the
auction.

Proposition 4. There exists a perfect Bayesian equilibrium as follows:
(i) Given that k bidders have dropped out and until another opponent
drops out, each bidder stays in the auction until (ii) For∗ jB p B (s ; P).1 k

each active bidders announce (iii) The bidder∗ jB ! B (s ; P), Db(B; P).1 k k

with the highest estimate wins the auction with a bid (Db, B) that solves

1 2 2 J0 p max E [u(p(Db, B, r )) d e , s p s , s , … , s ]r 1 1 1 1 1 11
Db

subject to b ≥ r , b ≥ r . (3)1 1 2 2

In equilibrium, as the bid level rises, skewing becomes more aggressive
in one direction or the other and bidders drop out until only the bidder
with the most extreme estimate remains.17

The model is particularly useful for interpreting bid data because the
Forest Service simply records the highest bid placed by a given bidder.
Since a bidder might have been willing to bid higher, his last bid can
serve only as a bound on his total value. However, under the behavior
described above, the bid allocation has an exact interpretation. It cor-
responds to the optimal allocation for a bidder whose estimate would
be marginal for the given total bid level.

In practice, Forest Service rules are less structured than the auction
we have described. The auctioneer simply recognizes one bidder at a
time to raise the bid. Bidders may stay silent for a time and then become
active, and the bidding may rise in jumps.18 Fortunately, the main qual-
itative feature of the equilibrium—that bidders announce skews con-
sistent with having the least extreme estimate that makes them profitable
if they win—does not depend on the exact structure we describe. This

16 Given assumption 3, there will be a unique D that solves ∗B p B (D; P ).k
17 Interestingly, and perhaps surprisingly given that bidders can make a wide variety of

deviations from the equilibrium strategies, the off–equilibrium path beliefs required to
support the equilibrium are weak. The main restriction is that following a larger than
expected skew by a given bidder, marginal opponents, i.e., those who are about to drop
out, must become slightly optimistic about the deviating bidder’s estimate (they must
believe that it is more extreme than the marginal estimate). The idea is that if these
opponents become more optimistic, they will stay in the auction for another increment,
preventing the deviator from realizing a gain. Since a bidder with an estimate less extreme
than the marginal estimate would make a loss if the auction ended following a deviation,
the assumption of increased optimism is a natural one.

18 As in our model, however, the winner may not alter his bid allocation, or raise his
own bid, at the end of the auction. The Forest Service also restricts a bidder who has
placed a bid earlier in the auction from lowering his bid on any given species. Past bids
by other bidders do not place any restriction on a given bidder’s behavior, except for the
standard requirement that total bids must go up.
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feature arises naturally because signaling a more extreme estimate
causes opponents to compete more aggressively. For instance, our earlier
working paper (Athey and Levin 1999) demonstrated an equilibrium
in a free-form auction in which bidding proceeds as in proposition 4.19

As noted above, an implication of assumption 3 is that in a given
auction, all bidders skew in the same direction. In Appendix A, we sketch
an extension that relaxes assumption 3, leading to an equilibrium in
which (i) bidders in the same auction skew in different directions, (ii)
the magnitude of the skew (in a given direction) increases with the bid
level, and (iii) bidders with more extreme estimates (in a given direc-
tion) stay in the auction longer. In this equilibrium, each bidder skews
in the direction suggested by his own estimate.

C. Empirical Predictions

The model yields testable predictions about the joint distribution of
observed bids, B and and the difference between the For-Db p b 2 b ,1 2

est Service estimate and the actual species proportions, or the misesti-
mate, These data are observable. According to the model,d p e 2 r .1 1

is a decreasing function of bidder j’s estimate Since is affiliatedj j jDb s . s1 1

with r1 and hence with 2d, the model implies that and d are affiliatedjDb
random variables, both unconditionally and conditional on a given bid

20 We derive testable predictions directly from this property.jB .
To do this, we label the species so that the Forest Service misestimate

is positive (affiliation holds regardless of how we arrange the species).
Let f be the species that is overestimated, so that andd p e 2 r ≥ 0f f f

Db p b 2 b .f f ¬f

1. The amount bid per unit of volume is greater in expectation than
the amount paid per unit of volume:

j jB P
jE 2 p E[Db 7 d ] 1 0.f f[ ]Q QEST ACT

2. The probability that bidders skew “correctly,” jPr {Db 2 Dv 1 0 df f

is increasing in the misestimate df.d },f

19 Equilibria with the basic features we describe also exist under other activity an-
nouncement rules, such as Harstad and Rothkopf’s (2000) “alternating recognition”
model, where only two bidders at a time announce activity.

20 In the oral auction, Db j will be decreasing in and in the estimates of all biddersjd1

who dropped out earlier. Since all these estimates are affiliated with r1, and hence with
2d, the result is the same.
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3. The expected skew, is increasing in the misesti-jE[Db 2 Dv d d ],f f f

mate df. Similarly, for a fixed total bid isj j jB , E[Db 2 Dv d B , d ]f f f

increasing in df.
4. The skews of the higher-ranked bidders are expected to be larger,

both unconditionally and for any given bid level B: jEFDb 2 Dv Ff f

and are decreasing in j.j jE[FDb 2 Dv F d B ]f f

5. The gap between the winning bid and the payment, E[(B/Q ) 2EST

is increasing in the misestimate df.(P/Q ) d d ],ACT f

Let us emphasize that these predictions rely on only three basic prop-
erties of the model: (i) bidder estimates are affiliated with the true
composition, (ii) bid allocations are a monotone function of bidders’
estimates, and (iii) bidders with more extreme estimates bid more in
total. Thus the empirical content of the model does not seem to hinge
critically on fine modeling assumptions. Finally, when assumption 3 is
relaxed, bidders may skew in different directions, and information about
the direction as well as the magnitude of the misestimate should be
revealed in the course of an oral auction. Thus a final prediction is that
higher-ranked bidders should be more likely to skew “correctly” in oral
(but not necessarily sealed-bid) auctions.

IV. Data on Forest Service Auctions

A. The Data

Our data set includes a subset of the bidding and cutting data from
Forest Service timber sales described in Section II. To our knowledge,
we are the first to combine bidding and cutting data to systematically
analyze bidding behavior in timber auctions.21 We restrict attention to
“two-species” sales, where two species, but no more than two, each con-
stitute at least 25 percent of the volume on the tract.22 We have found
that it is most transparent to think about skewing in the context of two-
species sales because bidders can skew their bids only along a single
dimension. In much of our analysis, we restrict attention to oral auctions
in region 6 (Oregon and Washington) that required only a small amount
of road construction.23 In Section VD, we consider sealed-bid sales in
region 5 (California).

In the bidding data, we observe all information that the Forest Service

21 Cummins (1995) uses cutting data to analyze how the timing of timber harvesting
varies with market prices through the life of the timber contract.

22 In these sales, bidders often pay the reserve price for additional species that are present
in small quantities. When analyzing skewing, we simply ignore these remaining species.
We include these species for the revenue analysis.

23 In Forest Service auctions, bidders are reimbursed for road building using a system
of credits that can be redeemed for timber. Restricting attention to sales in which road
construction is minimal allows us to more directly interpret the prices paid by the bidders.
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makes public after its cruise: its estimated volumes of timber, the reserve
price, and also its estimates of end product selling values and projected
processing costs. The bidding data also include the identities of all
bidders and their bids. In the oral auctions, we observe each bidder’s
last announced bid. The cutting data include the total volume of each
species actually removed from the tract.

In our empirical analysis, we include a number of control variables
for each auction t, referred to as Xt. They include the volume of the
tract, the average reserve price, whether or not the sale was a Small
Business Administration (SBA) set-aside sale, the number of months in
the contract per unit of volume, the density of timber (a higher density
may indicate “old growth” and thus more variable volumes), the volume
of material per acre (which is essentially scrap), the estimated logging
costs for the tract, and the estimated amount of road construction re-
quired. In our analyses of skewing (but not revenue), we control for
the number of bidders.24 Finally, we include dummy variables for the
time period, for several large forests, and for several common species
combinations. Additional sale characteristics are available in the data;
the results we report are robust to varying the choice of controls.

The theoretical model directs attention to interpreted as theDb 2 Dv,
skew relative to a “constant profit margin” allocation. However, the data
contain no exact analogue to the values in our model. We use the
difference in reserve prices as a proxy for the difference in the values
of the species; that is, we assume that This assumption is notDv p Dr.
important for many of our estimates, but it does allow us to interpret
a sufficiently large skew Dbf (greater than Drf) as being in the “correct”
direction.25

Appendix B provides further details about our data sources and sam-
ple selection criteria. Table 2 contains summary statistics.

24 Our results about the number of bidders should be treated with some caution since
unobserved features of the tract may affect both participation and skewing behavior.
However, when bid skews are the dependent variable, the endogeneity problem may be
less significant than in standard analyses of auctions, where the main dependent variable
is the magnitude of the bid. Here, the unexplained portion of a bidder’s skew should
correspond to private information obtained during the cruise. If one thinks of the cruise
as tantamount to an entry decision, it is plausible that unobserved factors leading to entry
will be unrelated to information obtained after the decision to cruise is made. In any
event, our results are robust to both omitting the number of bidders as an explanatory
variable and instrumenting for the number of bidders using some of the standard ap-
proaches from the existing literature (such as the forest and district of the tract and
related measures, as in Hansen [1986] and Haile [in press]).

25 The assumption also seems reasonable given the way the reserve prices are constructed.
The Forest Service starts with market prices for each species of timber, subtracts cutting
costs, and adds a profit margin.
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TABLE 2
Summary Statistics for Oral and Sealed Auctions with Two Primary Species

Region 6 Oral
(Np697)

Region 5 Sealed
(Np63)

Mean
Standard
Deviation Mean

Standard
Deviation

Bidding and volume variables:
Bid rate on species 1: b1 145.41 118.21 108.66 99.19
Bid rate on species 2: b2 118.28 99.54 99.70 113.49
Reserve rate on species 1: r1 66.01 61.19 48.87 50.42
Reserve rate on species 2: r2 65.91 61.81 32.90 32.30
Species 1 market value 390.42 88.22 315.81 91.62
Species 2 market value 388.78 75.84 284.02 84.25
Average reserve price 64.75 45.20 40.10 30.10
Estimated volume 3.26 3.72 1.70 3.37
Cut volume 3.03 3.35 1.85 3.80
Estimated percent on species 1: e1 51.2 12.6 47.2 13.0
Actual percent on species 1: r1 45.5 13.2 42.3 13.8
Total bid (B) (thousands of $) 410.66 549.12 245.60 708.11
Total paid (P) (thousands of $) 374.17 497.34 258.65 768.20

Skewing variables:
Percentage of (total bid2reserve price)

on overestimated species 57.2 39.6 49.5 29.9
Skew onto overestimated species:

Db2Dr 26.99 133.80 27.15 136.71
Misestimate variables:

(Volume cut2volume estimated)/(vol-
ume estimated) 2.065 .157 .036 .125

Misestimate on species 1: estimated
proportion species 12actual propor-
tion species 1 .003 .076 .034 .065

Absolute magnitude of misestimate .057 .051 .049 .054
Bidder participation variables:

Number of bidders 6.06 3.12 5.32 2.60
SBA sale .21 .41 .17 .38

Note.—Volumes are in units of thousand board feet (mbf), and monetary values are in units of dollars per mbf,
unless otherwise noted. Dollar values are deflated by the producer price index for lumber (September 1983p100).
Species are ordered so that species 1 has a higher reserve rate than species 2.

B. Preliminary Observations

On average, the revenue the Forest Service collects from a given sale
is around 9 percent (in our main sample, $36,486) less than the winning
bid. To see how the gap between winning bid and revenue arises, we
can decompose it as follows:

B
B 2 P p (Q 2 Q ) 1 (Db 7 d) 7 Q .EST ACT ACTQ EST

The first term is the portion of the bid-revenue gap due to the volume
shortfall (on average, the volume cut is 5.8 percent less than the volume
estimated), and the second term arises when the bidder systematically
pays an amount different from the amount he bid for a “representative
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Fig. 1.—Histogram of misestimates, where species 1 is the high-valued species. Sample
includes 697 region 6 oral auctions.

tree” from the tract. In our sample, the first term accounts for $27,151
of the bid-revenue gap, and the second term averages out to $9,335.
Thus for the average thousand board feet of timber removed from a
tract, the auction winner pays about $3.50 less than he bid (the average
winning bid is $125).

A second feature of the data is the significant variance in the Forest
Service estimates and in the amount of skewing. Figure 1 shows the
distribution of Forest Service misestimates, demonstrating the potential
return to information. The Forest Service estimates of the proportions
of species differ from the proportions removed by more than .05 in
about half the sales (45 percent) and by more than .1 in about one of
six sales (17 percent). Figure 2 shows how the winner distributed his
overbid (the difference between the total bid and the reserve price)
among the two species. The chart illustrates many sales in which the
winning overbid is distributed across both species. This is consistent
with bidder risk aversion: in theory, an informed risk-neutral bidder
would place his entire overbid on one species or the other.26

26 One can imagine forces other than risk aversion that might generate intermediate
skews. For instance, bidders might fear attracting regulatory attention. Indeed, extreme
skews do sometimes induce closer monitoring of cutting behavior, as discussed in Sec. VE.
In interviews, however, risk avoidance was the one explanation we heard for intermediate
skews. Other evidence also indicates that bidders in timber auctions are risk-averse. For
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Fig. 2.—Percentage of overbid placed on the overestimated species, plotted against the
size of the overestimate. Sample includes 697 region 6 oral auctions.

We also observe positive dependence among the skews (as proxied
by ) of competing bidders. Figure 3 shows a scatter plot of theDb 2 Dr
winning and second-place bid allocations, and figure 4 shows the win-
ning and third-place bid allocations. In each plot, species 1 is overes-
timated, and so a bidder skews in the “correct” direction when the skew
is positive. The winning and second-place skews are tightly correlated;
the winning and third-place skews are somewhat more dispersed. Al-
though bid allocations are positively dependent, there are auctions in
which bidders skew in opposite directions, and even some auctions in
which one bidder has his entire overbid on species 1 and another has
his entire overbid on species 2. Thus, from this perspective, the data
are not consistent with assumption 3, which implied that bidders always
skew in the same (though potentially incorrect) direction; in our sample,
the winning bidder skews in the same direction as the second-highest
bidder 80 percent of the time, but lower-ranked bidders were more
likely to skew in different directions. The generalized model sketched
in Appendix A can potentially rationalize this finding.

example, Rynearson et al. (1997) conducted a survey of bidders, asking them to compare
lump-sum sales with scale sales. About half of the bidders indicated that the main drawback
of lump-sum sales is the risk, and several bidders explicitly mentioned that they lowered
their bids in such sales to compensate for the risk.



Fig. 3.—Plot of rank 2 skew against rank 1 skew, where species 1 is the overestimated
species. Sample includes 532 region 6 oral auctions with three or more bidders.

Fig. 4.—Plot of rank 3 skew against rank 1 skew, where species 1 is the overestimated
species. Sample includes 532 region 6 oral auctions with three or more bidders.
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TABLE 3
Probability of Skewing in the Right Direction (Np697)

Probit Dependent Variable: Dummyp1 if Skew#Misestimatep(Db2Dr) 1 0

(1) (2)

Misestimate variables:
d1pmisestimate 3.16 (1.09) 6.94 (2.69)

pmisestimate squared2d1 220.2 (13.0)
Volume and reserve price

controls:
Estimated volume 2.0247 (.0435) 2.0264 (.0438)
Estimated volume

squared .00387 (.00283) .00384 (.00285)
Average reserve price 2.00035 (.00144) 2.00039 (.00145)

Bidder participation:
Number of bidders .0281 (.0194) .0309 (.0195)
SBA sale (dummy) 2.1279 (.1302) 2.1308 (.1304)

Constant .190 (.392) .096 (.402)
Psuedo R2 .0495 .0519

Note.—Species, forest, and year dummies are included in each specification, as are controls for contract length,
density of timber, volume of per acre material, and estimated logging costs. We use Hubert-White standard errors (in
parentheses). Sample includes region 6 oral auctions. Species are ordered so that species 1 is overestimated.

V. Evidence on Skewing

A. Winning Bids Reflect Ex Ante Information

We now turn to testing the empirical predictions of our model. We
begin with the primary question of whether winning bids in Forest
Service auctions reflect ex ante information about Forest Service mis-
estimates. We look at whether larger misestimates correspond to more
accurate winning bid skews (in the sense of being in the correct direc-
tion) and to larger winning skews.

One piece of suggestive evidence is that in sales in which the Forest
Service misestimate is nonnegligible, the winning bid is much more
likely to be skewed significantly in the right direction than in the wrong
direction. Of the 480 sales in which we observed 1 0.025, Db 2f f

in 233 sales and in only 138. On the otherDr 1 20 Db 2 Dr ! 220f f f

hand, in the 217 sales in which the Forest Service estimate was very
accurate ( ), we observe roughly equivalent numbers of sig-d ! 0.025f

nificant correct and incorrect skews (87 vs. 82). Overall, the winning
bid is skewed correctly in 58 percent of the sales. A z-(Db 2 Dr ≥ 0)f f

test rejects the null hypothesis that the winning bid is skewed correctly
in exactly half the sales at the 0.1 percent level.

Table 3 reports a probit regression confirming our hypothesis that
larger misestimates should correspond to a higher probability that the
winning bid is skewed in the right direction, conditional on the control
variables (X). An increase in the magnitude of the misestimate of .01
is associated with roughly a 1–2 percent higher chance that the winning
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bid is skewed correctly. Column 2 establishes that the relationship is
concave: the initial effect of an increase of .01 in the misestimate is a
2–4 percent increase in the probability of a correct skew, but the slope
diminishes in df. In terms of the control variables, the most interesting
result is that increasing the number of bidders increases the probability
that the winner skews in the right direction.27 This finding is consistent
with the hypothesis that information is revealed during the auction.

A rigorous test of whether bidders have ex ante information about
the ex post volumes beyond what is publicly announced must account
for the competing hypothesis that Forest Service estimates are syste-
matically biased and that bidders have realized this and just skew sys-
tematically in response. If bidders use only public information, then

E[Db 2 Dr d X, d ] p E[Db 2 Dr d X] { h(X). (4)f f f f f

Note that will in general be nonlinear since X might affect a bidder’sh(7)
risk aversion, or beliefs, in various ways.

We test (4) against the alternative:

E[Db 2 Dr d X, d ] p h(X) 1 d g. (5)f f f f

If bidders do not have private information, we should find g p 0.
For an accurate test, it seems crucial to allow a general functional

form for particularly given that X and df are correlated in the data.h(7),
We adopt a semiparametric approach. In particular, we divide the con-
trol variables X (listed in table 3) into continuous regressors Z and
dummy variables W. We then allow where g is anh(X) p g(Z) 1 Wb,
arbitrary continuous function of two indices While this(Z a , Z a ).1 1 2 2

double-index specification is not completely unrestrictive, our results
are robust across a range of specifications of the two indices Z1 and Z2.
In the reported specification, we let Z1 be the average reserve price,
and Z2 contains the remaining continuous control variables.

To estimate g, we begin by estimating

ˆDb 2 Dr p h (Z) 1 e ,f f D D

ˆW p h (Z) 1 e ,W W

ˆd p h (Z) 1 e , (6)f d d

27 As discussed in n. 24, it seems plausible that the number of bidders is exogenous in
this regression, since bidders must cruise the tract to learn about misestimates. Our results
are robust to excluding this control.
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TABLE 4
Skewing in Response to Misestimates (Np697)

OLS Dependent Variable: SkewpDb2Dr

(1) (2) (3)

d1pmisestimate 336.7 (120.2) 283.7 (107.0)
Total bid/estimated

volume .765 (.290)
Volume and reserve

price controls:
Estimated volume 22.40 (3.83) 21.62 (3.94) 21.73 (3.86)
Estimated volume

squared .437 (.279) .401 (.284) .407 (.274)
Average reserve price .080 (.175) .107 (.174) 2.717 (.322)

Bidder participation:
Number of bidders 3.61 (2.23) 3.56 (2.20) 2.57 (2.45)
SBA sale (dummy) 211.7 (13.0) 213.4 (13.0) 213.7 (13.1)

Constant 39.3 (46.6) 27.3 (47.1) 210.5 (49.2)
R2 .0572 .0719 .1095

Note.—Species, forest, and year dummies are included in each specification, as are controls for contract length,
density of timber, volume of per acre material, and estimated logging costs. We use Hubert-White standard errors (in
parentheses). Sample includes region 6 oral auctions. Species are ordered so that species 1 is overestimated.

where and each take a double-index form.28 Denoting theˆ ˆ ˆh , h , hD W d

residuals from these semiparametric regressions as eD, eW, and ed, we
follow Robinson (1988) in using ordinary least squares (OLS) to
estimate

e p e b 1 e g 1 e. (7)D W d

Our estimate of the coefficient g is 370.5 with a standard error of 102.8.
We can reject the null hypothesis that at the 1 percent level.g p 0

For comparison, column 2 of table 4 reports a linear specification,
assuming The OLS estimate of g is 336.7 with a standardh(X) p Xb.
error of 120.2.29 Column 3 of table 4 includes a control for the mag-
nitude of the bid; this captures the idea that part of the effect of the
misestimate is to encourage more aggressive bidding. Indeed, we find
a positive, significant effect of the value bid on the skew, alongside a
somewhat smaller point estimate of g (283.7 with a standard error of
107).

28 To estimate, e.g., we used the average derivative method ofˆDb 2 Dr p h (Z) 1 e ,f f D D

Powell, Stock, and Stoker (1989) to obtain consistent (up to scale) estimates of a1 and
a2, where We then used a kernel estimator (with a normal density)ˆ ˆh (Z) p h (Z a , Z a ).D D 1 1 2 2

to estimate the function estimating We used a routineˆ ˆ ˆ ˆh , Db 2 Dr p h (Z a , Z a ) 1 e .D f f D 1 1 2 1 D

described in Stoker (1989) to choose the bandwidth (the values were 0.41 for the first
index and 1.1 for the second), and we used a trimming rule of 5 percent. Tom Stoker
generously provided portions of code for the estimation.

29 The standard error is higher in the linear OLS specification because we use Hubert-
White standard errors. The uncorrected standard error for the linear OLS model is 103.6.
Other (unreported) OLS specifications with higher-order polynomial terms in X yielded
similar results.
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If bidding behavior is exactly given by (5), we can conclude that an
increase in the misestimate of .01 is associated with a $3.7 increase in
the skew (in the right direction). However, we are cautious about a
direct structural interpretation, in part because we have ignored the
reserve prices per species, which bind in about 42 percent of our ob-
servations. These reserve prices may prevent bidders from skewing as
much as they would have liked at the given bid level, potentially causing
us to underestimate the sensitivity of bids to misestimates. We return to
this issue in Section VC.30

B. Bidders Have Different (Private) Information

A key aspect of our skewing model, and indeed of any “common-value”
auction, is that allocation is driven by private estimates rather than by
preferences. In our model, bidders who are more optimistic about the
gap between bids and payments skew more aggressively and, in equilib-
rium, submit higher bids. Thus we would like to know empirically
whether higher-ranked bidders were more aggressive in their skews. We
also seek to test whether higher-ranked bids are more likely to be skewed
in the right direction: if information is revealed during the course of
an oral auction, the winning bid should be skewed in the right direction
(weakly) more often than losing bids. Finally, our model suggests that
the top two bidders should exhibit very similar skewing behavior. The
top bidder should stay in the auction for only one bid increment past
the second-highest bidder, and because bidders are pooling in their
choice of skew at any given bid, the skews of these two bidders should
be quite close (even though, in expectation, there is a nontrivial gap
in their estimates). In contrast, in expectation, lower-ranked bidders will
drop out at significantly lower bid levels and significantly less aggressive
skews.

We first investigate whether higher-ranked bidders allocate their bids
more accurately. Let denote the skew of the rank j bid in(Db 2 Dr )f f jt

auction t. And let ut denote the sale characteristics observed by all bid-
ders that might affect the probability of skewing correctly (these char-
acteristics may or may not be observed by the econometrician). We test
the null hypothesis that is the same for all bid-Pr ((Db 2 Dr ) ≥ 0 d u )f f jt t

der ranks j. We consider the following linear probability model:

30 Also, while establishing a linear relationship between and df is sufficient toDb 2 Drf f

reject the null hypothesis that bidders have only public information, we expect the true
relationship to be nonlinear. Indeed, when we estimated more general models (using a
semiparametric specification similar to the one above),Db 2 Dr p h(Za, d ) 1 Wb 1 e,f f f

we found the skew to be increasing and generally convex in df (when evaluated at the
mean of Z). We found the average derivative of the skew with respect to df to be positive
and significant at a 5 percent level, consistent with our linear model.
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TABLE 5
Skewing and Skewing Outcomes, All Ranks

Dummyp1 if Skew
in Right Direction

(1)
Db2Dr: Skew

(2)

FDb2DrF:
Magnitude of

Skew
(3)

Rank dummies:
Rank 2 4.51E-16 (.030) 4.2 (11.4) 21.4 (8.5)
Rank 3 2.042 (.030) 221.9 (11.4) 216.6 (8.5)
Rank 4 2.083 (.030) 231.0 (11.4) 240.1 (8.5)

Constant .583 (.021) 36.8 (8.1) 78.4 (6.0)
Number of bids 864 276 276
Number of auctions 216 69 69
F-test for no rank

effects F(3, 645)p3.62 F(3, 204)p4.40 F(3, 204)p9.52
p-value .0130 .0050 !.0001

Note.—Sample includes region 6 oral auctions. Species are ordered so that species 1 is overestimated. We use Hubert-
White standard errors (in parentheses). Specification 1 includes all auctions with at least four bidders. Specifications
2 and 3 include auctions with at least four bidders, and all bidders, ranks 1–4, are uncensored.

4

dummy[(Db 2 Dr ) ≥ 0)] p a 1 a 7 dummy(rank p k)Of f jt 0 k
kp2

1 u 1 e . (8)t jt

The relevant null hypothesis is that for 31 The terma p 0, k p 2, 3, 4.k

ut captures all the auction-specific sale characteristics, allowing us to
isolate the possible effect of bidder rank. We estimate (8) as a fixed-
effects regression, using a subsample of auctions with four or more
bidders, in which we consider only the top four bidders. The results
are reported in table 5. We find that the winning and second-highest
bids are significantly more likely to be skewed in the right direction
than the third- and fourth-highest bids. An F-test rejects the hypothesis
of no rank effects.

The second question is whether the skews of higher-ranked bidders
are more aggressive. Here, we restrict attention to sales in which none
of the top four bids is censored by the reserve price.32 We estimate the

31 Note that we need consider only linear rank terms to refute the null. If we reject the
null hypothesis of no rank effects, there may be concern that we have misspecified the
true functional relationship between the dependent variable and bidder rank. However,
our estimates of the a’s are consistent (though inefficient) even if there is an additional
(omitted) auction-specific effect, ht, that enters multiplicatively.

32 The reason for this is that reserve prices bind more tightly for earlier (lower-rank)
bids. To the extent that reserve prices constrain optimal skewing, looking at the full sample
might lead us to infer a positive impact of bidder rank even if bidders had identical
optimal skews (i.e., identical information). By restricting the sample, we avoid this potential
bias. We report results using the top four bidders but obtain similar results using the top
three or five: the top two bidders have similar bid allocations, and lower-ranked bids are
less skewed. If we ignore the reserve price effect and estimate on the full sample, the
results are stronger, as we would expect.
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model

4

(Db 2 Dr ) p a 1 a 7 dummy(rank p k) 1 u 1 e , (9)Of f jt 0 k t jt
kp2

again using a fixed-effects specification. The results are in column 2 of
table 5. Again, we reject the hypothesis of no rank effects. The winning
and second-highest bids are similarly skewed, whereas the third- and
fourth-highest bids were significantly less skewed (by roughly $20–$30).

Column 3 of table 5 reports a final specification in which the depen-
dent variable is an alternative measure of skewing aggressiveness: the
absolute magnitude of the bidder’s skew. This specification matches our
theoretical model closely: it separates out the fact that higher-ranked
bidders skew more accurately and concentrates solely on the size of the
skew. The findings are similar: the top two bids are very close, whereas
the third and fourth bids are less skewed. Indeed, we should emphasize
the large quantitative differences in skews between the winning and
lower-ranked bidders and the overall dispersion of the bidders’ skews.
In this sample, the average difference between the skew of the winning
bid and the fourth-highest bid was $40. The average difference between
the highest and lowest skew among all four top bids was $78 (with a
standard deviation of $90 and a maximum of $384). To put this in
context, the average winning bid was $147, and the average skew of the
winning bid was $78.

This evidence suggests three conclusions regarding the variation in
skews across bidders. First, it appears that bids later in the auction are
more informed. This might reflect either more accurate prior estimates
or the fact that information is acquired during the auction. Second,
given that winning bidders are effectively paying a lower percentage of
their bids than lower-ranked bidders, the logical consequence of our
findings is that information should have an effect on allocation. Third,
the differences between the skews of different bidders in an auction are
relatively large in magnitude. We return to these points in Section VE,
where we discuss various alternative explanations of the evidence.

C. Revenue Effects

Our model suggests that when the Forest Service estimate is inaccurate,
a potential return to information is created because an informed bidder
can drive a wedge between the bid and the payment. An interesting
empirical question is whether this return is captured by the bidders (in
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TABLE 6
Revenue Effects of Misestimates (Np697)

(Bid2Reserve)/
(Estimated Volume)

2(Paid2
Reserve)/(Cut Volume)

(1)

(Bid2Reserve)/
(Estimated
Volume)

(2)

(Paid2Reserve)/
(Cut Volume)

(3)

d1pmisestimate 79.6 (20.3) 64.4 (37.2) 215.2 (30.0)
Volume controls:

Estimated volume .053 (.418) 1.987 (1.146) 1.934 (1.159)
Estimated volume

squared .019 (.025) 2.083 (.086) 2.102 (.084)
SBA sale (dummy) 2.31 (1.15) 2.45 (3.94) 2.76 (4.19)
Constant 1.01 (3.18) 67.61 (10.30) 66.60 (10.49)
R2 .181 .281 .271

Note.—Species, forest, and year dummies are included in each specification, as are controls for contract length,
density of timber, volume of per acre material, and estimated logging costs. We use Hubert-White standard errors (in
parentheses). Sample includes region 6 oral auctions. Species are ordered so that species 1 is overestimated.

the form of lower payments) or competed away (in the form of higher
bids).33

Let RACT be the average reserve price weighted by the realized pro-
portion (R is the average reserve price weighted by the Forest Service
estimates). The difference between the per unit winning bid, over and
above the reserve price, and the per unit payment, similarly above the
reserve price, is the per unit return to skewing:

B 2 R P 2 RACT
2 p (Db 2 Dr ) 7 d .f f fQ QEST ACT

Recall from Section IVB that this gap, on average, is about $3.50. An
implication of the model is that should be increasing(Db 2 Dr ) 7 df f f

in df.
To check empirically whether the gap between the per unit bid and

the per unit payment increases with the Forest Service error, we estimate

B 2 R P 2 RACT
2 p Xb 1 gd 1 e.fQ QEST ACT

The results are reported in column 1 of table 6. We find that g p
(standard error 20.3). That is, an increase of 0.05 in the misestimate79.6

is associated with about a $4 increase in the gap between the per unit
bid and payment.

33 Policy makers have focused on a different “revenue” issue, noting that because of the
scale format, losing bids might have generated more revenue than winning bids, given
the actual volumes cut (see “Skewed Bidding Presents Costly Problems,” 1983). In our
sample, a losing bid would have generated more revenue in 17 percent of the sales; the
revenue “loss” from this misallocation is $5.39 million, about 1.7 percent of the total
revenue. Of course, it is not clear that this “loss” could be captured: any rule change
would change the equilibrium bidding behavior.
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The question then becomes whether this gap results in an “infor-
mational rent” captured by the winner. Consider first how per unit bids

might respond to a larger Forest Service error. Our model(B 2 R)/Q EST

suggests that with a larger misestimate, bidders’ estimates should be
farther from the Forest Service estimate, and hence should(B 2 R)/Q EST

be larger because of the combination of competition and increased
skewing.34 On the other hand, if bidders have no information or if there
is only a single informed bidder competing against a naive and unin-
formed “fringe” that always bids the same profit margin for each species,

should not respond to a larger Forest Service error. We(B 2 R)/Q EST

estimate

B 2 R
p Xb 1 gd 1 e.fQ EST

The results are reported in column 2 of table 6. We find that g p
(standard error 37.2). Thus an increase of 0.05 in the misestimate64.4

is associated with roughly a $3.22 increase in the per unit winning bid.
Finally, we ask whether the Forest Service loses revenue when the

misestimate is larger. Our model does not make an unambiguous pre-
diction. It suggests that bidding will continue until the expected per
unit payment is equal to the expected per unit average value minus
some risk premium (where these expectations are computed as in eq.
[3]). If bidders believe that the misestimate is larger, then, all else equal,
they will increase bids and skews. Although it seems plausible that this
will increase exposure to risk and hence the risk premium (thus de-
creasing revenue), this conclusion does not follow from the model with-
out additional assumptions about the information structure. Thus the
impact of a larger misestimate on revenue is an empirical question. We
estimate

P 2 RACT
p Xb 1 gd 1 e.fQ ACT

The results are reported in column 3 of table 6. We find that g p
215.2 (standard error 30.0). An increase in the misestimate is associated
with only a small revenue loss: about $0.76 per unit of timber for a 0.05
increase in the misestimate. The loss is not significantly different from
zero.

In summary, misestimates appear to have a significant effect on both

34 Obtaining this result formally actually requires additional conditions since while the
probability that bidders believe df is large increases with df, the probability that bidders
believe 2df is large (and skewed heavily in the opposite direction) decreases. Roughly,
the result should hold as long as the winner is likely enough to be skewed in the right
direction.
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the winning bid levels and the gap between the winning bid and the
payment. They are associated with a small, and not statistically signifi-
cant, revenue loss. Thus the data appear to indicate that the informa-
tional returns to skewing are largely competed away.

We should also mention the reserve prices, for which we have not
explicitly accounted. As suggested earlier, to the extent that binding
reserve prices constrain skewing, they may lessen the effect of Forest
Service misestimates (and also cause us to underestimate the respon-
siveness of bidding to the misestimate). In empirical terms, reserve
prices act as a censoring mechanism on bid allocation. However, because
the reserve prices become less restrictive as the total bid increases, this
censoring is endogenous. Our working paper (Athey and Levin 1999)
derived structural total bid and bid allocation functions from our model
and estimated them jointly, accounting for the impact of the reserve
prices on both total bids and skews. Overall, our estimates of the quan-
titative effect of misestimates on revenue (and on bid allocation) were
close to the magnitudes reported above (although the revenue loss was
significantly different from zero).

D. Sealed-Bid Auctions

We now report some evidence on sealed-bid auctions. For empirical
purposes, sealed-bid auctions have the attractive feature that there is no
ambiguity in interpreting skews: each firm’s bid allocation is relevant
only in the event that the firm wins, so it is a dominant strategy for each
bidder to choose the skew that maximizes its expected utility conditional
on winning. Using a small (63 sales) sample of two-species sales from
region 5, we reprise the main tests conducted on the oral auction sam-
ple. We chose region 5 because sealed-bid auctions were more prevalent
there.

Column 1 of table 7 reports sealed-bid estimates of the probit model
from Section VA, where the dependent variable is the probability that
the winner skewed correctly. Overall, the winner skewed in the right
direction in 65 percent of the sealed-bid sales and was more likely to
skew in the right direction when the misestimate was large. The size of
the winner’s skew ( ) is increasing in the misestimate df (col.Db 2 Drf f

2 of table 7). An increase in the misestimate of 0.01 is associated with
an additional $5.20 skew in the right direction (our point estimate in
the oral auction sample was $3.40). Thus it appears that in sealed-bid
auctions, as well as in oral sales, the winner’s bid does incorporate
information about the proportions of species beyond what is known
from the Forest Service estimates.

Columns 1–3 of table 8 report sealed-bid estimates of the fixed-effects
panel specifications, analogous to Section VB. We restricted the sample
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TABLE 7
Skewing in Response to Misestimates in Region 5 Sealed-Bid Auctions (Np63)

Probit:
Dummyp1 if Skew
in Right Direction

(1)

OLS:
Skew Db2Dr

(2)

d1pmisestimate 5.23 (2.89) 359.89 (223.94)
Volume and reserve price

controls:
Estimated volume 2.224 (.125) 239.906 (12.765)
Average reserve price .009 (.008) .144 (.492)

Bidder participation:
Number of bidders .067 (.067) 21.964 (3.896)
SBA sale (dummy) 2.394 (.482) 222.741 (29.597)

Constant 2.87 (3.05) 521.82 (264.13)
R2 .156* .4926

Note.—Species, forest, and year dummies are included in each specification, as are controls for contract length,
density of timber, volume of per acre material, and estimated logging costs. Sample includes region 5 sealed-bid auctions.
Species are ordered so that species 1 is overestimated. We use Hubert-White standard errors (in parentheses).

* Pseudo R2.

first to sales in which there were at least three bids (col. 1) and then
to a still smaller sample in which the reserve prices are not binding for
any of the top three bids (cols. 2 and 3). We found that the winner’s
skew is significantly larger in absolute magnitude than the skews of the
lower-ranked bidders. In fact, the magnitude of the skew is ordered by
rank. We did not, however, find significant differences in the accuracy
of the skews or in the magnitude of the skews in the right direction

These findings are generally consistent with the logic of(Db 2 Dr ).f f

information-based skewing. According to theory, the winner is more
optimistic and, hence, skews more aggressively, leading to larger abso-
lute skews (which we find). Moreover, since there is no learning in a
sealed-bid auction, it is not clear that the winner should have more
accurate information than other bidders (consistent with what we find).
However, because bidders are likely to skew in the right direction, one
might expect high-rank bidders to make larger skews in the right di-
rection (which we do not observe).

E. Alternative Explanations

Our findings are consistent with bidders’ having different cruise esti-
mates and behaving as in the equilibrium of our model. Perhaps the
most obvious alternative hypothesis is that observed differences in bids
and skews are driven not by differences in estimates but by “private-
value” differences: perhaps in costs of harvesting, in values for the dif-
ferent species, or in risk aversion. Of course, our initial finding that
winning bids tend to be skewed in the right direction suggests that at
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TABLE 8
Skewing and Skewing Outcomes, All Ranks, in Region 5 Sealed-Bid Auctions

Fixed-Effects Regressions

Dummyp1 if
Skew

in Right
Direction

(1)
Skew: Db2Dr

(2)

Magnitude of
Skewp

FDb2DrF
(3)

Rank dummies:
Rank 2 .109 (.076) 7.55 (8.15) 29.33 (4.94)
Rank 3 .055 (.076) .58 (8.15) 215.16 (4.94)

Constant .64 (.05) 22.13 (5.77) 27.37 (3.50)
Number of bids 165 114 114
Number of auctions 55 38 38
F-tests for no rank

effects F(2, 108)p1.04 F(2, 74)p.53 F(2, 74)p4.78
Prob1F .3572 .5900 .0111

Note.—Sample includes region 5 sealed-bid auctions. Species are ordered so that species 1 is overestimated. We use
Hubert-White standard errors (in parentheses). Col. 1 includes only sales with at least three bidders. Cols. 2 and 3
include only sales with at least three bidders in which the reserve price does not bind for the top three bids.

least the winning bidder has access to information superior to the cruise
estimates of the Forest Service. What it does not necessarily imply is that
differences in skewing among bidders at a given auction are driven by
differences in information. For instance, if bidders all have the same
information about tract composition and their preferences satisfy de-
creasing absolute risk aversion, those with a high private value for the
tract would tend to skew more aggressively.35 This story would predict
that all bids are skewed in the same direction, with higher-ranked bids
skewed more heavily. Alternatively, idiosyncratic variation in costs or
values (i.e., in Dv) could generate variation in skewing through differ-
ences in the “constant profit margin” allocation.

However, a variety of empirical facts fit poorly with explanations of
skewing based purely on private-value differences. First, with purely pri-
vate-value differences, no learning would occur in oral auctions, so there
is no reason for higher-ranked bids to be more accurately skewed, as
we find in Section VB. Second, we often observe that a given firm bids
on some combination of two species (e.g., hemlock and fir) in multiple
sales and skews in different directions in different sales. This is incon-
sistent with bid allocation being driven by firm heterogeneity in Dv.
Third, in our model, the top two bids, but not lower bids, naturally have
similar skews in oral auctions. In contrast, it requires a very special
correlation structure to generate this feature in a pure private-values
model. Finally, and more subjectively, reconciling the relatively large
differences in magnitude between the skews of different bidders with

35 We are grateful to Phil Haile for suggesting this possibility.
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differences in private values or risk parameters seems to require im-
plausible differences across bidders, particularly given that resale op-
portunities should compress values for the different species.36

Thus, while private-value differences are consistent with some of the
empirical regularities, it seems difficult to rationalize our findings as a
whole without appealing in part to differences in information across
bidders. Our interviews with industry participants support the view that
cruise estimates might vary significantly on the same tract because of
the combination of subjective assessments and statistical sampling in-
volved in cruising.

A second alternative to our model, also based on a form of asymmetric
information, is that bidders are able to destroy some of the timber on
the tract rather than pay for it. This would give sale winners an incentive
to destroy low-quality timber rather than harvest it.37 Such manipulation
could generate a correlation between skews and differences in the pro-
portions of estimated and cut species, even without ex ante information,
since higher bids on a given species would imply a larger motivation to
destroy low-quality logs of that species.38

Anecdotal accounts from the industry suggest that loggers may have
a limited ability to manipulate the ex post measurement process. But
several aspects of the data suggest that moral hazard in the harvesting
process is not sufficient to explain all our findings. First, one would
expect the total volume of timber destroyed to be correlated with the
observed misestimate of proportions of species. In the data, the cor-
relation between the misestimate and the total volume shortfall is very
low and insignificant: .053 (with a t-statistic of .32). This finding is con-
firmed when we control for observed sale characteristics.39 Second, we
found in Section VB that the second-highest bidder was just as likely to
skew in the right direction as the winner, whereas the lower-ranked
bidders were significantly less likely to skew in the right direction. This
is sensible in the context of an ex ante information story but hard to

36 For instance, we noted in Sec. VB that in the sales in which none of the top four bids
are bound by the reserve price, the average skew of the winning bid is about twice as
large as the average skew of the fourth-highest bid. So, e.g., if bidders have mean-variance
preferences the top bidder requires a parameter l of aboutu (p) p E(p) 2 l Var (p),i i

one-half the size of that of the bottom bidder to explain the skewing differential.
37 A similar story has loggers colluding with the monitors responsible for measuring the

timber as it leaves the tract. Rucker and Leffler (1988) study various facets of the harvest
process under Forest Service contracts.

38 Only logs that meet a certain threshold are counted at all; broken limbs and other
damaged material are charged at a different rate. Thus a bidder can potentially avoid
“stealing” timber simply by breaking a log into pieces and paying a low price for it.

39 We also looked at how the gap between estimated and cut total volume and proportions
of species varied over time. Because timber prices were quite volatile, one would expect
the gap in total volume to vary a lot if moral hazard were a primary concern. On average,
it remained relatively stable over time.
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rationalize if manipulation of harvest were the primary mechanism in
the data. In the latter case, the winning bidder’s cutting behavior should
respond to her own skew, whereas the second-highest bidder’s skew
should be less closely related to the actual difference in proportions.
Finally, it is clear that the presence of moral hazard in cutting is not
inconsistent with our ex ante information story. In fact, it might reinforce
incentives to acquire information if bidders can learn whether it will be
easy or difficult to destroy low-quality timber of a given species. We can
place this in the framework of our model by thinking of easy-to-destroy
low-quality timber as being simply not present. In general, the more
skewed the bidding, the higher the incentives for ex post destruction
of one of the species;40 conversely, the easier it is to destroy low-quality
trees of a particular species ex post, the greater the incentive to skew.

One final concern with our model is that it assumes that bidders are
equally adept at constructing cruise estimates and have identical pref-
erences. A possible conjecture is that our findings are driven by a subset
of firms that are particularly good at exploiting the scale sale rules by
skewing. Thus it is interesting to inquire if there are observable differ-
ences between bidders that might be a major (unmodeled) determinant
of skewing behavior.

The main characteristic we examined was firm size. To this end, we
classified the bidders into three groups on the basis of the number of
employees: small bidders with fewer than 100 employees, midsize bid-
ders with between 100 and 300, and large bidders with over 300. These
groups have somewhat different bidding patterns: the larger and more
valuable a given tract, the larger the size of the firms the sale attracts.41

However, we found no robust differences in skewing behavior across
these groups of bidders. No group was systematically more likely to skew
in the right direction or be systematically more responsive to large mis-
estimates. In some specifications, larger bidders appeared to skew their
bids somewhat more dramatically in absolute value, but this finding was
sensitive to specification. One explanation is that most of the bidders
in our sample, regardless of size, participated relatively frequently.42 To
the extent that experience is important in cruising and bid preparation,
the majority of bidders were relatively experienced.43

40 Perhaps not surprisingly, one Forest Service official told us that cutting was monitored
intensely when bids were especially skewed.

41 In addition, the probability that a given sale is eventually won by a large bidder (or
a medium-size bidder) increases significantly with the estimated volume or the reserve
prices.

42 The median bidder in our subsample participated in 112 auctions throughout region
6 (not just in our subsample) during 1976–90.

43 We also examined the skewing behavior of a few frequent participants. In particular,
we considered the fixed-effects specification of Sec. VB, including dummies for particular
firms rather than rank dummies. Although the sample for this specification was relatively
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VI. Conclusion

In this paper, we have considered the effects of information on bidding
behavior in Forest Service timber auctions. The rules of the “scale sales”
create incentives for strategic bid distortion. Using ex post information
about the value of the tract, we found that bidders have private infor-
mation about the underlying characteristics of the tract and exploit this
information in their bidding behavior. This information appears to play
a role in allocating the tract between bidders, since bidders who take
larger gambles are more likely to win the auction. We also found that
when the Forest Service estimate is farther from the truth, the winning
bid is generally higher, but revenue decreases only a little, if at all. This
suggests that informational rents may be largely competed away. Finally,
observed bidding behavior is consistent with some amount of bidder
risk aversion.

Our work raises several questions for future research. First, since bid-
ders clearly expend resources to obtain strategically useful information,
it suggests that attention should be given to the process of information
acquisition. Timber sales may be an interesting environment in which
to study the costs and benefits of information gathering. Second, we
have documented that private information plays a role in these auctions;
yet private-value differences are surely important as well. A well-designed
structural model might allow one to sort out the relative importance of
heterogeneous values and private beliefs.

Finally, given that scale sales give rise to the type of strategic bid
distortion we have documented, an obvious question is why the scale
sale format is widely used. A natural alternative is to ask for lump-sum
bids and not make payment contingent on the harvest quantities. As
we noted above, an attractive feature of scale sales is that they allow for
more risk sharing than lump-sum sales since the winner is insured
against uncertainty about the total volume of timber. The importance
of this is likely to depend on the size of the sale and the difficulty in
assessing the quantity and quality of merchantable timber. Moreover,
bid skewing undermines the insurance properties of a scale sale since
by skewing bidders take on species composition risk. The recent restric-
tions imposed by the Forest Service, which places an upper bound on
the magnitude of allowable skews, limit this endogenously generated
risk. Another argument for scale sales is that they may involve lower
cruising costs than lump-sum sales. Conversely, it takes more resources

small (the most frequent winner in our sample, Boise-Cascade, won 41 sales, and seven
others won between 10 and 20), no bidder appeared significantly more likely to skew in
the right direction, although a few bidders (in particular Boise-Cascade) skewed more
aggressively (i.e., the average magnitude of the skew was larger). We might attribute this
behavior to a lower level of risk aversion since Boise-Cascade is a large conglomerate.
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ex post to determine payments. A final point is that if the buyer defaults
at some point during the contract, a scale contract may provide a more
useful starting point for renegotiation than a lump-sum contract. Thus
for large, valuable, or risky tracts, the benefits of a scale format can
outweigh the costs.44

Appendix A

Here, we prove the results from Section III. The proofs of propositions 1 and
2 require the following definitions (we continue to use “increasing” and “de-
creasing” in the weak sense unless otherwise indicated). The function h : R r

is single crossing if, for all implies The functionH L L HR y 1 y , h(y ) ≥ (1)0 h(y ) ≥ (1)0.
is bivariate single crossing in (x, y) if, for all2 H L H Lg : R r R x 1 x , g(x , 7) 2 g(x , 7)

is single crossing. A function is supermodular if, for all2 H Lg : R r R x 1 x ,
is increasing. If g is positive, g is log supermodular if isH Lg(x , 7) 2 g(x , 7) log (g)

supermodular. Note that if g and h are positive and log supermodular, then so
is If X and Y are random variables with positive joint density withg 7 h. f(x, y)
respect to Lebesgue measure, the following are equivalent: (i) X and Y are
affiliated, (ii) the distribution of X conditional on is ordered (in y) by theY p y
monotone likelihood ratio order, and (iii) f is log supermodular in almost ev-(x, y)
erywhere (Lebesgue measure). A vector of random variables Z with a positive
joint density is affiliated if f is log supermodular in almost everywhere,f(z) (z , z )i j

for all i ( j.
The Milgrom-Shannon (1994) monotonicity theorem states that if sat-g(x, v)

isfies bivariate single crossing in is increasing in∗(x, v), x (v) p arg max g(x, v)x

v.45 The following additional lemma will be used (see Athey [in press, a] and
Milgrom and Weber [1982] for parts i and ii, respectively).

Lemma 1. Let be the conditional density of X given and supposef(7 d y) Y p y,
that f is log supermodular. (i) If is single crossing in x and increasing2g : R r R
in z, then is single crossing in y. (ii) If is increasing,g(x, z)f(x d y)dx h : R r R∫
then is increasing in y.h(x)f(x d y)dx∫

Proof of Proposition 1

First, note that unless the firm is risk-neutral, the objective function is strictly
concave in Db, and thus there is a unique solution. (i) If thenjs ! e ,1 1

j k k jE[e 2 r d e, s , G k ( j, B (s ) ! B ] 1 0.1 1

Consequently, when we neglect the reserve constraints, the optimal allocation
Db is greater than Dv. The constraints limit the set of allowable allocations to
an interval

44 Rynearson et al. (1997) interviewed a number of industry participants as well as Forest
Service officials. Their findings support these conclusions, except that they do not discuss
skewing, potentially because the study took place after the Forest Service imposed restric-
tions on skewing.

45 If there are multiple optima or no optima for some parameter values, the set of
optimizers is nondecreasing in the strong set order (Milgrom and Shannon 1994).
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r 2 (B/Q ) (B/Q ) 2 r1 EST EST 2
Db P , ;[ ]e e2 1

the condition on B implies that this interval contains Dv. The result follows from
concavity of the objective in Db. (ii) With risk neutrality, the objective becomes
linear, and the solution is extremal. (iii) Note thatE [(Db 2 Dv)(e 2 r )],r 1 11

is bivariate single crossing in (Db, 2r1) and that (2r1, ) are affiliated.ju p 2sC 1

By lemma 1, the objective is bivariate single crossing in (Db, ), and the resultj2s1

follows from the Milgrom-Shannon (1994) monotonicity theorem. Q.E.D.

Proof of Proposition 2

Suppose that all bidders use identical strategies with the prop-˜ ˜k ( j Db(s ), B(s )1 1

erties stated in the proposition. We show that bidder j’s best response must have
the same properties. We then establish the equilibrium. To simplify the expo-
sition, assume that Q p Q p 1.EST ACT

First, given that opponents’ bids are at least V, any bid with yields payoffB ! V
zero. But by bidding and (i.e., ), bidder j also can ensureB p V Db p Dv b p vi i

a payoff of zero. So j can restrict himself to bids B ≥ V.
We now establish the desired monotonicity properties. Suppose that js ! e .1 1

Let Bidder j’s expected profits with a bid B, Db arej km p min s .1 k(j 1

e 11

j j j j ju(p(Db, B, r ))f (r d e , s , m )f (m d e , s )dr dm ,E E 1 r 1 1 1 1 m 1 1 1 1 1
21B̃ (B) 0

where fr is the density of r1, and fm is the density of Note thatj j jm . (r , s , m )1 1 1 1

are affiliated as a result of our assumption that the estimates were affiliated and
exchangeable.

We consider bidder j’s problem in two parts. First, we define to bejDb(B, s )1

the solution of the bid allocation problem for a given total bid B. From prop-
osition 1, we know that is decreasing in ; we show that isj j jDb(B, s ) s Db(B, s )1 1 1

increasing in B when Second, we consider the choice of total bidjs ! e .1 1

given that bid allocation will be optimal.jB(s ),1

When we rewrite the reserve constraints, the bid allocation problem is

1

j j 21˜max u(p(Db, B, r ))f (r d e , s , m ≥ B (B))drE 1 r 1 1 1 1 1
Db 0

r 2 B B 2 r1 2subject to ≤ Db ≤ .
e e2 1

By proposition 1, we can restrict attention to An increase in B has threeDb ≥ Dv.
effects: it relaxes the reserve price constraints and strictly widens the interval
from which Db can be chosen, it acts as a decrease in wealth, and it shifts the
distribution of r1 down in the sense of the monotone likelihood ratio order by
expanding the set of defeated types downward. Each effect increases the opti-
mizer Db. Formally, when we denote the objective as jU(Db,B, s ),1

equals46j(/Db)U(Db,B, s )1

46 For simplicity of notation, we focus on the case in which is strictly increasing. TheB̃
case in which is weakly increasing is analogous.B̃
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1

′ j j 21˜(e 2 r )u (p(Db, B, r ))f(r d e, s , m ≤ B (B))dr .E 1 1 1 1 1 1 1
0

The first term, is single crossing in 2r1. The second term,e 2 r ,1 1

is nonnegative, increasing in 2r1 (because ), and log′u (p(Db,B,r )), Db ≥ Dv1

supermodular in (by constant and increasing absolute risk aversion).(2r , B)1

The last term is nonnegative and log supermodular in from the fact(2r , B),1

that is decreasing. Consequently, by lemma 1, is single21 jB̃ (/Db)U(Db, B, s )1

crossing in B, and the constraint set is increasing in B. Milgrom and Shannon’s
(1994) monotonicity theorem then implies that is increasing in B.jDb(B, s )1

Now consider the total bid problem, given optimal bid allocation. We wish to
show that the objective is bivariate single crossing in The objectivej(B; 2s ).1

function is
e 11

j j j j j ju(p(Db(B, s ),B,r ))f (r d e , s ,m )f (m d e , s )dr dm .E E 1 1 r 1 1 1 1 m 1 1 1 1 1
21B̃ (B) 0

Taking the derivative with respect to B (using the envelope theorem so that the
effect of B operating through Db can be ignored) and then rearranging, we
obtain

21˜dB (B) fm21 j 21 j˜ ˜[1 2 F (B (B) d s )] 2 (B (B)Fs )m 1 1{ dB 1 2 Fm

1

j j 21 j˜# u(p(Db(s ,B),B,r ))f (r dm p B (B), s )drE 1 1 r 1 1 1 1
0

1

′ j j 21 j˜2 u (p(Db(s ,B),B,r ))f (r dm ≥ B (B), s )dr .E 1 1 r 1 1 1 1}
0

We now show that each of the two terms inside the braces is decreasing in js .1

Because is always positive, this will establish that the entire expression is1 2 Fm

single crossing in and, hence, that the optimal bid is decreasing. Wej j2s B(s )1 1

consider the two terms in the braces separately.
Term 1.—The term is positive and constant in The hazard21 j˜2dB (B)/dB s .1

rate term is positive and decreasing in because is log super-j j js 1 2 F (m d s )1 m 1 1

modular in (a consequence of affiliation). To see that the integral termj j(m , s )1 1

(which is also positive) is decreasing in note the two effects. The direct effectjs ,1

of an increase in (fixing Db) is to shift the distribution of r1 up in the sensejs1

of monotone likelihood ratio order. Because p is decreasing in r1, andDb ≥ Dv,
so this decreases the integral by lemma 1. The effect of a marginal increase in

operating through Db, isjs ,1

1jDb(s , B)1 ′ j# (e 2 r )u (p(Db(s , B), B, r ))E 1 1 1 1j(s )1 0

j 21 j˜# f (r dm p B (B), s )dr .r 1 1 1 1

The first term is negative. We now argue that the second term is positive. The
integrand is single crossing in 2r1, so by affiliation of′ j(e 2 r )u (p(7)) (r , m ),1 1 1 1

lemma 1 implies that the integral is single crossing in Moreover, optimalityj2m .1

of Db implies that the integral would be zero if we conditioned on jm P1
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so it must be positive conditioned on Thus all of term21 j 21˜ ˜[B (B), e ], m p B (B).1 1

1 is decreasing in js .1

Term 2.—An increase in has two effects on the integral. The direct effectjs1

is to shift the distribution of r1 up in the sense of monotone likelihood ratio
order. Since p is decreasing in r1 for fixed Db, by lemma 1 this decreases the
whole term. The marginal effect of an increase in operating through Db, canjs ,1

be written as

1j ′′Db(s , B) u1
# 2 (p(7))Ej ′[ ](s ) u1 0

′ j 21 j˜# [(e 2 r )u (p(7))f (r dm ≥ B (B), s )]dr .1 1 r 1 1 1 1

The first term is negative. The integrand has two bracketed terms. The first is
positive and increasing in 2r1 by constant and increasing absolute risk aversion
and the fact that p is decreasing in r1. The second is single crossing in 2r1.
When the first term is omitted, the integral would be zero by optimality of Db.
Hence, when the first term is included, it must be positive. Thus all of term 2
is decreasing in js .1

We conclude that bidder j’s best-response total bid and hence his optimaljB(s ),1

allocation are decreasing in for An analogous argument showsj j jDb(s ), s s ! e .1 1 1 1

that when will be increasing and decreasing in Athey (inj j j js 1 e , B(s ) Db(s ) s .1 1 1 1 1

press, b) has shown that the existence of a symmetric pure-strategy equilibrium
follows from these monotonicity properties. Q.E.D.

Proof of Proposition 3

Suppose to the contrary that Then there exist some b1, b2 such∗R ! B (D; P) ! V.k

that and This “safe” portfolio has strictly pos-∗Q (b 7 e) p B (D; P) r ≤ b ≤ v .EST k i i i

itive expected profits for any resolution of uncertainty, contradicting the fact
that the optimal skew gives zero expected utility. So Now, suppose∗B (7) ≥ V.

(an analogous argument applies when ). By proposition 1, at thej js ! e s 1 e1 1 1 1

optimum, implying that Let l1 and l2 denote the∗ ∗Db (D; P) 1 Dv, b ≥ v 1 r .k 1 1 1

Lagrange multipliers on the reserve price constraints. We have

∗ ∗ 1 J2k…0 p E [u(p(Db (D; P),B (D; P),r )) d e , s p p s p D,P]r k k 1 1 1 1 k1

B B
1 l 1 Db(1 2 e ) 2 r 1 l 2 Dbe 2 r . (A1)1 1 1 2 1 2[ ] [ ]Q QEST EST

Since p is increasing in 2r1, and hence the right-hand side of (A1)∗Db 1 Dv,
is increasing in 2D; it is decreasing in B since p is decreasing in B and l ≥2

The result follows. Q.E.D.0 p l .1

Proof of Proposition 4

We prove the result for the case in which (an analogous argument appliesjs ! e1 1

when ). Suppose that bidders follow the strategies described in thejs 1 e l ( j1 1

proposition. Define to be the value D that solves that∗ ∗D (B; P) B p B (D; P),k k

is, the marginal type, for given B, Pk. If all opponents are still active at a bid B,
all that can be inferred is that for each opponent l. Suppose thatl ∗s ! D (B; M)1
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no one has dropped out; we shall consider player j’s incentives to deviate from
the equilibrium strategy. At bidder j knows that he will win at∗ jB p B (s ; M),1

B only if all opponents’ estimates are equal to For him to earn∗ jD (B; M) p s .1

nonnegative expected profits if he wins, he must announce So bidderDb(B; M).
j has no incentive to deviate at Moreover, as B rises past∗ jB p B (s ; M).1

j cannot possibly make positive expected profits if he wins. So he will∗ jB (s ; M),1

drop out just beyond ∗ jB (s ; M).1

Now consider j’s bid allocation announcement when Con-j ∗ jDb B ! B (s ; M).1

sider first an announcement Suppose that, following such aDb ! Db(B; M).
deviation, opponents’ beliefs are the same as though j announced ;Db(B; M)
that is, opponents do not update at all. Then the deviation will be payoff-relevant
only if bidder j actually wins at B, that is, if for all. Given thisl ∗s p D (B; M)1

event, we know that if j had estimate he would prefer a skew of∗D (B; M),
to any lower Db. But in fact, so j certainly prefers aj ∗Db(B; M) s ! D (B; M),1

skew of to any lower Db (this follows from the fact that the objectiveDb(B; M)
defining is bivariate single crossing in Db and ). So this deviation is not1Db(7) 2s1

profitable.
Finally, suppose that and consider a deviation to∗ jB ! B (s ; M) Db 11

Note that if then j’s expected profits from biddingj ∗Db(B; M). s 1 D (B; M),1

are negative. Since opponents already believe that jDb 1 Db(B; M) s ≤1

it makes sense to assume that if they do update their beliefs they will∗D (B; M),
revise toward a more extreme (lower) estimate. To this end, assume that any
opponent l who is marginal, that is, who plans to drop out immediately, revises
his beliefs about j to be that where is lowj ∗ˆ ˆs ! D(B; M) ! D (B; M), D(B; M)1

enough to deter l from dropping out. All other bidders make no revision in
their beliefs about With these off-path beliefs, a deviation in bid allocationsjs .1

by bidder j to cannot increase and may decrease j’s expectedDb 1 Db(B; M)
payoffs (since opponents have more optimistic beliefs about his estimate and
will stay in the auction longer). The same arguments can be applied after any
number of bidders have dropped out, which ensures that the proposed strategies
form an equilibrium. Note that a variety of other off–equilibrium path belief
restrictions would also suffice. In the event of a deviation in bid allocations by
some bidder j, as long as opponents are at least as optimistic about his estimate
as in the equilibrium we have described, he will have no incentive to deviate.
Q.E.D.

Relaxing Assumption 3

If assumption 3 is relaxed, it may be that and for two bidders j, kj ks ! e s 1 e1 1 1 1

in the same auction. To establish a sealed-bid equilibrium with the same prop-
erties (only where bidders skew in both directions in a given auction), our
arguments above require some modification. If his opponents use a U-shaped
total bid function, then by raising bidder j defeats two additional sets ofjB ,
opponents: some with estimates below e1 and some with estimates above e1. If

there is no longer a guarantee that conditioning on beating these ad-js ! e ,1 1

ditional types will cause j to revise his beliefs about up in the sense ofe 2 r1 1

the monotone likelihood ratio property. All else equal, raising could poten-jB
tially make j want to skew less. Of course, if bidder j has an estimate farther
from e1, he also has direct reasons both to bid and to skew more. To ensure that
bidder j’s best response has the relevant monotonicity properties,j jB(s ), Db(s )1 1

and thus that there is still an equilibrium with the same properties as before,
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we must assume that the potential indirect effects arising through the winner’s
curse are sufficiently small relative to these direct effects.

The English auction case is somewhat more subtle. We must specify how
information is revealed during the course of the auction. There are a variety of
possible equilibria; we sketch a particularly simple one. We modify the model
to allow bidders to exit and reenter, but we consider an equilibrium in which
bidders exit and reenter at most once. Order the bidders so that the first

bidders have where L is the number of such bidders, and withinj1, … , L e 1 s ,1 1

the two subsets of bidders, order the bidders in descending order of the mag-
nitude of the estimates. At the start of the auction, the opening total bid level
is and all bidders (except those whose estimates are very close to theR 1 e,
Forest Service estimate) skew in the direction suggested by their estimates. There
are two marginal types (e.g., ), where each earns zero profit if the2 1D ! e ! D1

auction ends at this point.47 After the first round of the auction, L is revealed.
If all bidders drop out, and the auction proceeds in a mannerL ≥ J/2, j 1 L
similar to the English auction equilibrium described in the text. All bidders skew
as though they were the current “marginal type,” and the marginal type earns
zero profit conditional on the auction’s ending at the current bid level.48 When
only bidder 1 remains, bidders consider whether or not to reenterL 1 1, … , J
the auction. For each such bidder, if, conditional on his estimate together with
the information that has been revealed until this point, beliefs are sufficiently
optimistic, the bidder reenters. If only one bidder reenters, the auction ends.
If more than one bidder reenters, the auction proceeds in a manner similar to
that described in the text. When only bidder remains, the auction ends.L 1 1
If any bidder j deviates from the specified behavior, each remaining bidder k
believes that (i) and (ii) bidder j’s estimate is asj ksign(s 2 e ) p sign(s 2 e ),1 1 1 1

large as possible in magnitude. This equilibrium has the feature that bidders
always mimic a “marginal type” who is indifferent to dropping out of the auction;
and the winning bidder retains some private information at the end of the
auction. These are critical features of the equilibrium; our other choices are
somewhat arbitrary.49

In this equilibrium, in each “phase” of the auction, bidders with less extreme
estimates (in a given direction) drop out first. What remains is to guarantee
that within each “phase,” skews (in a given direction) become more extreme as
the auction progresses. Intuitively, as B rises, there is a direct negative effect on
utility. Thus the “marginal” bidder must perceive greater opportunities for skew-
ing in order to break even at a higher bid level. If the shape of the posterior
distribution is well behaved,50 this implies that in a given direction, skews rise
in absolute magnitude as the auction progresses.

47 Note that the bidders do not know the value of L; however, each bidder with je 1 s1 1

knows that whereas each bidder with knows that Thus the two groupsjL ≥ 1, e ≤ s L ! J.1 1

of bidders condition on slightly different information when choosing their skews.
48 The bidders correctly anticipate the conditions under which the auction ends at this

point; in particular, they take into account the conditions under which bidders j 1 L
reenter.

49 Another equilibrium, perhaps more convincing, follows the same outline but extends
longer to allow bidders 1 and to make alternating bids until one drops out.L 1 1

50 What we need is that the posterior beliefs that arise during the course of the auction
can be ordered according to the monotone likelihood ratio order (this will allow us to
perform comparative statics on the choice of skew, as above). For example, a sufficient
condition is that posterior beliefs about r1 conditional on e1 and can be writteny ≤ s ≤ zi i i

where has the strict monotone likelihood ratio property inG (7 d e , m(y, z)), g (r d e , m)r 1 r 1 1

(r1, m) for all e1.
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Appendix B

In this Appendix, we briefly describe our data sources and criteria for selecting
our sample. The data can be divided into two categories: bidding data and cutting
data. The bidding data contain information on sale appraisals as well as the
highest bids placed by each bidder at the auction. These data are publicly
available from the Forest Service immediately after the auction. The cutting data
are the ex post information about the timber actually removed from the tract.
These data are also publicly available from the Forest Service. Because the Forest
Service uses different coding systems for the different species of timber in the
bidding and cutting data, the Forest Service data are somewhat difficult to work
with, and so we purchased “matched” data from one of the leading industry
data sources, Timber Data Company.

We selected a number of forests, focusing on larger forests that had a large
fraction of sales with two major species. The forests we obtained include region
6, forests 1–6, 9–12, and 15–18; and region 5, forests 3, 5, 6, 10, 11, and 14–18.
Among the sales from these forests, we consider only sales in which the matching
process met certain reliability criteria. We then narrowed the sample along a
number of criteria.

In region 6, we ruled out sales in which the average bid per mbf was within
$1 of the reservation price, since such sales leave little scope for skewing; sim-
ilarly, we ruled out sales in which the overbid per mbf was less than 5 percent
of the appraised difference in values, Dr. We further ruled out sales with extreme
misestimates (greater than 27 percent) or gaps between aggregate volume sold
and cut (greater than 30 percent in magnitude on the sale, or 25 percent on
either species) since these sales may have special circumstances (e.g., cutting
may have been aborted for some reason). We then dropped outliers along a
number of dimensions, including only sales with volume estimated between 100
mbf and 25,000 mbf and density less than 115 mbf per acre. Finally, we dropped
sales in which road construction was greater than 2.5 percent of the value of
the sale. Since the government reimburses road construction using a compli-
cated system of credits, bids in sales with low road construction can be inter-
preted more directly in terms of expected payments. For region 5, we used
essentially the same criteria, with one notable exception: we allowed sales with
road construction valued at up to 100 percent of the appraised value of the
tract. This allows a larger sample size, a problem for region 5 sealed-bid auctions.

Finally, we note a subtlety that arises in interpreting the bidding data. Forest
Service regulations require that no matter what the appraised values and costs,
all per unit bids must clear a certain minimum value, known as the “base rate.”
On a small number of sales, the base rate is greater than the reserve price. Thus
the Forest Service might accept a bid that violates the base rate rule. In such a
case, the Forest Service uses a preannounced mechanism to lower the bid on
some species and raise it on others. In this way, firms can sometimes achieve
skews that violate the posted reserve price constraints. Fortunately, the Forest
Service data include the information required for us to compute the amount a
bidder anticipates paying when the bid is placed. This is known as the “statistical
bid,” and all our results use the statistical bids. In any case, only a few sales are
affected by this rule.
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