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Abstract

The overall objectives of this review and synthesis are to study the
basics of information-theoretic methods in econometrics, to exam-
ine the connecting theme among these methods, and to provide a
more detailed summary and synthesis of the sub-class of methods
that treat the observed sample moments as stochastic. Within the
above objectives, this review focuses on studying the inter-connection
between information theory, estimation, and inference. To achieve
these objectives, it provides a detailed survey of information-theoretic
concepts and quantities used within econometrics. It also illustrates
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the use of these concepts and quantities within the subfield of
information and entropy econometrics while paying special attention
to the interpretation of these quantities. The relationships between
information-theoretic estimators and traditional estimators are dis-
cussed throughout the survey. This synthesis shows that in many cases
information-theoretic concepts can be incorporated within the tradi-
tional likelihood approach and provide additional insights into the data
processing and the resulting inference.

Keywords: Empirical likelihood; entropy, generalized entropy; informa-
tion; information theoretic estimation methods; likelihood;
maximum entropy; stochastic moments.

JEL codes: C13, C14, C49, C51
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Preface

This review and synthesis is concerned with information and entropy
econometrics (IEE). The overall objective is to summarize the basics
of information-theoretic methods in econometrics and the connecting
theme among these methods. The sub-class of methods that treat the
observed sample moments as stochastic is discussed in greater detail.
Within the above objective, we restrict our attention to study the inter-
connection between information theory, estimation, and inference. We
provide a detailed survey of information-theoretic concepts and quan-
tities used within econometrics and then show how these quantities are
used within IEE. We pay special attention for the interpretation of these
quantities and for describing the relationships between information-
theoretic estimators and traditional estimators.
In Section 1, an introductory statement and detailed objectives are
provided. Section 2 provides a historical background of IEE. Section 3
surveys some of the basic quantities and concepts of information the-
ory. This survey is restricted to those concepts that are employed within
econometrics and that are used within that survey. As many of these
concepts may not be familiar to many econometricians and economists,
a large number of examples are provided. The concepts discussed

ix
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x Preface

include entropy, divergence measures, generalized entropy (known also
as Cressie Read function), errors and entropy, asymptotic theory, and
stochastic processes. However, it is emphasized that this is not a survey
of information theory. A less formal discussion providing interpretation
of information, uncertainty, entropy and ignorance, as viewed by sci-
entists across disciplines, is provided at the beginning of that section.
In Section 4, we discuss the classical maximum entropy (ME) princi-
ple (both the primal constrained model and the dual concentrated and
unconstrained model) that is used for estimating under-determined,
zero-moment problems. The basic quantities discussed in Section 3, are
revisited again in connection with the ME principle. In Section 5, we
discuss the motivation for information-theoretic (IT) estimators and
then formulate the generic IT estimator as a constrained optimization
problem. This generic estimator encompasses all the estimators within
the class of IT estimators. The rest of this section describes the basics
of specific members of the IT class of estimators. These members com-
pose the sub-class of methods that incorporate the moment restrictions
within the generic IT-estimator as (pure) zero moments’ conditions,
and include the empirical likelihood, the generalized empirical likeli-
hood, the generalized method of moments and the Bayesian method
of moments. The connection between each one of these methods, the
basics of information theory and the maximum entropy principle is
discussed. In Section 6, we provide a thorough discussion of the other
sub-class of IT estimators: the one that views the sample moments as
stochastic. This sub-class is also known as the generalized maximum
entropy. The relevant statistics and information measures are summa-
rized and connected to quantities studied earlier in the survey. We
conclude with a simple simulated example. In Section 7, we provide a
synthesis of likelihood, ME and other IT estimators, via an example.
We study the interconnections among these estimators and show that
though coming from different philosophies they are deeply rooted in
each other, and understanding that interconnection allows us to under-
stand our data better. In Section 8, we summarize related topics within
IEE that are not discussed in this survey.
Readers of this survey need basic knowledge of econometrics, but do
not need prior knowledge of information theory. Those who are familiar
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Preface xi

with the concepts of IT should skip Section 3, except Section 3.4 which
is necessary for the next few sections. Those who are familiar with
the ME principle can skip parts of Section 4, but may want to read
the example in Section 4.7. The survey is self contained and interested
readers can replicate all results and examples provided. No detailed
proofs are provided, though the logic behind some less familiar argu-
ments is provided. Whenever necessary the readers are referred to the
relevant literature.
This survey may benefit researchers who wish to have a fast introduc-
tion to the basics of IEE and to acquire the basic tools necessary for
using and understanding these methods. The survey will also bene-
fit applied researchers who wish to learn improved new methods, and
applications, for extracting information from noisy and limited data
and for learning from these data.
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1

Introductory Statement, Motivation,
and Objective

All learning, information gathering and information processing, is based
on limited knowledge, both a priori and data, from which a larger
“truth” must be inferred. To learn about the true state of the world
that generated the observed data, we use statistical models that repre-
sent these outcomes as functions of unobserved structural parameters,
parameters of priors and other sampling distributions, as well as com-
plete probability distributions. Since we will never know the true state
of the world, we generally focus, in statistical sciences, on recovering
information about the complete probability distribution, which repre-
sents the ultimate truth in our model. Therefore, all estimation and
inference problems are translations of limited information about the
probability density function (pdf) toward a greater knowledge of that
pdf. However, if we knew all the details of the true mechanism then
we would not need to resort to the use of probability distributions to
capture the perceived uncertainty in outcomes that results from our
ignorance of the true underlying mechanism that controls the event of
interest.

Information theory quantities, concepts, and methods provide a uni-
fied set of tools for organizing this learning process. They provide a

1
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2 Introductory Statement, Motivation, and Objective

discipline that at once exposes more clearly what the existing methods
do, and how we might better accomplish the main goal of scientific
learning. This review first studies the basic quantities of information
theory and their relationships to data analysis and information pro-
cessing, and then uses these quantities to summarize (and understand
the connection among) the improved methods of estimation and data
processing that compose the class of entropy and information-theoretic
methods. Within that class, the review concentrates on methods that
use conditional and unconditional stochastic moments.

It seems natural to start by asking what is information, and what
is the relationship between information and econometric, or statistical
analysis. Consider, for example, Shakespeare’s “Hamlet,” Dostoevsky’s
“The Brothers Karamazov,” your favorite poem, or the US Consti-
tution. Now think of some economic data describing the demand for
education, or survey data arising from pre-election polls. Now consider
a certain speech pattern or communication among individuals. Now
imagine you are looking at a photo or an image. The image can be sharp
or blurry. The survey data may be easy to understand or extremely
noisy. The US Constitution is still being studied and analyzed daily
with many interpretations for the same text, and your favorite poem,
as short as it may be, may speak a whole world to you, while disliked
by others.

Each of these examples can be characterized by the amount of
information it contains or by the way this information is conveyed or
understood by the observer — the analyst, the reader. But what is
information? What is the relationship between information and econo-
metric analysis? How can we efficiently extract information from noisy
and evolving complex observed economic data? How can we guarantee
that only the relevant information is extracted? How can we assess that
information? The study of these questions is the subject of this survey
and synthesis.

This survey discusses the concept of information as it relates to
econometric and statistical analyses of data. The meaning of “informa-
tion” will be studied and related to the basics of Information Theory
(IT) as is viewed by economists and researchers who are engaged in
deciphering information from the (often complex and evolving) data,
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3

while taking into account what they know about the underlying process
that generated these data, their beliefs about the (economic) system
under investigation, and nothing else. In other words, the researcher
wishes to extract the available information from the data, but wants to
do it with minimal a priori assumptions. For example, consider the fol-
lowing problem taken from Jaynes’s famous Brandeis lectures (1963).
We know the empirical mean value (first moment) of, say one million
tosses of a six-sided die. With that information the researcher wishes
to predict the probability that in the next throw of the die we will
observe the value 1, 2, 3, 4, 5 or 6. The researcher also knows that
the probability is proper (sum of the probabilities is one). Thus, in
that case, there are six values to predict (six unknown values) and two
observed (known) values: the mean and the sum of the probabilities.
As such, there are more unknown quantities than known quantities,
meaning there are infinitely many probability distributions that sum
up to one and satisfy the observed mean. In somewhat more general
terms, consider the problem of estimating an unknown discrete prob-
ability distribution from a finite and possibly noisy set of observed
(sample) moments. These moments (and the fact that the distribu-
tion is proper — summing up to one) are the only available informa-
tion. Regardless of the level of noise in these observed moments, if the
dimension of the unknown distribution is larger than the number of
observed moments, there are infinitely many proper probability distri-
butions satisfying this information (the moments). Such a problem is
called an under-determined problem. Which one of the infinitely many
solutions should one use? In all the IEE methods, the one solution cho-
sen is based on an information criterion that is related to Shannon’s
information measure — entropy.

When analyzing a linear regression, a jointly determined system
of equations, a first-order Markov model, a speech pattern, a blurry
image, or even a certain text, if the researcher wants to understand
the data but without imposing a certain structure that may be incon-
sistent with the (unknown) truth, the problem may become inherently
under-determined. The criterion used to select the desired solution is
an information criterion which connects statistical estimation and infer-
ence with the foundations of IT. This connection provides us with an
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4 Introductory Statement, Motivation, and Objective

IT perspective of econometric analyses and reveals the deep connection
among these “seemingly distinct” disciplines. This connection gives us
the additional tools for a better understanding of our limited data, and
for linking our theories with real observed data. In fact, information
theory and data analyses are the major thread connecting most of the
scientific studies trying to understand the true state of the world with
the available, yet limited and often noisy, information.

Within the econometrics and statistical literature the family of
IT estimators composes the heart of IEE. It includes the Empirical
(and Generalized Empirical) Likelihood, the Generalized Method of
Moments, the Bayesian Method of Moments and the Generalized Max-
imum Entropy among others. In all of these cases the objective is to
extract the available information from the data with minimal assump-
tions on the data generating process and on the likelihood structure.
The logic for using minimal assumptions in the IEE class of estimators
is that the commonly observed data sets in the social sciences are often
small, the data may be non-experimental noisy data, the data may be
arising from a badly designed experiment, and the need to work with
nonlinear (macro) economic models where the maximum likelihood esti-
mator is unattractive as it is not robust to the underlying (unknown)
distribution. Therefore, (i) such data may be ill-behaved leading to
an ill-posed and/or ill-conditioned (not full rank) problem, or (ii) the
underlying economic model does not specify the complete distribution
of the data, but the economic model allows us to place restrictions on
this (unknown) distribution in the form of population moment condi-
tions that provide information on the parameters of the model. For
these estimation problems and/or small and non-experimental data
it seems logical to estimate the unknown parameters with minimum
a priori assumptions on the data generation process, or with minimal
assumptions on the likelihood function. Without a pre-specified likeli-
hood, other non maximum likelihood methods must be used in order to
extract the available information from the data. Many of these methods
are members of the class of Information-Theoretic (IT) methods.

This survey concentrates on the relationship between econometric
analyses, data and information with an emphasis on the philosophy
leading to these methods. Though, a detailed exposition is provided
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5

here, the focus of this survey is on the sub-class of IT estimators that
view the observed moments as stochastic. Therefore, the detailed for-
mulations and properties of the other sub-class of estimators that view
the observed moments as (pure) zero-moment conditions will be dis-
cussed here briefly as it falls outside the scope of that review and
because there are numerous recent reviews and texts of these meth-
ods (e.g., Smith, 2000, 2005, 2007; Owen, 2001; Hall, 2005; Kitamura,
2006). However, the connection to IT and the ME principle, and the
inter-relationships among the estimators, is discussed here as well.
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